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Abstract: With a trend of continuing improvement in the development of electronic devices, a
problem of serious heat accumulation has emerged which has created the need for more efficient
thermal management. Graphene sheets (GNS) have drawn much attention with regard to heat transfer
because of their excellent in-plane thermal conductivity; however, the ultrahigh interfacial thermal
resistance between graphene lamellae has seriously restricted its practical applications. Herein, we
describe heat transfer membranes composed of graphene which have been modified by intrinsic
thermally conductive polymers with different molecular weights. The presence of macromolecular
surface modifiers not only constructed the graphene heat transfer interface by π–π interactions,
but also significantly enhanced the membranes’ in-plane thermal conductivity by utilizing their
intrinsic heat transfer properties. Such results indicated that the in-plane thermal conductivity of
the fabricated membrane exhibits a high in-plane thermal conductivity of 4.17 W m−1 K−1, which,
containing the GNS modified with 6000 g/mol (Mn) of poly(3-hexylthiophene) (P3HT), was 26 times
higher that of poly (vinylidene fluoride) (PVDF). The P3HT molecular chain with specific molecular
weight can form more matching structure π–π interactions, which promotes thermal conductivity.
The investigation of different molecular weights has provided a new pathway for designing effective
interfacial structures to relieve interface thermal resistance in thermally conductive membranes.

Keywords: poly(3-hexylthiophene); molecular weight; membrane; thermal conductivity

1. Introduction

With the continuous development of electronic devices towards higher power and
higher density, the phenomenon of heat accumulation has occurred [1,2]. In order to ensure
the normal functioning of electronic devices, more stringent requirements have been put
forward for the heat dissipation performance of electronic devices [3,4]. Polymers have
drawn attention in the field of thermal management because of their electrical insulation,
corrosion resistance, and ease of processing [5–7]. The low thermal conductivity of poly-
mers can be compensated by introducing highly thermally conductive GNS, which have
been widely used in heat transfer because of their high in-plane thermal conductivity.
However, the high interfacial thermal resistance between graphene sheets seriously re-
stricted the further promotion of thermal conductivity [8,9]. Hence, the interfacial thermal
resistance between fillers has always limited the application of membranes. Therefore,
further interface optimization for reducing the interfacial thermal resistance between the
graphene lamellae is imperative in order to further promote the thermal conductivity of
graphene-based membranes.

The interfacial heat transfer performance between fillers could be improved by surface
modification using covalent bonds or non-covalent bonds. The covalent modification might
disrupt the lattice structure of the filler and result in phonon scattering [10]. Nevertheless,
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thermal conductivity could be substantially improved by non-covalent modification with-
out destroying the filler structure. Buehler et al. [11] found that the thermal conductivity of
graphene modified with a side chain of octane was more than 10% higher than that of com-
posites modified with a side chain of butane and dodecane by molecular dynamics simula-
tion. Andersson et al. [12,13] found that the thermal conductivity of poly (vinyl pyrrolidone)
(10,000 g/mol)/multi-walled carbon nanotube (MWNT@PVP (10,000 g/mol)) composite
was 3.64 W m−1 K−1, which was much greater than the MWNT@PVP (40,000 g/mol)
(2.14 W m−1 K−1) and MWNT@PVP (50,000 g/mol) (2.40 W m−1 K−1) composites at the
same addition amount. As a result, the molecular weight of the macromolecule would
affect the thermal conductivity of the composite. However, most macromolecular modifiers
show an ultralow intrinsic thermal conductivity, which significantly restricts their applica-
tion with respect to improving the thermal performance of graphene-based membranes.
Hence, the influence of the molecular weight and the high intrinsic thermal conductivity of
the macromolecular modifier on the thermal conductivity of the composite should been
considered. The thermal conductivity of poly(thiophene) could reach 4.4 W m−1 K−1—
a comparatively high value in polymers [14,15]. In addition, the molecular weight of
poly(thiophene) could be well controlled by the Grignard reaction method (GRIM) [16,17].

