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ABSTRACT In sorghum [Sorghum bicolor (L.) Moench], hybrid cultivars for the biofuel industry are desired.
Along with selection based on testcross performance, evaluation of the breeding population per se is also
important for the success of hybrid breeding. In addition to additive genetic effects, non-additive (i.e.,
dominance and epistatic) effects are expected to contribute to the performance of early generations.
Unfortunately, studies on early generations in sorghum breeding programs are limited. In this study, we
analyzed a breeding population for bioenergy sorghum, which was previously developed based on testcross
performance, to compare genomic selection models both trained on and evaluated for the per se
performance of the 3rd generation S0 individuals. Of over 200 ancestral inbred accessions in the base
population, only 13 founders contributed to the 3rd generation as progenitors. Compared to the founders,
the performances of the population per se were improved for target traits. The total genetic variance within
the S0 generation progenies themselves for all traits was mainly additive, although non-additive variances
contributed to each trait to some extent. For genomic selection, linear regression models explicitly considering
all genetic components showed a higher predictive ability than other linear and non-linearmodels. Although the
number and effect distribution of underlying loci was different among the traits, the influenceof priors formarker
effects was relatively small. These results indicate the importance of considering non-additive effects for
dissecting the genetic architecture of early breeding generations and predicting the performance per se.
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Sorghum [Sorghum bicolor (L.) Moench] is a promising bioenergy
crop (Regassa and Wortmann 2014). Commercial F1 hybrid sor-
ghums for biofuel production need to exhibit superiority in multiple
traits, such as biomass, sugar content, and stress tolerance. In hybrid

breeding, testcrosses are generally used to evaluate progeny perfor-
mance. Many studies have focused on the relationship between the
performance of partially or completely inbred lines and their test-
crosses to a common unrelated tester to predict the effectiveness of
selection on line per se performance for improving testcross perfor-
mance. In maize, the correlation between line per se and testcross
performance was intermediate to high for some traits, but small for
grain yield (Mihaljevic et al. 2005). Similarly, other studies in maize
and rye revealed that the correlations between phenotypes measured
in lines per se and their testcrosses were often small for complex traits
(Bekavac et al. 2008; Falke et al. 2010; Miedaner et al. 2014).

Although the breeding value of lines or individual breeding
candidates for testcross performance is the most important selection
criterion in hybrid breeding, the characteristics of the per se are also
considered because they impact the efficiency of F1 seed production.
For example, dwarf genotypes, which are easier to handle and more
resistant to lodging than taller ones, are often utilized as the seed
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parents in hybrid sorghum (Pedersen et al. 2013). Cytoplasmic male
sterility (CMS) is also necessary for hybrid seed parents because
sorghum is a predominantly self-pollinated crop (Rooney 2007).
Conversely, the pollen parent needs the complementary phenotypes,
in which multiple traits (e.g., culm length, panicle length, and heading
days) are suitable for hybridization. In a sorghum hybrid breeding
program, only candidates with the suitability as hybrid parents are
preselected in the advanced generations (e.g., F5 lines) before the
evaluation based on testcross (Rooney 2007). On the other hand, for
utilizing testcrosses for selection beginning in early generations, the
evaluation of the breeding population per se is appropriately in-
corporated into the breeding process.

In addition to the additive genetic effects for parents, the perfor-
mance of early generations per se can be affected by non-additive
effects, especially dominance due to high heterozygosity before in-
breeding has advanced. In sorghum, biomass-related traits (e.g., plant
height) showed a considerable level of dominance while others were
primarily additive (Felderhoff et al. 2012). In addition to additive and
dominance effects, epistasis also contributed to various traits for
bioenergy sorghum (Shiringani et al. 2010; Shiringani and Friedt
2011). The degree of non-additive effects has been examined in
various traits across species (Yu et al. 1997; Lu et al. 2003;
Frascaroli et al. 2007; Jiang et al. 2017). However, the contribution
of non-additive effects in early generations of inbreeding in popu-
lations derived from several selection cycles is poorly understood. In
contrast to genetic mapping populations (e.g., F2), breeding popula-
tions also have other complications (e.g., unequal allele frequencies)
that need to be considered in dissecting the genetic architecture
(Würschum 2012). Therefore, statistical models considering the ge-
netic properties of breeding populations with limited inbreeding are
necessary.

Genomic prediction (GP) was proposed to evaluate genetic po-
tentials by the regression of target traits on genome-wide dense
markers (Meuwissen et al. 2001). In plant and animal breeding,
GP models have primarily been based on additive effects although
non-parametric regression models considering non-additive effects
are also used (Hayes and Goddard 2010; Jannink et al. 2010). Re-
cently, the importance of non-additive effects in GP was considered
(Varona et al. 2018). Some studies showed that GP models explicitly
including non-additive effects improved prediction accuracy (Su et al.
2012; Nishio and Satoh 2014; Jiang and Reif 2015; Vitezica et al.
2017). The use of GP models accounting for only additive effects is
not suitable when genetic architecture is predominantly regulated by
non-additive effects (Howard et al. 2014). Alves et al. (2019) sug-
gested that Bayesian GP models have the advantage of dissecting
complex genetic architecture regulated by non-additive effects.

