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Abstract Thromboelastometry is increasingly used in the

clinical and scientific setting. The use of frozen plasma

samples may be useful in overcoming certain limitations

such as local and timely availability. Whole blood (WB)

samples of 20 healthy volunteers were obtained, and

plasma was generated. NATEM (n = 20), EXTEM

(n = 20) and INTEM (n = 8) analyses were performed in

WB, fresh plasma and frozen and thawed plasma. Dabi-

gatran (500, 1000 ng/ml), rivaroxaban (100, 200 ng/ml) or

alteplase (333 ng/ml) were added ex vivo to WB, and

thromboelastometry was performed in WB and in frozen

and thawed plasma samples. Clot formation time, mean

clot firmness and the area under the curve were signifi-

cantly altered in plasma compared to WB. In INTEM and

EXTEM analysis, clotting time (CT) was comparable

between WB (100%) and fresh (INTEM 114% and

EXTEM 93%, ratio of the means) and frozen plasma

samples (85 and 99%), whereas in NATEM analysis, the

CT increased in fresh (193%) and frozen plasma samples

(130%). Dabigatran dose-dependently increased the CT

approximately 5- and 9-fold in WB and even more pro-

nounced 10- and 26-fold in plasma. Accordingly, rivarox-

aban dose-dependently increased the CT 2- and 2.7-fold in

WB, and 3.5- and 4-fold in plasma samples. Hyperfibri-

nolysis was achieved by addition of alteplase in all WB

samples and was reproducible in plasma samples. In con-

clusion, thromboelastometry, especially INTEM and

EXTEM analyses, is possible using frozen and stored

plasma samples with comparable results to the corre-

sponding whole blood samples.

Keywords Thromboelastometry � Hyperfibrinolysis �
Coagulation � Blood � Blood plasma � Direct oral
anticoagulants � Coagulation

List of abbreviations

AUC Area under the curve

C Celsius

CT Clotting time

CFT Clot formation time

MCF Maximum clot firmness

ML Maximum lysis

LT Time of maximum lysis

Introduction

Thromboelastometry is a point-of-care assay measuring the

viscoelastic properties of clot formation and clot lysis of

whole blood [1]. The results of such measurements offer

quick information about the global coagulation profile [2].

This may be useful in certain clinical situations, i.e.,

during surgery, in bleeding patients, in patients with

hemorrhagic disorders, to monitor certain drugs or when

massive transfusions are required [3–9]. Furthermore, the

impact of hemostatic interventions can be rapidly assessed

and decisions may be based on results of such viscoelastic

tests [10]. The advantages of thromboelastometry-guided

hemostatic therapy were demonstrated in patients under-

going cardiac surgery [11]. Blood loss and the need for

fresh frozen plasma units could be reduced. Moreover, the

perioperative need of blood products could be reduced in
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patients with severe burn injuries [12]. The diagnosis of

hyperfibrinolysis is often difficult and testing the vis-

coelastic properties of blood may offer important infor-

mation to support the diagnosis [13, 14] or to diagnose

hyperfibrinolytic disseminated intravascular coagulation

[15]. Thromboelastometry is also sensitive to anticoagulant

drugs such as enoxaparin [16], apixaban, rivaroxaban,

argatroban and dabigatran [17–19].

Thromboelastometry is sensitive to the coagulation

activation in the human endotoxemia model [20] and may

be used to identify prothrombotic states in patients [21–23].

However, like every other testing system some limita-

tions need to be considered. First of all, thromboelastom-

etry produced accurate and reproducible results within

30 min up to 4 h, but inconsistent references are published

on the stability and reproducibility of measurements after

sample storage at room temperature [24–26]. The intra-

individual coefficient of variation of thromboelastometry

ranged between 11 and 23% in healthy volunteers (own

unpublished data). Secondly, trained personnel and avail-

able devices are necessary. In the clinical setting, usually

rapid results are required which is an important advantage

of this method. On the contrary, in the scientific setting,

storage of samples for later batch analysis offers obvious

advantages.

The aim of this study was to investigate whether the

results of thromboelastometry performed on frozen plasma

samples are comparable to the results obtained from freshly

obtained whole blood. This may help to overcome at least

part of these limitations.