In this work, poly(3-hexylthiophene) (P3HT) with different molecular weights has
been investigated as a macromolecular modifier to enhance the thermal conductivity
of graphene-based membranes. The modified graphene (GNS@P3HT) fillers with four
molecular weights of P3HT were successfully prepared by π–π interaction. The influence
of P3HT with different molecular weights on the thermal conductivity of composites was
analyzed. The conclusion has a certain guiding significance for the preparation of high
thermal conductivity membranes by macromolecular modifications in the future.

2. Materials and Methods
2.1. Materials

The 2,5-dibromo-3-hexylthiophene (C10H14Br2S), methylmagnesium bromide (1.0 M)
(CH3BrMg), n-hexane, tetrahydrofuran (THF), ammonium sulfate ((NH4)2SO4) and N,N-
dimethylformamide (DMF) were purchased from Shanghai Aladdin Biochemical Technol-
ogy Co., Ltd., Shanghai, China. Poly(vinylidene fluoride) (PVDF) was obtained from Alfa
Aesar Chemical Co., Ltd., (Shanghai, China). Dichloro[1,3-bis(diphenylphosphino)propane]
nickel (Ni(dppp)Cl2) was bought from Sigma-Aldrich (Shanghai, China). The chloroform
and methanol were supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Graphite foil was provided by Suzhou Graphene Nanotechnology Co., Ltd., Suzhou, China.
All chemical reagents were analytical reagent grade and, except for tetrahydrofuran, used
without further purification.

2.2. Synthesis of P3HT with Controllable Molecular Weight

The reaction mechanism of P3HT is shown in Figure S1. The 6.24 mmol of C10H14Br2S
and 28 mL of anhydrous THF were added into a 100 mL three-necked round-bottomed
flask and stirred magnetically for 10 min under the conditions of an ice bath and N2. The
6.864 mmol of CH3BrMg was added dropwise, followed by magnetic stirring for 10 min.
The reaction was continued, with stirring for a further 2 h after a certain temperature was
reached. After a certain amount of Ni(dppp)Cl2 catalyst was added, the reaction was stirred
at this corresponding temperature for 2 h. Then, 20 mL of methanol was added to the
reaction system to quench the reaction. After that, it was poured into 200 mL of methanol
for precipitation. The resulting dark brown solid was Soxhlet extracted with methanol (to
obtain unreacted 2,5-dibromo-3-hexylthiophene and salt), n-hexane (to remove the catalyst
and oligomers), and chloroform, in turn. Finally, the obtained chloroform solution was
concentrated, precipitated in methanol, and dried in a vacuum oven at 60 ◦C for 24 h to
obtain a reddish-brown solid. To obtain P3HT of different molecular weights, the reaction
temperature and the amount of catalyst added were not written specifically; these measures
are given in the discussion of the results.
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2.3. Preparation of GNS

GNS was prepared by electrochemical exfoliation of graphite foil, where 0.1 mol/L
(NH4)2SO4 aqueous solution was used as the electrolyte, graphite foils as the anode and
Pt flakes as the cathode. A constant voltage of 15 V was applied to the electrodes for
the electrochemical exfoliation of the graphite flakes. After the graphite flake exfoliation
was finished, the product was filtered through the poly (tetra fluoroethylene) (PTFE)
membrane (pore size 0.1 µm), washed three times with deionized water, and lyophilized in
a freeze-dryer for 24 h to obtain GNS.

2.4. Preparation of GNS@P3HT Filler by π–π Stacking

The homogeneously dispersed P3HT solution was gained by adding 200 mg of P3HT
to 40 mL of chloroform and then stirring to dissolve. Then, 100 mg of GNS was slowly
added to the P3HT solution, followed by magnetic stirring for 24 h at room temperature.
The excess P3HT was removed by filtering and washed with chloroform for three times.
Finally, the GNS@P3HT filler was obtained by vacuum drying at 60 ◦C for 24 h. For the
convenience of expression, it was abbreviated as ‘GNS@P3HT(X)’, where ‘X’ represents the
molecular weight of P3HT.