Bayesian GPmodels can be applied for a genome-wide association
study (GWAS) (Fernando and Garrick 2013). In Bayesian GPmodels,
different priors for marker effects, e.g., Bayesian ridge regression
(BRR) and BayesA, are utilized for dealing with various genetic
architectures of traits (reviewed by Gianola 2013). In particular,
the number of QTL is an important factor in addition to the
number of independent chromosome segments for selecting the
appropriate prior (Daetwyler et al. 2010). For example, Wolc et al.
(2016) showed that BayesB was suitable in the presence of QTL with
large effects. The suitability of priors depends on multiple factors
(e.g., heritability, marker density, and the training dataset size), and
therefore the optimal settings for prior are generally unknown (de
los Campos et al. 2013).

The objective of this study is to give insights into the genetics
of important agronomic performance per se in a non-inbred (S0)

generation of a bioenergy sorghum population that was selected based
on testcross performance. The primary objectives of this research are:
i) description of the genetic architecture of the S0 generation per se
performance, ii) utilization of GP for evaluating the performance of
the breeding population per se, and iii) comparison among models
and priors for target traits. Finally, we discuss the importance and
reliability of modeling non-additive effects for non-inbred and early
inbreeding generations in plant breeding programs.

MATERIALS AND METHODS

Mating design of breeding population
The long-term goal of our project is the breeding of bioenergy
sorghum. F1 hybrid cultivars for bioenergy sorghum require both
high biomass and high sugar contents. The mating design used to
derive the sorghum breeding population is described in Figure 1A.
We use the term “family” as a full-sib family derived from the same
parents, specifically for segregating generations. The term “individual”
is used to describe each plant. The term “genotype” is used to identify
genetically different plants. Genotype may refer to a single individual
of a breeding family or a genetically uniform inbred accession or F1
hybrid.

The breeding population used in this study corresponds to the 3rd

intermating generation derived from the base population (the 0th

generation). To combine diverse genetic variations derived from the
base population, intercrossing was performed in each generation. In
theory, the maximum number of founders per family was eight in the
3rd generation. For selection, at least one tester was crossed with each
breeding candidate to check the progeny performance. In the selec-
tion, total weight (TW) and the Brix value of culm juice (BR) of
testcrosses were considered as the main target traits, although other
traits were also considered secondarily (see Phenotypic data). The
selection criteria were determined comprehensively because the de-
cision of the best testcross across multiple traits was generally difficult
(i.e., it depended on the breeder’s eye to some extent).

Breeding populations
A base population (the 0th generation) was composed of 243 inbred
accessions, which had been obtained from public genebanks (Table
S1). For the next population (the 1st generation), we selected 29 ac-
cessions from the base population based on the progeny performance
with each tester separately. Four accessions that were not tested in this
project were added to the 29 accessions. Therefore, a total of
33 accessions was used as the parents for the 1st generation. We
performed 23 intercrosses among the 33 accessions, which corre-
sponds to the 1st generation (23 intra-population F1 hybrids). Of the
23 F1 hybrids, 9 F1 hybrids were selected for the next population (the
2nd generation). All crosses genetically segregate starting in the 2nd

generation. The 2nd generation included a total of 11 families, which
were produced by 10 intercrosses among 8 F1 hybrids (S0 progenies)
in addition to a family derived from the selfing of an F1 hybrid (S1
progenies). In this study, we used all 11 families of the 2nd generation
as the parents for the next population without selection. The next
population (3rd) was derived from intercrosses among different
families of the 2nd generation. A few exceptions were derived from
crosses within the same family (full-sib mating). A total of 137 indi-
viduals (average of 12.5 sibs per family in the 2nd generation) was used
as the parents for intercrossing, resulting in 260 full-sib families in the
3rd generation.

Intercrossing was limited to the combinations within the group
that had been selected for performance on each tester. This means
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that a selected genotype (or family) for a particular tester was
intercrossed with another genotype (family) selected for performance
in combination with the same tester.

Test populations
Test populations were evaluated only for the selection of parents for
the next breeding populations. In other words, test populations per se
were not directly used as parents for the breeding populations. For
selection, we performed testcrosses with two testers with cytoplasmic
male sterility (CMS), CMS-A and CMS-B. The 1st test population
corresponds to the F1 hybrids between the two testers and the 0th

generation. Based on the performance of the F1 hybrids, the parental
inbred accessions were selected for each tester.

