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Terrestrialization depended on the evolution of biosynthetic pathways for

biopolymers including lignin, cutin and suberin, which were concentrated

in specific tissues, layers or organs such as the xylem, cuticle and roots on

the submillimetre scale. However, it is often difficult, or even impossible

especially for individual cells, to resolve the biomolecular composition of the

different components of fossil plants on such a scale using the well-established

coupled techniques of gas chromatography/mass spectrometry and liquid

chromatography/mass spectrometry. Here, we report the application of

techniques for surface analysis to investigate the composition of Rhynia
gwynne-vaughanii. X-ray photoelectron spectroscopy of two different spots

(both 300 mm � 600 mm) confirmed the presence of carbon. Time-of-flight sec-

ondary ion mass spectrometry (ToF-SIMS) revealed ‘chemical maps’ (imaging

mode with 300 nm resolution) of aliphatic and aromatic carbon in the intact

fossil that correlate with the vascular structures observed in high-resolution

optical images. This study shows that imaging ToF-SIMS has value for deter-

mining the location of the molecular components of fossil embryophytes while

retaining structural information that will help elucidate how terrestrialization

shaped the early evolution of land plant cell wall biochemistry.

This article is part of a discussion meeting issue ‘The Rhynie cherts: our

earliest terrestrial ecosystem revisited’.
1. Introduction
The colonization of land by plants in the mid-Palaeozoic is recorded in fossil

assemblages that possess diverse morphology rarely seen in extant organisms

[1] and often lack some of the organs characteristic of plants [2]. Such limitations

hamper identification even to phylum level, although there is growing evidence

that early terrestrial vegetation included vascular plants, cyanobacteria, algae,

basal bryophytes, fungi and lichens [3]. The biosyntheses of lignin, cutin and sub-

erin contribute to water transport and permeability control in vascular plants, and

these were all key to the survival and eventual proliferation of land plants in

terrestrial depositional environments [4–6]. These different biopolymers are

associated with specific tissues, layers or organs, e.g. lignin penetrates the cellulo-

sic framework in xylem [4], whereas cutin and suberin provide barrier functions

associated with the epidermis, endodermis and periderm [6]. The cuticle forms

the protective layer outside the epidermis of most aerial vascular plant organs,

and is composed mainly of cutin, whereas the stems of woody plants have a

periderm with suberin as an important component [5]. Taphonomic and diage-

netic processes act on the plant remains both before and after burial in the

sedimentary column. These result in chemical alteration of such polymers.
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Figure 1. Optical image of R. gwynne-vaughanii specimen.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20160499

2
However, if the decay processes can be inhibited (e.g. through

exclusion of oxygen or permineralization), then there may be

preservation of at least some of the fossilized organic carbon

[7]. Fossilization of plant remains involves one of four

processes, namely coalification [8], permineralization [9], mum-

mification [10] or charcoalification [11]. Mummification is the

least understood of these processes and under exceptional

circumstances preserves the original organic carbon with

minimal alteration [12], in which case lignin phenols can be

identified unequivocally with the addition of 13C-labelled

tetramethylammonium hydroxide [13]. Coalification is where

the wood is transformed into peat and then into soft brown

coal by both aerobic and anaerobic biochemical processes,

and then with further increase in the coalification rank to

hard coal and finally graphite [9]. Primary and secondary pro-

ducts of lignin phenols are often present, namely the catechols

and the alkylbenzenes that are formed via the chemical reac-

tions of demethylation and dehydroxylation, which can also

be simulated in the laboratory [14]. The organic carbon is

preserved in the cell walls of a permineralization, but the

original pore spaces are filled with minerals (silica in the case

of the Rhynie chert) [9]. The challenge is now to identify the

residues of these biopolymers in fossilized plants and their con-

stituent tissues and organs—this requires a spatially resolved

method to identify the degradation products of plant biopoly-

mers and other natural products. To enhance the spatial

resolution of our analytical procedures, we have explored the

application of both X-ray photoelectron spectroscopy (XPS)

and time-of-flight secondary ion mass spectrometry (ToF-

SIMS) on a specimen of Rhynia gwynne-vaughanii from the

Rhynie chert to obtain accurate mass spectral information

from micrometre-scale analysis areas on specific components

of whole fossil plants without the need for milling and

subsequent solvent extraction [15].
2. Material and methods
(a) Material
R. gwynne-vaughanii fossils (figure 1) were identified in a large

sawn fragment of the Rhynie chert (about 5 � 5 cm).