2.5. Fabrication of GNS@P3HT(X)/PVDF Membranes

The GNS@P3HT(X)/PVDF membranes were prepared by the solution blending
method and the scraping method. The PVDF solution was obtained by adding 2 g of PVDF
to 10 mL of DMF solution and heating at 60 ◦C. The homogeneous GNS@P3HT/PVDF
solution was gained by adding the GNS@P3HT to PVDF solution according to a certain
proportion and stirring continuously for 12 h. Then, the membrane was scraped on a
clean glass plate with a thickness of 250 µm using a four-sided film applicator. Finally,
the membrane was dried on a heated plate at 60 ◦C, and then vacuum dried at 60 ◦C for
24 h to obtain GNS@P3HT fillers with different additions of P3HT with different molecular
weights. PVDF membranes with GNS@P3HT contents of 0%, 1%, 5%, 10%, 20%, and 25%,
respectively, were developed according to the above method. The membranes were ab-
breviated as ‘YGNS@P3HT(X)/PVDF’, where ‘X’ and ‘Y’ denoted the molecular weight of
P3HT and the mass fraction of the added filler, respectively. For comparison, YGNS/PVDF
was obtained using the same method.

According to the above method, PVDF membranes with 25 wt% of GNS or GNS@P3HT
were not successfully prepared, because the addition of 25% filler made the solution lose
its fluidity so that it could not be scraped (see Figure S2).

2.6. Characterization

The molecular weights of P3HT with different molecular weights were determined
by Gel Permeation Chromatography (GPC) (Agilent, PL 120 Plus, London, UK) with
0.1 mg/mL solution. The chemical structure of P3HT was recorded by Proton Nuclear
Magnetic Resonance (1H NMR) (Bruker, 400 MHz, Zurich, Switzerland), with chloroform-d
(CDCl3) as solvents. The Ultraviolet-visible (UV–Vis) and fluorescence were determined
using the Lambda 750S (Perkin Elmer, Waltham, MA, USA) and Fluormax-4P (Horiba Jobin
Yvon, Paris, France), respectively. The X-ray diffraction (XRD) measurement was deter-
mined by Smart Lab 9 KW (Rigaku, Tokyo, Japan). X-ray photoelectron spectrometry (XPS)
was carried out by Escalab 250Xi (VG Scientific, Boston, MA, USA). Raman analysis and
Fourier-transform infrared spectroscopy (FTIR) were conducted with Via-Reflex (Renishaw,
London, UK) and TG209F3 (Bruker, Waltham, MA, USA), respectively. The microscopic
morphology of the samples was examined by scanning electronic microscopy (SEM) (Hi-
tachi, Regulus 8230, Tokyo, Japan) and electron microscopy (TEM) (Jeol, JEM-2100, Tokyo,
Japan), respectively. The surface temperature was measured and the infrared thermal
image of samples were taken with FLIR T1040 (FLIR, Boston, MA, USA). The thermal
diffusivity (α) and the specific heat capacity (Cp) were measured using LFA 467 (Netzsch,
Munich, Germany) and TA Q2000 Instruments (TA, New Castle, DE, USA), respectively.
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The density (ρ) was achieved by the ratio of the mass and volume of the sample. The
thermal conductivity was calculated according to the following formula:

κ = α×Cp × ρ (1)

3. Results and Discussion

In this paper, the effects of P3HT of four molecular weights on the thermal conduc-
tivity of the modified graphene composites was investigated. As shown in Figure 1, the
preparation of GNS@P3HT/PVDF mainly includes three processes. Firstly, graphene
was obtained by electrochemical exfoliation, which can conveniently obtain high- quality
GNS [18]. The P3HT of four molecular weights was synthesized by the GRIM method,
which could control effectively the molecular weight of P3HT. Secondly, the GNS@P3HT
filler was obtained by π–π interaction between P3HT and GNS, which reduced the inter-
facial thermal resistance between GNS. Thirdly, due to the high aspect ratio of GNS, the
GNS@P3HT/PVDF obtained has an ordered, stacked microstructure, achieved with the
scraped film method. Long-range orderly heat transfer pathways were established by
π–π interaction.
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Figure 1. Schematic diagram of the preparation process of Graphene sheets @poly(3-hexylthiophene)/poly (vinylidene
fluoride) (GNS@P3HT/PVDF).