The 2nd test population corresponds to the three-way crosses
between each tester and the 1st generation. We created two sub-
populations of selected F1s corresponding to the best families in
combination with each of the two testers. Subsequent testcrossing on
advanced generations involved the same tester used to initially select
the breeding families. For example, when we selected multiple inbreds
based on their testcross performance with the CMS-A tester in the 1st

test population, we evaluated the testcross between CMS-A and the F1
hybrid among the selected inbreds in the 2nd test population. Because

the 2nd test population genetically segregates, the progeny rows for
each testcross family were grown and evaluated. Considering the
testcross performance (e.g., the average and variance of phenotypic
values within each testcross family, the suitability across target traits,
and the degree of lodging and diseases), we applied the family
selection to the 2nd test population and selected families (i.e., the
parental F1 hybrids) for the next breeding population (the 2nd

generation).

Phenotypic data
We performed a field trial of the S0 plants of the 3rd generation per se
(not as testcrosses) from June to September in 2017. The single
experiment field was located at Corerepe, Sinaloa, Mexico (25� 379N,
108� 439 W). We germinated seedlings in a greenhouse for three
weeks before transplanting to the field. During the field trial, we
adjusted the amount of irrigated water using drip irrigation. The
fertilizer level was the standard for high-biomass sorghum (N:P:K =
17:60:50 kg ha-1). The space between ridges was 1 m with 15-cm
distances between individuals in the same ridge. We divided the
field into two blocks for allocating each breeding family. A total of
260 breeding families was randomly assigned to each plot across two
blocks without replication. For check plots, the ancestral accessions

Figure 1 (A) Themating design for the
sorghum breeding population. (B) The
genetic proportion of 13 remaining
founders in 260 breeding families
(3rd generation). The 260 families
(each row) are divided into 13 groups
(G01-G13) based on the proportion
of eight progenitors (columns). (C) Prin-
cipal component analysis on marker
genotype (the two testers and base
population). The testers (CMS-A and -B)
and 13 remaining founders are shown
in addition to the other base accessions.
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that contributed to the 3rd generation were incorporated into each
block with at least a plot. In addition, 26 genotypes (F1 hybrids),
which included 24 superior testcrosses generally selected from the
1st test population and two high-biomass varieties provided by
EARTHNOTE Co. Ltd., were replicated within blocks. Each plot
included five individuals. For the breeding families, all five indi-
viduals within a plot were measured for the phenotypes, resulting in
1,300 individuals (260 families · 5 individuals). However, only
1,020 individuals (259 families, averagely 3.9 individuals per family)
were used in this study due to missing data. For the ancestral
accessions and checks, only two healthy individuals in a plot were
measured. In this study, we evaluated six important traits for
bioenergy sorghum (culm length [cm], CL; total biomass weight
[kg transformed to natural logarithm], TW; the brix value of culm
juice [%], BR; culm diameter [mm], CD; culm number [number in
natural logarithm], CN; panicle length [cm], PL). All traits had been
considered for each selection, mainly focusing on the performance
of TW and BR.

To consider the field heterogeneity between the two experimental
blocks, we calculated the adjusted phenotypic values using the
following formula:

yik ¼ mþ gi þ bk þ eik;

where yik is the phenotypic value of the ith genotypes on the kth block,
m is an intercept, and gi is the effect of the ith genotype, which is
treated as random for unreplicated individuals of the breeding
population and as fixed for replicated ancestral accessions and checks
(Kempton and Gleeson 1996), bk is the random effect of the kth block
[where b � Nð0; Is2

bÞ], and eik is the residual [where e � N 0; Is2
e

� �
].

The adjusted phenotypic value of the ith genotype (~yi) was
calculated as ~yi ¼ m̂þ ĝi, where m̂ is the estimated mean value and
ĝ i is the best linear unbiased prediction of the ith genotype. The
adjusted phenotypic values (~y) were used as the response variable
for the following Bayesian regression models. This model was
implemented using the package RAINBOWR (Hamazaki and
Iwata 2020) in R (R Core Team 2019).

Marker data
DNA extraction and library preparation followed the procedure by
Kobayashi et al. (2017). Although both the founder accessions and the
breeding population were genotyped by restriction site-associated
DNA sequencing (RAD-seq) (Baird et al. 2008), different restriction
enzyme pairs (BglII andMseI for the former, and BglII and EcoRI for
the latter) were used due to a procedural reason. Therefore, we
obtained different marker datasets for the founder accessions and
the breeding population, respectively. We treated each marker dataset
independently for the analysis.