Methods

This study was performed at the Department of Clinical

Pharmacology at the Medical University of Vienna. The

independent Ethics Committee of the Medical University

of Vienna approved the study. Twenty healthy volunteers

were included in the study, and blood sampling was per-

formed between February and April 2016 (Table 1).

Preparation of whole blood and plasma samples

Whole blood samples were obtained from fresh

venipunctures in healthy volunteers and collected into

3.8% sodium citrate tubes.

To generate platelet-free plasma, whole blood was

centrifuged twice at 2500g for 15 min at room temperature

and the supernatant was transferred into polypropylene

tubes. Plasma samples were either used for immediate

analysis (fresh plasma) or frozen and stored as explained

below (frozen plasma).

To investigate the effects of freezing on hyperfibrinol-

ysis, we spiked alteplase (actilyse, 333 ng/ml) into whole

blood samples to induce artificial hyperfibrinolysis.

ROTEM analysis was performed for fresh blood, and again

plasma was generated for immediate (fresh plasma) or later

(frozen plasma) analysis as explained above.

To investigate the effects of oral anticoagulants, we

spiked rivaroxaban (100 and 200 ng/ml) and dabigatran

(500 and 1000 ng/ml) into whole blood and performed

ROTEM analysis. Again plasma for immediate and later

analysis was generated from the whole blood samples as

explained above.

Plasma samples of all 20 healthy volunteers were frozen

and stored at -80 �C until later analysis. These samples

included native plasma and plasma containing rivaroxaban,

dabigatran and alteplase, as explained above.

Additionally, we investigated whether different freezing

techniques and storage temperatures affected the results of

ROTEM analysis. Therefore, plasma of eight healthy vol-

unteers was frozen using dry ice (-78 �C) and then

transferred to -80 or -18 �C storage. Plasma samples of

another eight subjects were frozen and stored at -18 �C,
and plasma samples of another eight subjects were frozen

using liquid nitrogen (-196 �C) and then transferred to

-80 or -18 �C storage.

All frozen plasma samples were thawed using a water

bath heated to 37 �C (C) for 15 min and analyzed there-

after. Whole blood and fresh plasma samples were tested at

the same time, whereas frozen plasma samples were ana-

lyzed at one to four weeks later.

Thromboelastometry

The viscoelastic properties of whole blood or plasma were

investigated with the ROTEM coagulation analyzer (Pen-

tapharm, Munich, Germany) as previously described [20].

In short, ROTEM measures shear elastic modulus during

clot formation and subsequent fibrinolysis. The ROTEM

uses a ball-bearing system for power transduction, which

makes it less susceptible to mechanical stress, movement

and vibration.

Table 1 Demographics and baseline data of participants

Parameters Mean ± SD

Gender m (f) 11 (9)

Age (years) 26 ± 5

Height (cm) 174 ± 10

Weight (kg) 72 ± 17

Hemoglobin (g/dl) 14.1 ± 1.3

Platelets (*10^9) 265 ± 59

Leukocytes (*10^9) 5.9 ± 1.3

Baseline data and demographics are presented (means ± SD)
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ROTEM measurements produced accurate and repro-

ducible results within 30 min up to 4 h. In fresh blood

samples, we performed ROTEM measurements between 1

and 2 h after blood storage at room temperature.

Just before running the assay, citrated blood samples were

recalcified with 20 ll of CaCl2 0.2 M (Start-TEM; Nobis,

Endingen, Germany) and the test was started. We performed

thromboelastometry without adding additional activators

(NATEM), as well as EXTEM analysis (recombinant tissue

factor- and phospholipid-activated ROTEM), and in eight

subjects INTEM analysis (partial thromboplastin–phospho-

lipid-activated ROTEM). The following ROTEM parame-

ters were analyzed: the clotting time (CT), the clot formation

time (CFT), the maximum clot firmness (MCF), the alpha

angle (alpha), the maximum lysis (ML), the time of maxi-

mum lysis (LT) and the area under the curve (AUC).

In samples with alteplase, dabigatran or rivaroxaban,

only EXTEM analysis was performed.

ROTEM analysis in frozen plasma samples was gener-

ally technically feasible. However, one problem regularly

occurred in the testing system and an error code was

reported that the stability of the clot rapidly increased and

the sample dried. All tests were running for 2 h. This

problem may have affected the detection of ML and the

AUC, because these parameters are measured continuously

until the end of the chosen running time.

Of note, the clot signal amplitude did not reach 20 mm

in all plasma samples resulting in no measurable CFT.