Any potential post-depositional ingress was removed from the

large fragment of the chert, using Soxhlet extraction with a mixture

of dichloromethane/methanol (93 : 7; v/v) for 72 h [16]. XPS

analysis both before and after argon gas cluster ion beam etching

(at different energies) on the extracted fossil specimen revealed

that there was no remaining contamination.

(b) X-ray photoelectron spectroscopy
One specific fossil (approx. 2.4 mm in diameter) of R. gwynne-
vaughanii was analysed by XPS in a Theta Probe instrument

(Thermo Scientific, East Grinstead, UK). Spectra were acquired

using a monochromatic Al Ka X-ray source with an output

energy of 1486.6 eV and a spot size of 300 � 600 mm. Two

spots were analysed. A dwell time of 50 ms was used for

survey spectra and of 100 ms for high-resolution spectra. Surface

charge compensation was carried out using a low-energy elec-

tron flood gun. Survey spectra were obtained with a step size

equal to 1.0 eV and a pass energy of 200 eV, while high-

resolution spectra were obtained with 0.4 eV step size and

40 eV pass energy. Data interpretation was carried out by

means of the XPS manufacturer software Avantage v. 5.6925.

This was used in order to determine the chemical composition

of the surface of the samples as well as to obtain information
on the chemical states of elements of interest. Peaks were fitted

with Gaussian (70%)–Lorentzian (30%) components and quanti-

fied using relative sensitivity factors (Scofield) [17]. Shirley

background subtraction was used before the peak fitting [18].

(c) Time-of-flight secondary ion mass spectrometry
The fragment of chert containing the R. gwynne-vaughanii was

mounted directly onto a sample holder using stainless steel

screws and clips for ToF-SIMS analysis. Static SIMS analyses

were carried out using an ION-TOF ‘TOF-SIMS IV-200’ instrument

(ION-TOF GmbH, Münster, Germany) of single-stage reflectron

design [19]. Figure 2 shows a schematic illustration of the ION-

TOF ‘TOF-SIMS IV-200’ instrument. Positive ion spectra and

images of the sample were obtained using a Bi3
þ focused liquid

metal ion gun at 25 keV energy, incident at 458 to the surface

normal and operated in ‘bunched’ mode for high mass resolution.

This mode used 20 ns wide ion pulses at 10 kHz repetition rate.

Charge compensation was effected by low-energy (approx.

20 eV) electrons provided by a flood gun. The total ion dose den-

sity was less than 1 � 1016 ions m22. The topography of the

sample surface and the ion gun mode of operation limited the

mass resolution in this work to approximately m/Dm ¼ 2000.

The spatial resolution was limited by the primary ion beam

diameter to approximately 4 mm.

Positive and negative ion static SIMS spectra and images

were recorded from the outermost approximately 1 nm of the

sample surface at room temperature. Raw data containing the

secondary ions recorded at each pixel were acquired with a

256 � 256 pixel raster and a field of view of 500 mm � 500 mm.

Four adjacent 500 mm � 500 mm analysis areas were mapped

starting at the approximate centre of the specimen and then

moving the sample radially outward by 500 mm each time. The

third area included the epidermis of the R. gwynne-vaughanii
and some matrix material, while the final area included only

the matrix for comparison.
3. Results
(a) X-ray photoelectron spectroscopic analysis
XPS spectra of R. gwynne-vaughanii reveal the presence of the

elements oxygen, silicon, carbon, iron and aluminium

(figure 3). Table 1 shows their surface concentrations at two

spots on the fossil with a spot size of 300 � 600 mm. The two

spots have a similar elemental composition which indicates

the extent of mineralization with a relatively low carbon content.
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Figure 2. Schematic view of ToF-SIMS spectrometer.
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Figure 3. XPS survey spectrum of R. gwynne-vaughanii.

Table 1. Percentage chemical composition, as atomic percentage, obtained
from XPS high-resolution spectra on the two spots analysed on the
specimen of R. gwynne-vaughanii.

element O 1s
Si
2p

C
1s

Fe
2p

Al
2p

spot 1 63.7 25.0 5.8 2.8 2.7

spot 2 61.8 19.4 8.8 5.4 4.6
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High-resolution spectra of O 1s, Si 2p, C 1s and Al 2p were

also recorded. The C 1s high-resolution spectrum of R. gwynne-
vaughanii is shown in figure 4. This spectrum is composed of

overlapping peaks that can be deconvoluted into four com-

ponents as assigned in figure 4 and table 2 [20]. The most

intense peak at about 285.0 eV is consistent with sp3 and sp2

hybridized aliphatic/aromatic carbon bonded to only carbon

or hydrogen. Additionally, there are peaks assigned to

carbon single-bonded to oxygen (C–O at 286.1 eV), carbon

double-bonded to oxygen (C¼O at 287.3 eV) and carbon
both single- and double-bonded to oxygen (O–C¼O at