Each marker dataset was available through the following proce-
dures. We mapped the RAD reads to the sorghum reference genome
sequence (Sbicolor_313_v3.0) (McCormick et al. 2018) using BWA
version 0.7.15 (Li and Durbin 2009). We carried out variant calling
using UnifiedGenotyper implemented in the Genome Analysis Tool-
kit version 3.5 (McKenna et al. 2010) and obtained the raw variant
call format (VCF) output. Using VCF tools (Danecek et al. 2011), we
chose only variant sites fulfilling the following conditions: mean
depth range (3–30), missing score (#5%), minor allele frequency
($5%), quality value (.20), and bi-allelic single nucleotide poly-
morphism (excluding variant sites derived from insertions and
deletions). Besides, only highly homozygous variant sites (the het-
erozygosity rate was less than 5%) were selected for the dataset of the

founder inbred accessions. We imputed missing genotypes using
Beagle 4.0 (Browning and Browning 2007). Of the highly linked
variant sites (r2 $ 0.95 between two variant sites) on the same
chromosome, only the first variant site in the VCF file (which was
near the zero position on a chromosome) were kept. Finally, 6,410
(for the founder accessions) and 3,260 markers (the 3rd breeding
population) remained for the following analyses, respectively.

Principal component analysis (PCA) on each marker dataset was
independently carried out using the function “prcomp” in R.

Bayesian regression models
The Bayesian regression models used in this study can be classified
into four categories: the additive linear model (A), the additive-
dominance linear model (AD), the additive-dominance-epistasis
linear model (ADE), and the Gaussian kernel model (GK). We
adjusted marker genotype scores and calculated genomic relationship
matrices using the natural and orthogonal interactions (NOIA)
approach (Vitezica et al. 2017). The NOIA model is based on the
genotypic frequency (not allele frequency), which can be applied also
for populations without assuming a Hardy–Weinberg equilibrium,
such as our breeding population. Here, we will briefly explain the
statistical models.

The A model can be written as the next formula:

~yi ¼ mþ
XL
z¼1

mizaz þ ei; (1)

where ~yi is the adjusted phenotypic value of the ith genotype in the
breeding population, m is the mean value across all genotypes, L is the
total number of markers, miz is the marker coefficient of the ith
genotype at the zth marker for the additive effect, az is the additive
effect of the zth marker, and ei is the residual [where e � N 0; Is2

e

� �
].

The AD model can be described as the extended form of the A
model:

~yi ¼ mþ
XL
z¼1

mizaz þ
XL
z¼1

m9izdz þ ei; (2)

where m’iz is the marker coefficient of the ith genotype at the zth
marker for the dominance effect, and dz is the dominance effect of the
zth marker.

The AD model can be further extended to the ADE model by
incorporating the first-order epistasis terms:

~yi ¼ mþ
XL
z¼1

mizaz þ
XL
z¼1

m’iz dz þ
XL
z¼1

XL
w¼1

ðmiz �miwÞvaazw

þ
XL
z¼1

XL
w¼1

ðmiz �m’
iwÞvadzw þ

XL
z¼1

XL
w¼1

ðm’
iz �m’

iwÞvddzw þ ei; (3)

where vaazw, vadzw, and vddzw are the additive·additive, additi-
ve·dominance (including dominance·additive), and dominan-
ce·dominance epistatic effects between the zth and wth markers,
respectively.

The epistatic effect terms are equivalent to the random effects that
follow the multivariate Gaussian distributions, whose variance–co-
variance matrices are proportional to the Hadamard products of the
corresponding relationship matrices (Jiang and Reif 2015). To derive
epistatic matrices, the additive (A) and dominance (D) relationship
matrices were first calculated using each marker coefficient based on
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the genotypic frequency (Vitezica et al. 2017). Using A and D, the
additive·additive (Vaa), additive·dominance (Vad , including domi-
nance·additive), and dominance·dominance (Vdd) epistatic rela-
tionship matrices can be described as Vaa ¼ A∘A

tr A∘Að Þ=n
;Vad ¼ A∘D

tr A∘Dð Þ=n
;

and Vdd ¼ D∘D
tr D∘Dð Þ=n

; where X∘Y represents the Hadamard product of

two matrices, X and Y, tr X∘Yð Þ is the trace, and n is the number of
diagonal elements (i.e., the number of genotypes). In this study, we
fitted the ADE model using the epistatic relationship matrices (Vaa,
Vad , and Vdd) for the epistatic effect terms.

In the A, AD, and ADEmodels, four priors (BRR, BayesA, BayesB,
and BayesC) were used to estimate a (additive marker effects) and d
(dominance marker effects) (Meuwissen et al. 2001; Habier et al.
2011; Gianola 2013). In the AD and ADE models, the combination of
the same priors for a and d was utilized (two different priors together
were not examined).