Statistical analysis

A formal sample size calculation was not performed,

because no data on this topic were available. We performed

nonparametric testing using the Friedman ANOVA for

overall comparisons and the Mann–Whitney-U test for

group-wise comparisons. Descriptive statistics are pre-

sented as means and standard deviations unless otherwise

stated.

Results

ROTEM results

Table 2 presents the results of ROTEM analysis performed

in whole blood samples, fresh and frozen plasma samples.

Whole blood versus fresh and frozen plasma

NATEM

The CT was approximately 50% shorter in whole blood

compared to fresh plasma (p\ 0.001) and 25% compared

to frozen plasma samples (p = 0.003). Interestingly, the

CT was also shorter in frozen plasma samples compared to

fresh plasma (p = 0.005). The CFT was approximately

two-fold longer in fresh or frozen plasma compared to

whole blood (p\ 0.001). Expectedly, MCF and AUC were

approximately two-fold higher in whole blood than in

plasma samples due to a lack of blood cells (p\ 0.001).

EXTEM

The CT was similar between whole blood, fresh and frozen

plasma samples. However, a trend to a shorter CT was

noticeable in fresh plasma samples (p = 0.086). Individual

CTs are shown in Fig. 1. The CFT was 8- to 9-fold longer

in fresh and frozen plasma samples compared to whole

blood, respectively (p\ 0.001). Alpha angles were

approximately 10% higher in plasma samples compared to

whole blood (p\ 0.001). Expectedly, the AUC and the

MCF were approximately 2.5-fold higher in whole blood

compared to fresh or frozen plasma samples (p\ 0.001).

Similar to NATEM analysis, measurement of ML was not

feasible in plasma samples.

INTEM

The CT was similar between whole blood and fresh or

frozen plasma samples. However, the CT in frozen plasma

was shorter than in fresh plasma samples (p = 0.006). The

CFT was 9- to 15-fold longer in fresh and frozen plasma

samples compared to whole blood, respectively (p = 0.01

and p = 0.014). The alpha angle was 10% smaller in whole

blood and fresh plasma samples compared to frozen plasma

samples (p = 0.008 and p = 0.042, respectively). Similar

Fig. 1 Individual clotting times in EXTEM analysis using whole

blood, plasma and frozen and thawed plasma (plasma—stored

at -80 �C) (n = 20)
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to NATEM and EXTEM analysis, the MCF (p B 0.001)

and the AUC (p\ 0.03) were approximately 2.5-fold

higher in whole blood compared to plasma samples.

Freezing methods

NATEM

The CT was similar for whole blood and plasma frozen and

stored at -18 �C and for plasma frozen in dry ice and

stored at -80 �C, but significantly longer for plasma frozen

and stored at -80 �C (p = 0.003), frozen with dry ice and

stored at -18 �C (p = 0.003), frozen with liquid nitrogen

and stored at -18 �C (p = 0.004) and frozen with liquid

nitrogen and stored at -80 �C (p = 0.001) (Table 3). The

CFT was significantly longer in plasma samples compared

to whole blood, except for samples frozen and stored at

-18 �C. Expectedly, the AUC, MCF and alpha angles

were significantly smaller in plasma compared to whole

blood, except for the alpha angles measured in samples

frozen and stored at -18 �C. Again, ML was not

measureable.

EXTEM

The CT was shorter in samples frozen and stored at

-18 �C compared to whole blood (p = 0.025), but similar

for all other freezing and storage methods. The CFT was

significantly longer in all plasma samples, the AUC and the

MCF were significantly smaller compared to whole blood.

Alpha angles were approximately 10% larger in all plasma

samples compared to whole blood.

Dabigatran and rivaroxaban anticoagulation

Expectedly, ex vivo addition of dabigatran and rivaroxaban

to whole blood prolonged the CT significantly and con-

centration-dependently in whole blood and in plasma

samples (Fig. 2). The CT and CFT of plasma samples were

significantly longer for plasma samples compared to whole

blood samples (Fig. 2, p\ 0.001 for both dabigatran,

rivaroxaban concentrations: p = 0.019 for 100 ng/mL,

p = 0.021 for 200 ng/mL). The MCF and the AUC were

significantly smaller in plasma samples compared to whole

blood (p\ 0.001 for all tests). The alpha angle was larger

in plasma samples compared to whole blood (p\ 0.001).