3.1. Structural Characterization of P3HT

To explore the effects of different molecular weights of P3HT of the modified graphene
composite on thermal conductivity, P3HT with four molecular weights was synthesized by
changing the reaction temperature and the amount of Ni(dppp)Cl2 catalyst in the GRIM
method [16]. Figure 2a and Table 1 show the GPC spectra at different molecular weights
of P3HT and the synthesis conditions of corresponding molecular weights, respectively.
The peaks of four molecular weights of P3HT were all single peaks, which indicated that
the obtained P3HT polymers were homopolymers. In addition, the synthesis conditions of
parallel experiments with three molecular weights of P3HT were obtained by measuring
the molecular weight of P3HT in Table 1. The P3HT with three molecular weights were
prepared by increasing the reaction temperature of the system under the unchanged
condition of the molar ratio of 2,5-dibromo-3-hexylthiophene monomer of format reagent
and catalyst. The P3HT with a molecular weight of 14000 g/mol was synthesized by
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reducing the amount of catalyst. When the amount of catalyst was too large, there were
more active sites, which led to a lower molecular weight [19,20].

The 1H NMR spectra in Figures 2b and S2 show P3HT with four molecular weights, re-
spectively. The peak at δ = 6.97 ppm was attributed to the hydrogen proton of the thiophene
ring (Ar–H, a); the peak at δ = 2.79 ppm corresponded to the hydrogen proton (Ar–CH2–, b)
on the methylene group attached to the thiophene ring; the peaks at δ = 0.8–1.0 ppm and
1.34–1.69 ppm can be attributed to the hydrogen proton (–CH3, d) on the terminal methyl
group of the substituent and other methylenes on the side chain of the thiophene ring
(–(CH2)4–, c), respectively [21–25]. Although the positions of the individual peaks of four
molecular weights of P3HT are divergent, they all basically shifted near their respective
peaks. Hence, four molecular weights of P3HT were prepared successfully.
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Figure 2. (a) Gel permeation chromatography (GPC) spectra of poly(3-hexylthiophene) (P3HT) with
different molecular weights. (b) 1H nuclear magnetic resonance (NMR) spectra of P3HT (6000).

Table 1. Synthesis conditions of P3HT with different molecular weights.

Mn
(g/mol)

