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Protein-protein interactions (PPI) play an essential role in the biological processes that occur in the cell.
Therefore, the dissection of PPI networks becomes decisive to model functional coordination and predict
pathological de-regulation. Cellular networks are dynamic and proteins display varying roles depending
on the tissue-interactomic context. Thus, the use of centrality measures in individual proteins fall short to
dissect the functional properties of the cell. For this reason, there is a need for more comprehensive, rela-
tional, and context-specific ways to analyze the multiple actions of proteins in different cells and identify
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specific functional assemblies within global biomolecular networks. Under this framework, we define
Biological Interacting units (Biolnt-U) as groups of proteins that interact physically and are enriched in
a common Gene Ontology. A search strategy was applied on 33 tissue-specific (TS) PPI networks to gen-
erate Biolnt libraries associated with each particular human tissue. The cross-tissue comparison showed
that housekeeping assemblies incorporate different proteins and exhibit distinct network properties
depending on the tissue. Furthermore, disease genes (DGs) of tissue-associated pathologies preferentially
accumulate in units in the expected tissues, which in turn were more central in the TS networks. Overall,
the study reveals a tissue-specific functional diversification based on the identification of specific protein
units and suggests vulnerabilities specific of each tissue network, which can be applied to refine protein-
disease association methods.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cell physiology, defined as the ability to exert biological func-
tions, emerges from the dynamic interactions in protein networks.
Likewise, pathological manifestations arise from genetic alter-
ations that result in protein interaction failure and network mal-
function [4,40,44]. While great progress has been made towards
the characterization of protein interactions (PPIs) and disease
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genes (DGs) [25,28], the relation between protein network connec-
tivity and phenotypic manifestation is still poorly understood. The
majority of diseases with restricted histological hallmarks are
known to be triggered by DGs with wide tissue expression [19].
In that sense it still an open debate how mutations in housekeep-
ing (ubiquitously expressed) genes can distinctively affect to the
physiology only on certain tissues.

One fundamental reason for this knowledge gap is that biolog-
ical networks are complex. Protein networks include large num-
bers of participating elements and these hold a large range of
interchangeable partners. For instance, the complete human pro-
tein network available in the APID repository [2] included in April
2021 more than 17,000 proteins, with each one being able to inter-
act with more than 30 partners on average (https://bioinfow.dep.
usal.es/apid/). In fact, the combinatorial range of PPIs is an eminent
force for tissue functional diversification [10,16]. The same protein
may establish different interactions and exert varied functional
roles depending on the context [12]. As a consequence, the pro-
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teins will be localized at different positions in the network depend-
ing on their active functional partners in the considered tissues. On
this basis, one could argue the same protein might acquire varying
topological properties across TS-networks that distinctively res-
onate in TS-physiology. Indeed, DGs do not locate at random posi-
tions in the PPI networks but tend to display more TS-PPI in the
disease tissue than in the unaffected tissues [6]. This observation
suggests the idea that different TS-network may have distinct vul-
nerable spots, and strongly supports that the characterization of
topological properties underlying tissue functional diversity might
be critical to understand the emergence of TS patho-phenotypes.

Protein-protein interactions are a strong indicative of functional
collaboration. Network connectivity measures, such as clustering
coefficient, degree and betweenness centrality, are well-
established predictors of protein essentiality and so of potential
vulnerabilities in cell physiology [4]. Based on these notions, a vari-
ety of PPI network-based strategies have been proposed to identify
densely connected modules, recently reviewed by [24]. While
these methods are valuable to predict functional collaboration
and DG candidates, they are not suitable to characterize their topo-
logical context.

In this study we define and characterize Biological Interacting
units (referred to as: Biolnt-U), identified as biological modules
found in PPI networks using tissue-specific mapping and topolog-
ical interactomic analysis. In this way, Biolnt units are found using
a network-based framework to define topologically unbiased func-
tional PPI consortia in multiple tissue-specific (TS) interactomes.
These units represent an intermediate level of PPI functional coor-
dination in TS networks, which allow the characterization of topo-
logical properties of normal and disease-targeted cell processes. A
search for these Biolnt units was performed within an extensive
catalog of human tissues yielding 33 TS-Biolnt libraries. Disease
impact was assessed by mapping known disease genes (DGs) in
Biolnt libraries. The cross-tissue and cross-disease mapping
revealed distinctive topological properties on the Biolnt units, sug-
gesting new explanatory insights into the occurrence of patholo-
gies affecting specific tissues.