Both additive and non-additive effects can be implicitly captured
by the reproducing kernel Hilbert spaces (RKHS) regression based on
a Gaussian kernel (GK) (Gianola and van Kaam 2008). The GKmodel
can be written as ~yi ¼ mþ ui þ ei; where ui is the random effect of
the ith individual [where u � N 0;Ks2

u

� �
]. The Gaussian kernel is

calculated as K ¼ exp 2h · Sð Þ; where S is the squared-Euclidean
distance matrix between genotypes in the breeding population, and h
is the bandwidth parameter for adjusting the genetic covariance. To
optimize the value of h in GP, we used the approach based on the
restricted maximum-likelihood (REML) in each training dataset
(Endelman 2011).

All Bayesian regression models were performed using Markov
Chain Monte Carlo (MCMC) implementations in the R package
BGLR (Pérez and de los Campos 2014). For the posterior density, the
total iteration of the sampler is 30,000 and the number of discarded
samples (as burn-in) is 15,000, which showed consistent results with
more MCMC samples (300,000 iterations with 150,000 discards).

Estimation of variance components
For estimating genetic variance components, we calculated genotypic
values in each MCMC sample after burn-in (Lehermeier et al. 2017;
Alves et al. 2019). The additive genotypic value (ĝa) can be calculated
using the following formula:

ĝai ¼
XL
z¼1

mizâz;

where ĝai is the estimated additive value of the ith genotype, and âz is
the estimated additive effect of the zth marker. Similarly, the dom-
inance genetic value (ĝd) was also calculated in the AD and ADE
models. The three epistatic genetic values (ĝaa; ĝad; ĝdd) were implic-
itly estimated in the ADE models. The total genetic value (ĝ) is the
sum of these genetic values. The total genetic variance (s2

g) and
variance components (s2

a;s
2
d;s

2
aa;s

2
ad;s

2
dd) were calculated as the

variance of estimated values across all genotypes in each MCMC
sample (Alves et al. 2019).

Genome-wide association studies (GWAS)
For GWAS, we also used each MCMC sample after burn-in. In
Bayesian whole-genome regression models, the estimated effect of
any single marker can be small because of the correlation among
adjacent markers. Fernando and Garrick (2013) applied the genomic
window approach, which calculated the regional genetic variances
using markers included in a genomic window. We calculated each
regional genetic variance using a 1 Mb sliding window without

overlaps. The formula for the regional additive variance in each
MCMC sample can be as follows:

ĝaqi ¼
XPq

o¼1

mioâo;

ŝ2
aq ¼

1
N

XN
i¼1

ĝaqi2�gaq

� �2
;

where ĝaqi is the estimated additive genotypic value of the ith indi-
vidual at the qth region, and Pq is the number of markers included in
the qth region. The relative additive variance at the qth region (ẑ

2
aq )

for the total genetic variance ŝ2
g was estimated as follows:

ẑ
2
aq ¼

ŝ2
aq

ŝ2
g
:

The regional dominance variance can also be calculated using a
similar procedure. Although any priors for marker effects can be used
for GWAS, we described only the results of the ADE model with
BayesB for the GWAS. In this study, we inferred regions with over 1%
of the total genetic variance in each MCMC sample as being
associated with target traits. The window posterior probability of
association (WPPA) is calculated by counting the number of MCMC
samples over the threshold for the total number of samples (Fernando
and Garrick 2013).

For variance estimation andGWAS, Bayesian regressionmodels were
fitted as the full model using all genotypes of the breeding population.

Genomic prediction
The predictive ability of the Bayesian regressionmodels was evaluated
by a fivefold cross-validation approach. We randomly divided the
breeding population into five subsets. Of these five subsets, four
subsets were used for training the model, and the remaining subset
was validated using the trained model. This process was repeated
until all subsets were validated, which corresponded to a single
replication. The correlation coefficient (r) between the adjusted
phenotypic values (~y) and predicted values (ŷ) was recorded in each
replication. We carried out the fivefold cross-validation approach for
each model and each trait with 20 replications. After the values of the
correlation coefficient were corrected using the Fisher z-transforma-
tion for model comparison, Tukey’s test (P , 0.01) was performed
using the R package agricolae (de Mendiburu 2019).

Data availability
RAD-seq data have been submitted to the NCBI Sequence Read
Archive with the BioProject PRJNA614576. All supplemental mate-
rials are available at FigShare, including the phenotype, genotype,
and ancestry data used in this study. Table S1 contains the results
of GWAS. File S1 contains information on base accessions. File S2
contains phenotype data. File S3 contains genotype data. File S4
contains ancestry data. Other information is also available upon
request. Supplemental material available at figshare: https://
doi.org/10.25387/g3.12674369.