Molar Ratio of
CH3BrMg/C10H14Br2S

Molar Ratio of
C10H14Br2S/Ni(dppp)Cl2

T/◦C t/h

2000 1.1:1 100:1 25 2
6000 1.1:1 100:1 30 2

10,000 1.1:1 100:1 40 2
14,000 1.1:1 125:1 40 2

3.2. Fabrication of GNS@P3HT(X) and GNS@P3HT(X)/PVDF Membranes

In order to verify that GNS modified by P3HT with different molecular weights
were realized by π–π interaction, the interaction between P3HT and GNS was charac-
terized by UV–Visible and fluorescence spectroscopy. The UV–Vis spectra of P3HT and
GNS@P3HT with different molecular weights at a concentration of 0.001 g/mL is shown in
Figures S4 and 3a. The UV–Vis absorption peaks of P3HT with different molecular weights
were all around 450 nm in Figure S4. Since P3HT (6000) has the highest absorption peak
intensity at 450 nm, it was chosen as the comparison group with GNS@P3HT. In Figure 3a,
GNS@P3HT with different molecular weights have only one absorption peak in chloro-
form, which indicated that GNS@P3HT was not simply mixed but forms a single unit in
solution by π–π interaction. In addition, compared with the spectrum of P3HT (6000), the
positions of the absorption peaks of GNS@P3HT were redshifted by at least 5 nm. The
occurrence of redshift was mainly due to the π–π interaction between P3HT and GNS,
which caused a change of the surface charge of P3HT [26–28]. Moreover, compared with
the other three, GNS@P3HT (6000) had the largest redshift distance, which was probably
due to the strongest adhesion to the GNS surface with P3HT(6000) in this state, which
produced a stronger degree of conjugation with GNS [29,30].
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Under the conditions of sample concentration of 0.001 g/mL and excitation wave-
length of 400 nm, the fluorescence spectra of P3HT and GNS@P3HT with different molecu-
lar weights were obtained, as shown in Figure 3b. The wide diffraction peaks of P3HT with
different molecular weights appear around 579 nm, which indicates that the electrons in
the outer layers of P3HT are induced to transition from the ground state to a higher energy
level, and then back to a lower energy level, thus emitting visible fluorescence [31]. With
the increase of molecular weight of P3HT, the corresponding fluorescence intensity first
increases and then decreases. This was because P3HT with a low molecular weight is easily
dispersed in solution and forms stronger intra-chain or inter-chain interaction aggregates,
which shows more color-emitting groups. However, the long chains did not stretch easily
in the solvent for the high molecular weight of P3HT and this led to entanglement and
aggregation [29,30,32–35]. Compared with the fluorescence of P3HT, the fluorescence of
GNS@P3HT was significantly quenched. Considering that there was no serious aggrega-
tion of P3HT, it indicated that an electron transfer complex was formed between P3HT and
GNS by π–π interaction. The electrons on P3HT were greatly restricted by the motion and
cannot transition between energy levels, which leads to the quenching of the fluorescence of
P3HT. [31,35–39]. Therefore, the movement of electrons on the surface of P3HT was limited
by the π–π interaction of GNS, which leads to the fluorescence quenching of GNS@P3HT.
In addition, the fluorescence intensity quenching of P3HT (6000) was the strongest, which
indicates that P3HT (6000) and GNS had the strongest π–π interaction, which made the
electron transfer on P3HT (6000) the most difficult. The π–π interaction between P3HT and
GNS in GNS@P3HT was confirmed by the UV–Vis spectrum and fluorescence analysis.

XPS spectroscopy can show the changes of surface chemical states of GNS mod-
ified by P3HT with different molecular weights (see Figure 4). Compared with GNS
and P3HT (6000), the spectra of GNS@P3HT with different molecular weights showed
S2p peaks, which indicated the presence of a sulfur element. The three deconvoluted
peaks of GNS correspond to C–C/C=C (284.80 eV), C–O/C–OH/C–O–C (286.18 eV), and
C=O/O–C=O (288.49 eV), respectively, in Figure 4b [40,41]. In Figure 4c, the deconvoluted
peaks of P3HT (6000) are attributed to C–C/C=C (285.15 eV) and C–S (285.60 eV), respec-
tively [42,43]. According to Figure 4d–g, the deconvoluted peaks of 284.80 eV, 285.40 eV,
286.18 eV, 288.49 eV, and 290.4 eV in the C1s spectra of GNS@P3HT with different molecu-
lar weights are ascribed to C–C/C=C, C–S, C–O/C–OH/C–O–C, C=O/O–C=O and π–π,
respectively [40,42,43]. The GNS@P3HT has characteristic peaks of GNS and P3HT, which
indicates that P3HT was loaded on the GNS surface. The relative atomic percentage of
the samples were analyzed by XPS in Table 2. The relative atomic ratios of S/C of GNS
and P3HT (6000) were 0% and 9.52%, respectively. The relative atomic ratios of S/C in
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GNS@P3HT with different molecular weights were 3.29%, 3.47%, 2.52%, and 2.01%, re-
spectively. In addition, according to the TG diagram in Figure S5, the loadings of P3HT
of GNS@P3HT (2000), GNS@P3HT (6000), GNS@P3HT (10,000), and GNS@P3HT (14,000)
were 14.97 wt%, 16.89 wt%, 12.34 wt%, and 9.14 wt%, respectively.
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Table 2. Relative atomic percentage of GNS, P3HT(6000), and GNS@P3HT samples.

Sample C (%) S (%) S/C (%)

GNS 94.66 - -
P3HT (6000) 89.1 8.48 9.52

GNS@P3HT (2000) 79.64 2.62 3.29
GNS@P3HT (6000) 89.44 3.1 3.47

GNS@P3HT (10,000) 84.49 2.13 2.52
GNS@P3HT (14,000) 88.73 1.78 2.01

Figure 5a showed the XRD spectra of GNS and P3HT@GNS with different molecular
weights. The diffraction peak of 26.53◦ corresponded to the (002) crystal plane in the GNS
spectrum; the diffraction peaks at 5.18◦ and 23.05◦ were assigned to the (100) and (300)
crystal planes of P3HT, respectively, while the GNS@P3HT spectrum has characteristic
diffraction peaks of both P3HT and GNS [44]. Compared with the (002) crystal plane of
GNS, the intensity of the (002) crystal plane of GNS@P3HT with different molecular weights
was reduced and broadened. In addition, the leftward shift of the (002) crystal plane of
P3HT@GNS indicated that the layer spacing of GNS increased, which also indicated that
P3HT had been loaded on the surface of GNS.