289.1 eV). The relative percentage abundance of the C 1s com-

ponents is presented in table 2. Figure 4 also indicates a broad

peak at approximately 292 eV which is assigned to a p–p*

shake-up satellite, suggesting the presence of aromatic carbon

or other conjugated unsaturated carbon moieties. Traces of pot-

assium were also detected in the C1s high-resolution scan

region (because the binding energy of the K 2p electron is

close to that of the C 1s) (figure 4).
(b) Time-of-flight secondary ion mass spectrometric
analysis

The results of the ToF-SIMS analysis are shown in figure 5.

The aliphatic carbon and aromatic carbon ‘chemical maps’

were created from the sum of the individual maps due to

the secondary fragment ions shown in table 3.

The Si map was created from the 28Siþ secondary ion alone.

The individual secondary ion maps were regenerated from the

raw dataset after recalibration of the mass scale. The mass res-

olution obtained was easily sufficient to enable selection of
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Figure 4. XPS C1s high-resolution fitted peaks for R. gwynne-vaughanii.

Table 2. Percentage of the total carbon present as C – C/C – H, C – O, C¼O
and O – C¼O on the specimen of R. gwynne-vaughanii.

functionality

percentage of total carbon present as:

C – C/C – H C – O C5O O – C5O

spot 1 67 18 8 8

spot 2 60 17 11 13
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discrete peak areas for the specified ions. The left-hand column

of maps and images was recorded from the approximate centre

of the R. gwynne-vaughanii. The third column included the epi-

dermis, as indicated by the arrow in figure 5, and some of the

surrounding matrix material. The fourth column consisted

entirely of matrix material. The aliphatic and aromatic hydro-

carbon species detected showed similar distributions so that

the aliphatic/aromatic ratio did not vary greatly across the

specimen. Figure 5 shows that there is a region with relatively

high content of both aliphatic and aromatic carbon near the

centre of the stem, and a relatively depleted region in the out-

ermost cortex. Both aliphatic and aromatic carbon are

detectable in the matrix surrounding the stem as well. The

spatial distribution of both types also appears to be somewhat

negatively correlated with the distribution of 28Siþ.
4. Discussion
The ability to characterize biomolecules and their taphonomic/

diagenetic products in specific tissues, layers or organs such as

the xylem, cuticle and roots on the submillimetre scale has the

potential to increase our understanding of the palaeobiochem-

istry of early land plants. In this study, we describe a novel

analytical approach to discriminate different spatial positions

within R. gwynne-vaughanii in the Rhynie chert.

Commonly, the analytical approach has been firstly to mill

or powder the specimen in gram amounts [16,21–24]. Then

the powdered fossil is extracted with a dichloromethane/

methanol solvent mixture and following chromatographic

fractionation, the biomarkers are analysed using either com-

bined gas chromatography/mass spectrometry (GC/MS) or
high-performance liquid chromatography/mass spectrometry.

Finally, the molecular characterization of the organic-insoluble

residue from the solvent extraction process is commonly carried

out using one or more of flash pyrolysis/GC/MS, FTIR and 13C

solid-state NMR [16]. The same approach has been used to

identify intracrystalline lipids in brachiopod shells [25]. Reliable

detection of biomarkers typically requires centimetre-scale

sized samples and the milling process will inevitably mix differ-

ent components of the plant fossil together. This will remove all

of the distributional information on the organic carbon in the

fossil samples [15]. Alternatively, Raman spectroscopy has

been used to identify spatial heterogeneity of the chemical com-

position of Rhynie chert fossils, but this technique is unable to

identify specific biomarkers [26].

In this study, we describe a novel analytical approach to

fossil plant geochemistry which is based on data obtained

from whole, intact fossil material using ToF-SIMS and XPS.

The two techniques are complementary in that XPS provides

information about oxygen-bonded carbon, whereas ToF-SIMS

demonstrates the presence of polymeric hydrocarbons. Other

advantages of this approach are that there is no requirement

to prepare cellulose acetate peels of fossil plant blocks (therefore

avoiding deformation to the fragile organic matter during peel

preparation [27]) and it is not reliant on a synchrotron X-ray

source, which is necessary when studying plant fossil material

using X-ray transmission (e.g. [28]). On the other hand, X-ray

transmission (carbon (1s) X-ray absorption near-edge spec-

troscopy (C-XANES)) has greater spatial resolution, so that,

for example, it can be used to analyse individual cells [29].