RESULTS

Developing a sorghum breeding population
We developed a sorghum breeding population by the procedure sum-
marized in Figure 1A. Of over 200 accessions in the base population
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(0th generation), only 13 founders contributed to the ancestry of the
3rd generation (Figure 1B). We classified 260 breeding families in the
3rd generation into 13 groups (G01–G13) based on their relationships
to the founders. The genetic contribution of each founder in the

ancestry ranged from 12.5 to 25.0% in the breeding families, except a
family in G12 in which F170 and F247 each contributed 50.0%. G12
and G13 had been selected based on the testcross with CMS-A while
we had selected the other groups for CMS-B. Only one founder (F210)

Figure 2 Variation among the adjusted phenotypic values. FO, founder accession; G0-G13, the 13 groups in the breeding population. CL, culm
length; TW, total weight; BR, brix; CD, culm diameter; CN, culm number; PL, panicle length.

Figure 3 (A)Mean heterozygosity rate ofmarker genotype for the 13 groups in the breeding population. (B) Principal component analysis onmarker
genotype (the breeding population). G0-G13, the 13 groups in the breeding population.
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was included in the ancestry of both subpopulations selected on the
basis of performance with each tester. The remaining 13 founders in
the 3rd generation represented a good sample of genetic variations of
the base population (Figure 1C).

Phenotypic variation of the breeding population
Compared to the founder accessions, each breeding group showed
relatively high performances for most traits (Figure 2). The breeding
groups, except for G13, had greater TW than did the founders. All
groups also showed a higher performance than the founders in BR.
Within the breeding population, the phenotypic variations were
unique to each group. G12 showed the best performance in TW,
which might be mainly due to the improvement of CD and CN. In
G06, the improvement of all traits progressed simultaneously. G01
and G10 improved the performance of PL while the degree of the
improvement was limited in the other groups.

Genetic relationship within the breeding population
The average heterozygosity of marker genotypes ranged from 20 to
40% among all groups (Figure 3A). The top two PCs of the marker
genotypes of breeding candidates in the 3rd generation showed
continuous genetic variations without a distinct population struc-
ture (Figure 3B). Along in the third PC, G12 and G13 (which were
selected on the basis of their performance when testcrossed to
CMS-A) were partly separated from the other groups, indicating
only a small amount of differentiation between the subgroups
selected for each tester. These results might reflect the genetic
composition, in which some founders were common to many
breeding families (Figure 1B) and insufficient generations for
genetic differentiation to occur.

Genetic architecture of the breeding population
We estimated genomic heritability in the breeding population using
Bayesian regression models (the A, AD, and ADE models), with
different four priors for marker effects (Figure 4). In the Amodels, the
genomic heritability of BR and CN was low (about 0.25), while the
other traits (CL, TW, CD, and PL) showed intermediate values (about
0.50–0.65).

Compared to the A models, the AD models estimated the genetic
variances at larger values in all traits although the residuals were
relatively small. Furthermore, genomic heritability was greatest in the
ADE models. The differences among the four priors for marker
effects (BRR, BayesA, BayesB, and BayesC) were generally minor for
the estimation of genomic heritability.

In addition to the total genetic variance, the variance components
can be estimated in the AD and ADE models. In the AD models, the
additive variance was larger than the dominance variance for all traits
(Figure 5). The ratio of the dominance variance to the total genetic
variance varied among traits, which was low in CN and PL, followed
by the other traits. In the ADE models, the additive variance was the
largest variance component, although the contribution of the additive
variance was smaller than in the AD models. The three epistatic
variances accounted for more than half of the total genetic variance in
BR and CN, while epistatic variances contributed little to variation in
CD. The priors for marker effects had only a limited influence on the
estimation of the variance components in any trait.

Genome-wide association studies
Using the ADE model with BayesB, we identified the regions asso-
ciated with the additive and dominance effects (Figure 6). Except for
CL, we detected no chromosomal regions with over 5% of WPPA for

Figure 4 Genomic heritability in the sorghumbreeding population. R, residual variance; G, genetic variance. CL, culm length; TW, total weight; BR,
brix; CD, culm diameter; CN, culm number; PL, panicle length. A, additivemodels; AD, additive and dominance models; ADE, additive, dominance
and epistasis models.
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dominance effects. A region on chromosome 9 showed the asso-
ciation with the dominance effect in CL. In contrast, multiple
regions showed associations with additive effects in all traits
(Table S1). In CL, the strongest association with additive effects
was located between 64–65 Mb on chromosome 3. In TW, a region
on chromosome 6 (13–14 Mb) showed the association, in which
the WPPA was over 95%. In BR, a region on chromosomes 3 had
the highest WPPA. In CD, neighboring regions on chromosome
6 had high WPPA, in addition to multiple associations on other
chromosomes. Also, multiple chromosomes showed probable
associations with CN. In PL, two neighboring regions on chro-
mosome 6 (44–45 and 47–48 Mb) had 30.5% and 92.1% of WPPA
for additive effects, respectively.