Membranes 2021, 11, 895 8 of 15

Membranes 2021, 11, x  8 of 15 
 

 

GNS@P3HT (10,000) 84.49 2.13 2.52 
GNS@P3HT (14,000) 88.73 1.78 2.01 

Figure 5a showed the XRD spectra of GNS and P3HT@GNS with different molecular 
weights. The diffraction peak of 26.53° corresponded to the (002) crystal plane in the GNS 
spectrum; the diffraction peaks at 5.18° and 23.05° were assigned to the (100) and (300) 
crystal planes of P3HT, respectively, while the GNS@P3HT spectrum has characteristic 
diffraction peaks of both P3HT and GNS [44]. Compared with the (002) crystal plane of 
GNS, the intensity of the (002) crystal plane of GNS@P3HT with different molecular 
weights was reduced and broadened. In addition, the leftward shift of the (002) crystal 
plane of P3HT@GNS indicated that the layer spacing of GNS increased, which also indi-
cated that P3HT had been loaded on the surface of GNS. 

  
Figure 5. (a) X-ray diffraction (XRD) spectra of GNS and GNS@P3HT with different molecular 
weights. (b) Raman spectra of GNS and GNS@P3HT with different molecular weights. (c) Fourier-
transform infrared (FTIR) spectra of GNS@P3HT with different molecular weights. 

Figure 5. (a) X-ray diffraction (XRD) spectra of GNS and GNS@P3HT with different molecular
weights. (b) Raman spectra of GNS and GNS@P3HT with different molecular weights. (c) Fourier-
transform infrared (FTIR) spectra of GNS@P3HT with different molecular weights.

From the Raman spectrum of GNS@P3HT in Figure 5b, the peak at 1425 cm−1 belonged
to the C=C symmetric stretching peak on the thiophene ring in P3HT [45–47], and the peaks
at 1309 cm−1 and 1582 cm−1 were attributed to the D band and G band of GNS, respectively.
The ID/IG (intensity ratio of the D band and G band) of GNS/P3HT (2000), GNS/P3HT
(6000), GNS/P3HT (10,000), and GNS/P3HT (14,000) increased to 0.21, 0.38, 0.19, and 0.18,
respectively, when GNS has an ID/IG of 0.16. By comparing the ID/IG, the results indicated
that the defect was introduced on the GNS by surface modification of P3HT; however,
the non-covalent modification of P3HT had slightly damaged the GNS of GNS@P3HT.
Compared with the GNS, the positions of the G band of GNS@P3HT were blueshifted.
P3HT was attached to the GNS surface through π–π interactions, which changed the charge
distribution on the surface of GNS. Thus, the vibration of GNS@P3HT required higher
energy and shifted the G band to a higher frequency [48,49].
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The characteristics group of GNS@P3HT with different molecular weights was de-
termined by FTIR spectra, as shown in Figure 5c. The characteristic peak at 3410 cm−1

was due to O–H bending vibration, and the characteristic peaks at 1731 cm−1, 1621 cm−1,
and 1056 cm−1 were attributed to the C=C stretching vibration peak and C–O stretching
vibration peak, respectively, in the GNS spectrum of Figure 5c [50]. In the spectrum of P3HT
(6000), the characteristic peaks at 2921 cm−1 and 2854 cm−1 contributed to the stretching
vibration peak of C–H on the thiophene ring; the peaks near 1459 cm−1 and 813 cm−1 cor-
responded to the stretching vibration peak of C=C and the out-of-plane bending vibration
peak of C–H on the thiophene ring, respectively. Compared with P3HT (6000) and GNS
spectra, the GNS@P3HT with different molecular weights has the characteristics group of
P3HT and GNS, which indicated that P3HT was loaded on the surface of GNS.