A crucial step in our approach is to remove surface material sol-

uble in the dichloromethane/methanol solvent mixture during

the ‘cleaning’ stage. XPS and argon gas cluster ion beam etching

were then used to confirm the absence of detectable contami-

nation on the surface of the specimen as described above in

§2(a). The high-resolution C 1s spectra (figure 4) identi-

fied the same oxygen-bonded carbon, namely C–O, C¼O

and O–C¼O, as was previously detected in Aglaophyton and

Rhynia [28] as well as Asteroxylon mackiei [27] from the Rhynie

chert using C-XANES. We demonstrate that there is lateral

heterogeneity in the distribution of aromatic and aliphatic

carbon across the surface of R. gwynne-vaughanii. The centre

of the R. gwynne-vaughanii shown in the left-hand column of



aliphatic
hydrocarbons

aromatic
hydrocarbons

silicon

aliphatic
hydrocarbons
(red) on Si (green)

centre + 0.5 mm + 1 mm + 1.5 mm

aromatic
hydrocarbons
(red) on Si (green)

optical view

0

max

1000 µm 1000 µm 1000 µm 1000 µm

Figure 5. Secondary ion images of R. gwynne-vaughanii specimen. The epidermal region of the R. gwynne-vaughanii is indicated by the black arrowhead. The
optical view was recorded from the instrument camera during the analysis. The green square at the approximate centre of each optical image (indicated by white
arrow) represents the actual analysis area. The associated dark grey, approximately circular, area is the stem cross-section.

Table 3. Positive ions—assignment and accurate masses (m/z) abridged to
two decimal places.

aliphatic hydrocarbon aromatic hydrocarbon

C2H5
þ 29.04 C6H5

þ 77.04

C3H5
þ 41.04 C7H7

þ 91.06

C4H9
þ 57.07 C8H9

þ 105.08

C5H9
þ 69.08 C9H7

þ 115.06

C6H11
þ 83.09 C10H8

þ 128.06

C7H13
þ 97.11 C11H9

þ 141.08

C8H15
þ 111.13 C12H8

þ 152.06

C9H17
þ 125.13 C13H9

þ 165.07

C14H10
þ 178.07

28Siþ 27.98 C15H11
þ 191.08
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images in figure 5 showed significantly higher secondary ion

intensity due to both types of hydrocarbon species compared

to the adjacent 0.5 mm square (figure 5) within the R. gwynne-
vaughanii itself and to the surrounding matrix region. This is

consistent with increased relative amounts of both aromatic

and aliphatic carbon underlying the xylem of the fossil plant.

These correlate with the vascular structures observed in the
high-resolution optical image presented in figure 5. Further

investigation is needed to elucidate the source of the hydrocar-

bons we detected. It would be instructive to analyse other fossil

plants such as Asteroxylon using the same technique.

ToF-SIMS analysis is normally considered to be a purely

qualitative technique, but it can be relatively quantitative in

special cases (e.g. for very similar surfaces and when compar-

ing secondary ion peak areas for species present at very dilute

concentrations, certainly less than 0.1% w/w). In the case of the

secondary ion maps presented in this work, it is reasonable to

equate the carbon signal intensity with the relative amount of

material present in the surface region analysed. Both ToF-

SIMS and XPS results show that surface science technologies

can be used to determine the location of the molecular com-

ponents of fossil plant cell walls while retaining structural

information. These techniques show that powdering of valu-

able fossil samples is not required and in this sense can be

compared with the recent report of a direct extraction-free

approach for the analysis of lipids in intact sediment cores

using laser desorption ionization coupled to Fourier transform

ion cyclotron resonance mass spectrometry [29].

Accurate identification of biopolymers and their diagenetic

products requires the development of databases from the analy-

sis of plant-derived authentic standards using ToF-SIMS and

XPS. Our study shows that if this is done, imaging ToF-SIMS

will be a valuable tool to help understand the distribution of
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biomolecules and their taphonomic/diagenetic products

within the organs and tissues of land plant fossils. Further ana-

lyses are now under way in our laboratory to characterize the

molecular composition of other early land plants as well as

enigmatic fossils to help elucidate how terrestrialization

shaped the early evolution of land plant cell wall biochemistry.
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