Hyperfibrinolysis

Almost complete clot lysis occurred in whole blood sam-

ples, which was well reproducible in plasma samples

(Table 4). Whole blood and plasma samples differed for

CFT, MCF and the AUC. However, CT, ML and LT were

similar.

Discussion

We investigated whether ROTEM analysis performed in

frozen, stored and thawed plasma samples provides similar

results compared to whole blood samples. We only found

few reports performing thromboelastometry in human

plasma samples [27–30]. Based on these, we expected a

smaller MCF, a prolonged CFT and a reduced AUC due to

a lack of blood cells. Clotting time was comparable in

EXTEM and, to a lesser degree, in INTEM analysis.

In EXTEM analysis, the CT tended to be shorter in

plasma samples. This difference, although statistically

significant, was minor, and the clinical relevance is at least

questionable. Of note, all results were within the reference

values suggested by the manufacturer (43–82 s) [31].

Moreover, another study measured a relatively short

median CT of 47 s in EXTEM analysis using platelet free

plasma [27].

In contrast to EXTEM, INTEM and NATEM analysis

showed a prolonged CT in fresh plasma samples compared

to whole blood. INTEM analysis uses a less potent acti-

vator compared to EXTEM analysis, while NATEM anal-

ysis does not involve any activator. This suggests that in

the absence of strong activators pro-coagulant surfaces

seem to be more important for the initiation of the coag-

ulation cascade. Indeed, in some samples coagulation

Fig. 2 Clotting times after addition of dabigatran and rivaroxaban to

whole blood and plasma. Whole blood was spiked in vitro with two

doses of dabigatran (500 and 1000 ng/ml) or rivaroxaban (100 and

200 ng/ml). After EXTEM analysis was performed in whole blood,

the sample was centrifuged, frozen and stored at -80 �C. Frozen
plasma samples were thawed, and EXTEM analysis was performed.

Boxplots present medians, 25–75% quartiles and 5–95% percentiles
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activation did not occur at all or was prolonged to more

than 3000 s. The CT of NATEM analysis in whole blood

was longer in our population (856 ± 233 s) compared to

the manufacturer’s reference values (254–837 s) [31] and

compared to other studies [20, 32]. However, the vari-

ability of results in the non-activated thromboelastometry

analysis was similar to these studies.

We furthermore investigated various freezing methods

in a small number of samples (n = 8), and except for

samples frozen and stored at -18 �C and the samples

frozen in dry ice and stored at -80 �C, the CT in NATEM

analysis was 40–60% longer compared to whole blood

samples. In EXTEM analysis, no differences were

detectable except for the samples frozen and stored at

-18 �C, in which the CT was *10% shorter. It is con-

ceivable that freezing, storage and/or thawing procedures

have an impact on the results. One possible explanation for

the varying results may be cold or contact activation of

coagulation factors, which was shown for factor V, VIII,

XII and consecutive thrombin generation [33, 34]. To

minimize the influence of such factors, we applied a strict

freezing and thawing schedule. We used citrate-anticoag-

ulated blood samples as suggested by the manufacturer.

However, in contrast to citrate, corn trypsin inhibitor suf-

ficiently suppressed contact activation in calibrated auto-

mated thrombin generation [35–37]. Thus, it is possible

that the use of corn trypsin inhibitor could improve the

reproducibility of results. Numerically, the shortest CT of

all plasma samples was measured in samples frozen and

stored at -18 �C. Cold activation may have played the

biggest part in these samples, because freezing itself takes

longer than with snap-freezing. We therefore cannot rec-

ommend freezing and storing samples at -18 �C.

Considering our results and given the limited availability of

fluid N2 and dry ice, we recommend freezing and storing of

plasma samples at -80 �C.
Residual platelet counts affect global coagulation tests

or coagulation factors only by a small margin [38]. How-

ever, we hypothesized that in the non-activated setting, the

presence of pro-coagulatory surfaces may be of greater

importance. To obtain platelet-free plasma, we performed

two centrifugation steps at 2500g. We measured platelet

counts in a smaller number of plasma samples and detected

a median platelet count \1 G/L. However, we cannot

exclude entirely that very low platelet counts occurred in

some samples. Thus, disintegration of any residual platelets

and consecutive exposure to phospholipids may have led to

the shorter clotting time in frozen plasma samples [39].