The SEM and TEM have been utilized to further investigate the morphology of GNS
and GNS@P3HT. Figure 6a,b shows the SEM images of GNS and GNS@P3HT (6000),
respectively. The GNS has a smooth surface without damage and a large size, while
the GNS@P3HT (6000) also has a large size structure but its surface is rough with small
protruding particles. Therefore, P3HT (6000) was loaded on the surface of the GNS. In
Figure 6c, the GNS, due to electrochemical exfoliation, has a typical folded structure with
fewer layers, a transparent, flat surface, and a large spreading chord ratio. Compared
with Figure S6, the entire surface of GNS modified by P3HT (6000) was uniformly covered
with a gray organic material texture and has a distinctly deep strip texture in some areas
in Figure 6d; therefore, P3HT was not formed during deposition process, but formed in
solution [41,45].
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SEM could be used to characterize the internal microstructure of the membrane, as
shown in Figure 7. The cross-section of pure PVDF was relatively flat and there were a few
micro pits left by the process of heating and removing the solvent during the preparation of
membranes in Figure 7a. In Figure 7b, GNS was oriented along the horizontal direction in
membranes, but its distribution was uneven with a large agglomeration phenomenon. The
interface between GNS and PVDF was clearly distinguished, which made the interface less
compatible. Compared with Figure S7, GNS@P3HT (6000) has a good dispersion in PVDF
without obvious agglomeration. GNS@P3HT (6000)/PVDF had a denser stacking without
an obvious cavity and apparent interface separation in the cross section. The P3HT (6000)
loading on the surface of GNS could reduce the interface thermal resistance between GNS,
thereby reducing the scattering of phonon transfer between GNS, which facilitated the
formation of the heat conduction pathway. Therefore, the thermal conductivity of 20 wt%
GNS@P3HT (6000)/PVDF will be greatly improved, which can be verified by the thermal
conductivity test.
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3.3. Thermal Properties of GNS@P3HT/PVDF Membranes

To verify the effect of P3HT with different molecular weights on the modified GNS,
the effect was verified by the in-plane thermal conductivity of the GNS@P3HT/PVDF
membrane. The thermal conductivity of PVDF membranes improved with the increase of
filler content, as shown in Figure 8a, Tables S1 and S2. The sequence of the influence of
P3HT with different molecular weights on the thermal conductivity of GNS@P3HT mem-
branes was as follows: GNS@P3HT (6000)/PVDF, GNS@P3HT (2000)/PVDF, GNS@P3HT
(10,000)/PVDF, GNS@P3HT (14,000) /PVDF, and GNS/PVDF. The in-plane thermal con-
ductivity of the GNS@P3HT (6000)/PVDF membrane was 4.17 W m−1 K−1 at a filler loading
of 20 wt%, which was 26 times higher than that of pure PVDF. The thermal conductivity
of the GNS@P3HT membrane was significantly greater than that of the GNS membrane.
The GNS modified by P3HT with different molecular weights could have been uniformly
dispersed and oriented in PVDF, which formed a dense thermal conductivity pathway of
PVDF membranes [37]. Simultaneously, the interface thermal resistance between GNS was
reduced, which, in turn, improved the thermal conductivity of the membrane. In addition,
the thermal conductivity of GNS@P3HT (6000)/PVDF was the highest relative to the mod-
ified graphene membranes of other P3HT molecular weights. Compared with the other
three modified molecular weights, the P3HT chain with a molecular weight of 6000 g/mol
formed a highly matched structure on the surface of GNS when the chain interacts with
GNS through π–π interaction, which was beneficial to the transfer of phonons between
GNS sheets and reduced the scattering during phonon transfer. However, the excessive
molecular chains might be stacked in a somewhat disorderly manner on the surface of
GNS, resulting in a weak interaction between P3HT and GNS in this region, which will
greatly hinder phonon transmission through P3HT to nearby GNS. Therefore, the thermal
conductivities of composites of P3HT modified graphene with different molecular weights
were also different. In addition, the thermal percolation threshold of PVDF composites with
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graphene and GNS@P3HT fillers was around 5 wt% (see Figure S8). Below the percolation
threshold, the thermal conductivity of PVDF membranes increased slowly. The GNS or
GNS@P3HT was dispersed in PVDF without constructing a heat transfer pathway, which
produce severe phonon scattering and high interfacial thermal resistance [51,52]. Above
the thermal percolation threshold, the thermal conductivity of PVDF membranes increased
rapidly. The filler formed an in-plane heat transfer pathway in the PVDF; at this time,
the thermal conductivity of the filler governed the thermal conductivity of PVDF mem-
branes [52,53]. Simultaneously, in order to compare the efficiency of different modified
fillers on the thermal conductivity of the substrate, thermal conductivity enhancement
efficiency (TCE) can be compared:

TCE =
κc − κp

κp
× 100% (2)

where κc and κp represent the thermal conductivity of membranes and pure PVDF, respectively.
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As shown in Figure 8b, the TCE of GNS@P3HT (6000)/PVDF (20 wt%) composite
was 2472%, which was significantly higher than that of the other fillers and six times
that of GNS@P3HT (6000)/PVDF (1 wt%). These results indicated that the stronger π–π
interactions between P3HT (6000 g/mol) and GNS served to improve the dispersibility
of modified GNS, which prepared the stable organic reagent dispersions of GNS with a
stabilizer of P3HT and reduced the interface thermal resistance between fillers [37,54]. The
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composites of GNS modified with P3HT of a molecular weight of 6000 g/mol has the
highest thermal conductivity.

In order to visually evaluate the thermal conductivity of the composite of P3HT
modified GNS with different molecular weights, the surface temperature of the LED lamp,
with the membrane glued to the base of the commercialized LED lamp using thermally
conductive silver glue, was monitored by infrared thermography within a 35 s period, and
the results are shown in Figure 8c,d. The temperature of the LED lamp on the GNS@ P3HT
(6000)/PVDF was 89.5 ◦C at 35 s, which was 24.8 ◦C and 15.3 ◦C lower than that of the pure
PVDF and GNS/PVDF, respectively. Due to the good interaction between P3HT (6000)
and GNS, which significantly reduced the interfacial thermal resistance of the composite,
the membrane of P3HT (6000) modified GNS has the highest thermal conductivity out of
GNS@ P3HT/PVDF.

4. Conclusions

In this paper, modified GNS was prepared by π–π interaction of P3HT with different
molecular weights, and the orientation of the modified GNS within the PVDF membrane
was realized using a scraped membrane method. GNS@P3HT reduced the interfacial ther-
mal resistance between GNS, which facilitated the formation of a heat conduction pathway
in GNS@P3HT/PVDF. When GNS was modified by P3HT with different molecular weights,
the membrane of modified GNS by P3HT with a molecular weight of 6000 was found to
have the highest thermal conductivity. The thermal conductivity of the GNS@P3HT/PVDF
membrane was 4.17 W m−1 K−1 with a 20 wt% addition of GNS@P3HT (6000), which
was 26 times that of pure PVDF. This conclusion has not only enriched understanding of
methods for non-covalent modification of thermal conductivity fillers but also extended
the potential for surface modifications to other substances.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes11110895/s1, Figure S1: Synthetic routes of P3HT by the GRIM method; Figure S2:
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(b) P3HT (10,000), and (c) P3HT (14,000); Figure S4: UV–Vis spectra of P3HT at different molecular
weights; Figure S5: TGA curves of GNS@P3HT with different molecular weights; Figure S6: TEM
images of (a) GNS@P3HT (2000), (b) GNS@P3HT (10,000), and (c) GNS@P3HT (14,000); Figure S7:
SEM images of (a) 20 wt% GNS@P3HT (2000)/PVDF, (b) 20 wt% GNS@P3HT (10,000)/PVDF, and (c)
20 wt% GNS@P3HT (14,000)/PVDF; Table S1: Density of the GNS/PVDF and GNS@P3HT/PVDF
membrane with different filler mass fractions; Table S2: Physical properties of the GNS/PVDF and
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