Genomic prediction
We evaluated the prediction accuracy of the three linear models (A,
AD, and ADE) and a non-linear model (GK) based on fivefold CV.
The ADE models showed significant superiority to the A and AD
models for all traits (Figure 7). Furthermore, The ADEmodels were
superior to the GK model except for CN. The prediction accuracy
of the GK model was similar to that of the AD models except for
CN, while the AD models showed a higher prediction accuracy
than the A models except for CN and PL. The A models were
generally inferior to the other models although the differences
among the models in prediction accuracy seemed to depend on
traits to some degree (e.g., the differences might be more distinct in
CL than in the other traits). On the other hand, the influence of the
priors for marker effects was relatively small across all predictions,
although the difference among the priors seemed to depend on
traits and models.

DISCUSSION
The first purpose of this study is to dissect the genetic architecture of
the breeding population. The 3rd generation population had im-
proved trait performances per se compared to the founder accessions
(Figure 2). Of particular interest was the possibility of important
contribution of dominance (and dominance-related epistasis) to trait
variation, because high heterozygosity remained in the early gener-
ation (Figure 3A). Our results showed that the additive variance was
the main genetic variance component for all traits (Figure 5). In
particular, over 50% of the total genetic variance for CD and PL was
explained by the additive component across all AD and ADE models.
The ratio of the dominance variance to the total genetic variance was
generally limited in all traits, and no associations between marker
dominance coefficients for specific genomic regions were detected
except for CL (Figure 6).

Genetic architecture is not always consistent across different
populations because of genetic sampling (Holland 2007). To over-
come the differences due to genetic sampling, multi-parental pop-
ulations have been used more recently, although dominance is not
considered in these inbred populations (Buckler et al. 2009; Holland
2015). However, multi-parental mapping approaches are also affected
by genetic sampling (Higgins et al. 2014). Our breeding popula-
tion seems to maintain a large part of genetic diversity included in
sorghum germplasm (Figure 1). Therefore, the genetic architec-
tures characterized here may be relatively good indicators for what
might be found in different populations in sorghum.

QTL detected previously using mapping populations might
also contribute to our breeding population (Figure 6). A broad
region on chromosome 6 contributing to CL, TW, and CD includes
the Ma1/Dw2 loci for maturation and height, which were cloned

Figure 5 Estimation of genetic variance components. The additive (A), dominance (D), additive · additive (E1), additive · dominance (E2),
and dominance · dominance epistatic (E3) variances were shown, respectively. CL, culm length; TW, total weight; BR, brix; CD, culm
diameter; CN, culm number; PL, panicle length. A, additive models; AD, additive and dominance models; ADE, additive, dominance and
epistasis models.
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using mapping populations (Murphy et al. 2011; Hilley et al. 2017).
Some QTL of the other traits might also correspond to identified loci
using mapping populations, such as several associations with PL on
chromosome 6 (Zou et al. 2012). In contrast, several major semi-
dwarfism alleles, such as dw1 on chromosome 9, seemed not to be
segregating in the population. Although a region on chromosome
9 (52–53Mb) showed a dominance association with CL, it was distant
from the Dw1 locus (Yamaguchi et al. 2016). It is possible that alleles
contributing to semi-dwarfism might have been segregating in the
base population, but quickly selected against during two selection
cycles because they are unfavorable to high-biomass sorghums.

The second purpose of this study is the application of GP for
evaluating early generations (Figure 7). Genomic heritability might
be positively correlated with GP accuracy (Figure 4). In fact,
genomic heritability can be an indicator for the implementation
of GP (Guo et al. 2014). On the other hand, genomic heritability

does not necessarily reflect the superiority of GP models because the
balance between the goodness of fit and model complexity is im-
portant (Alves et al. 2019). The merit of a more complex model with
non-additive effects may be attributed to the improvement of the
prediction accuracy of breeding values and the genetic response
(Varona et al. 2018). Furthermore, the utilization of genetic heritability
needs to be carefully considered for inferring population parameters
due to a sizable finite-sample bias (de los Campos et al. 2015).

The estimated genetic parameters can include the unreliability due
to the correlations among variance components, particularly for
epistatic terms (Vitezica et al. 2017). In fact, the total genetic variance
was overestimated especially in the ADE models (Figures 4). The
estimates of three epistatic variances seem to be generally similar to
each other (e.g., in CD), which might reflect their unreliability (Figure
5). Even if genetic architecture based on genetic variance components
was dissected (Vitezica et al. 2018; Alves et al. 2019; Boeven et al.

Figure 6 Genome-wide association studies for additive (A) and dominance (D) effects. In the ADE model with BayesB, the window posterior
probability of association (WPPA) was calculated. Gray horizontal lines showed 5% of WPPA. CL, culm length; TW, total weight; BR, brix; CD, culm
diameter; CN, culm number; PL, panicle length.
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2020), the importance of each genetic effect (i.e., additive, dominance,
and epistasis) cannot be inferred from the results (Huang andMackay
2016).