The influence of dabigatran and rivaroxaban on vis-

coelastic properties of whole blood was demonstrated

previously [17, 40]. In plasma samples, the CT was further

increased compared to whole blood. As we used the same

whole blood samples for plasma generation as for ROTEM

analysis, the concentration itself remained equal. It seems

likely that in the presence of coagulation inhibitors such as

rivaroxaban or dabigatran, the activator used in EXTEM

analysis may not be potent enough to initiate coagulation

and the lack of pro-coagulant surfaces becomes relevant.

The CT is therefore further prolonged. Due to the magni-

tude of the observed effects, the use of frozen plasma

samples in EXTEM analysis to investigate the presence of

inhibitors of coagulation such as rivaroxaban or dabigatran

seems especially suitable.

Thromboelastometry may be used as a supportive tool in

the diagnosis of hyperfibrinolysis [14]. To artificially

induce hyperfibrinolysis, we spiked alteplase into blood

Table 4 Results of EXTEM analysis after addition of alteplase

Whole blood samples (n = 10) Plasma -80 (n = 10) Individual % of whole blood (mean ± SD) p value

CT (s) 69 ± 9 64 ± 9 109 ± 17% n.s.

CFT (s) 91 ± 23 422 ± 270a 40 ± 47% 0.001

MCF (mm) 52 ± 6 19 ± 5* 300 ± 91% \0.001

Alpha angle (�) 72 ± 4 72 ± 25* 92 ± 4% 0.003

ML (%) 100 ± 0 99 ± 3 101 ± 3% n.s.

AUC 5188 ± 605 1822 ± 453* 301 ± 85% \0.001

LT (s) 1655 ± 1129 1053 ± 340 138 ± 49% n.s.

This table presents the results (means ± SD) of EXTEM analysis after alteplase (333 ng/ml) was added to whole blood samples. After analysis

was performed, plasma was generated, frozen and stored at -80 �C, and thawed for analysis. CT and clot lysis-specific parameters ML and LT

were not different between whole blood and plasma samples

CT clotting time, CFT clot formation time, MCF maximum clot firmness, Alpha alpha angle, ML maximum lysis, AUC area under the curve, LT

time of maximum lysis, n.s. not significant

* p\ 0.05
a A clot signal amplitude of 20 mm was not reached in all samples
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samples as described earlier [13, 41]. Hyperfibrinolysis was

reproducible in frozen and stored plasma samples with a

shorter time of maximum lysis in plasma samples. A likely

explanation may be the reduced MCF in plasma samples

with quicker complete lysis of the smaller clot. Interest-

ingly, no difference was detected in the CT of plasma

samples compared to whole blood indicating the repro-

ducibility of the results. However, due to the mentioned

technical limitations caused by the regular clotting of the

entire sample, we assume that only hyperfibrinolysis of a

certain extent is detectable in plasma samples. As we

included only healthy volunteers with minimal clot lysis

and a usually late onset of clot lysis in our study, we were

not able to detect any form of clot lysis. In hyperfibri-

nolytic patients, lysis occurs within 30 min with a complete

clot lysis within 60 min [14]. This faster onset and the

strong fibrinolysis should be initiated and therefore be

detectable before the sample has clotted entirely. However,

this needs to be confirmed in studies investigating hyper-

fibrinolysis in patients.

This study has several limitations. First of all, the

sample size of 20, and in some instances 8, may be too

small to detect differences or may be affected by outliers.

Furthermore, we did not perform global or more specific

coagulation tests before inclusion in the study or in thawed

plasma samples. When ROTEM was performed in plasma

samples, the error ‘‘dried plasma sample’’ occurred regu-

larly, which probably affected measurement of low level

ML. We only included healthy volunteers in our study.

Possibly in thrombophilic conditions, NATEM analysis is

more reliable due to the presence of activators of coagu-

lation such as tissue factor.

In conclusion, thromboelastometry may be performed in

frozen, stored and thawed plasma samples taking the

mentioned limitations into account. Activated ROTEM

tests such as INTEM or EXTEM are reproducible, and

results are comparable between whole blood and corre-

sponding fresh and frozen plasma, whereas non-activated

NATEM analysis is subject to greater variability. Our test

setup was suitable to detect potent hyperfibrinolysis with a

rapid onset and the presence of anticoagulants.
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