The modeling of non-additive effects may also be important for
the improvement of GP accuracy (Nishio and Satoh 2014; Jiang and
Reif 2015; Varona et al. 2018), which was the third objective. For all
target traits, the ADE models showed higher accuracies than the A
and AD models (Figure 7). The result indicates that non-additive
effects, especially epistatic terms, play a role for GP in the breeding
population, even if the contribution of non-additive variances is
different among traits (Figure 5). The merit of GP models consid-
ering non-additive effects is not clear in the literature (Varona et al.
2018). First, more complex models might be quite sensitive to
training dataset size in empirical studies. Zhao et al. (2013) sug-
gested that the large population size was necessary for the estima-
tion of the dominance effect. Second, the genetic architecture might
be different among traits, populations, and species. The underlying
genetic architecture can directly affect the superiority of GP models
(Howard et al. 2014). Unfortunately, the relative magnitudes of
variance components do not reflect the functional importance
(Huang and Mackay 2016). Nevertheless, the merit of modeling
non-additive effects is related to the size of these variances to some
extent (Alves et al. 2019).

Although additive genetic variance is important for the improve-
ment of per se performance, GP models with non-additive effects
may be useful to accurately predict the additive genetic value of a
genotype which is affected by both additive and non-additive effects.
In particular, when a breeding population is an early generation as the

population evaluated in this study, dominant variations may not be
negligible in the total genetic variations. To clarify the practical
importance of non-additive variations, other potential usefulness of
non-additive GP models trained on per se performance should
necessarily be validated in future studies.

The GK model is an alternative method for considering non-
additive effects (Gianola and van Kaam 2008). In this study, the GK
model showed a lower predictive ability than the ADEmodels, except
for CN (Figure 7). The advantage of the GKmodel over linear models
may be influenced by the underlying genetic architecture (Howard
et al. 2014). In fact, the GK model was not necessarily better than a
linear model for the prediction of single-cross performance in maize
(Kadam and Lorenz 2019). Further, the optimization of the hyper-
parameter h is necessary for the GK model (Endelman 2011). These
results show that the ADE models have an advantage over the other
models when non-additive effects need to be considered.

Gianola (2013) explained the property of various priors for
marker effects in Bayesian regression models. Our results showed
that the influences of the four priors (BRR, BayesA, BayesB, and
BayesC) were generally small, although the underlying genetic ar-
chitecture seemed to be different among traits (Figures 5, 6, and 7). In
empirical analyses, the differences among priors may be smaller than
expected from simulation studies (de los Campos et al. 2013). Because
of no universally best priors (or models), several priors for marker
effects should be examined for each trait (Momen et al. 2018).

Although we could give light on the genetic architecture of early
generations in a sorghum breeding program, the genetic architecture
of a population is different in every generation with the change of the

Figure 7 Genomic prediction based on the fivefold cross-validation. Error bars represent standard errors. Lowercase letters (a-d) above barplots
indicate significant differences amongmarker priors in eachmodel (theGKmodel was tested in the ADEmodels). Uppercase letters (A-C) above the
lowercase letters indicate significant differences among models (the GK model was not included in the test). After the values of the correlation
coefficient were corrected by Fisher z-transformation, both tests were performed by Tukey’s test (P, 0.01). CL, culm length; TW, total weight; BR,
brix; CD, culm diameter; CN, culm number; PL, panicle length. A, additivemodels; AD, additive and dominance models; ADE, additive, dominance
and epistasis models; GK, Gaussian kernel model.
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genotypic frequency (Walsh and Lynch 2018). Further, the reduction
of genetic variance generally progresses with selection (Bulmer 1976).
The loss of linkage disequilibrium between markers and QTL also
arises in advanced generations (Jannink 2010; Toro and Varona
2010). Therefore, the re-evaluation of the breeding population
may be necessary after a few selection cycles (Iwata et al. 2011;
Yabe et al. 2017).

The limitations of epistasis for selection might be another issue.
For mate allocation, recombination fractions across the genome need
to be considered (Varona et al. 2018). Even if epistasis contributes to
genetic variance, most epistatic variances can be incorporated into the
additive variance with the changes of the genotypic frequency under a
finite effective population size (Walsh and Lynch 2018). To exploit
epistasis in plant breeding, new methods to overcome the limitations
of models and breeding strategies based on additive variance alone are
necessary (Holland 2001). On the other hand, the role of epistasis is
recently reconsidered for the long-term response to selection (Paixão
and Barton 2016). Several strategies based on the additive model are
proposed for long-term genetic gain (De Beukelaer et al. 2017;
Gorjanc et al. 2018; Allier et al. 2019). Non-additive models may
be considered in future studies if they contribute to the enhancement
of the genetic response through more accurate estimation of additive
breeding values (Varona et al. 2018).
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