The benefits of using Biolnt-U are illustrated, as an example
study, by its integration with publicly available gene expression
profiles (RNA-Seq) derived from patients affected by two diseases:
psoriasis and pulmonary fibrosis. Our analysis revealed that pro-
teins corresponding to differentially expressed transcripts/genes
(DEg) collaborate in the same Biolnt units in expected disease tis-
sues. Furthermore, these Biolnt units were involved in biological
processes previously considered critical in the development of
these diseases (fibrosis and psoriasis), providing new potential
research targets or candidate proteins to be modulated in these
diseases.

2. Results

2.1. Framework for dissecting functionally meaningful interactions:
Biolnt-U

The Biolnt-U method was designed to identify groups of inter-
acting proteins collaborating in the same biological processes
(Fig. 1A), i.e., biologically interacting modules hereafter referred
to as Biolnt units. We first (i) reconstructed 33 tissue-specific
(TS) networks by mapping TS transcripts/genes identified from
TS RNA-Seq profiles in a tissue-naive PPI network. Next (ii) the
TS networks were functionally characterized by evaluating the
Gene Ontology Biological Process (GO-BP) annotated in the net-
work; and (iii) by applying functional enrichment analysis of GO-
BP terms. The enriched GO-BP terms were then used to dissect
Biolnt units. The Biolnt units did only retain the proteins enriched
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in the GO-BP that, at the same time were physically interacting in
the TS network (iv) (Fig. 1A). Assuming that some GO terms are
very general and define too large and fuzzy functional groups,
which are quite uninformative, we only considered Biolnt units
including <200 proteins. The use of Biolnt-U in the TS networks
returned 33 independent TS functional libraries, each including
between 200 and 350 Biolnt units (256 on average) (Fig. 1B), each
including a mean of 103 proteins (Fig. 1C).

2.2. Biolnt units more closely recover real tissue-specific functional
modules

The recently published work by Skinnider and colleagues
soundly demonstrates the benefits of mapping the in vivo interac-
tome of mouse tissues using PCP-SILAM experiments [36]. The
work expands ~2.5 times the former mouse interactome in an
unbiased manner, identifies interactions for more than 360 “inter-
actome orphan” proteins and characterizes tissue-specific interac-
tion rewiring. As the authors stated, most widely used methods for
PPI mapping are based on in silico experiments that lack cell or
tissue-context. To compensate the current knowledge gap, most
researchers opt to reconstruct context-specific interactome map-
ping gene expression data onto tissue-naive PPI data. On this basis,
the authors evaluated the protein overlap between experimental
PPI networks (PCP-SILAM) and predicted tissue-specific networks
from protein expression data. Their analysis revealed a modest
overlap between experimental and predicted networks, raising
questions about whether or not the predictions drawn using
Biolnt-U method are accurate. Biolnt-U method relies on predicted
networks and identifies biologically interacting units defined as
groups of interacting proteins sharing the same enriched GO-BP
term. Interestingly, authors found that the PCP-SILAM approach
tended to connect proteins with similar annotations. On this basis,
we hypothesized that the groups of proteins in a PCP-SILAM net-
work module are also likely to be together in one Biolnt unit.

In order to answer this question, we evaluated the concordance
between the experimental mouse tissue-specific networks with
the predicted networks and the Biolnt libraries (see methods).
We used Wallace coefficient [29] to evaluate the clustering agree-
ment between clusters in PCP-SILAM against clusters in APID or
Biolnt units. SILAM clusters revealed higher overlap with Biolnt
units than with clusters from APID (Supplementary Fig. X). The
Wallace coefficient was highly variable depending on the cluster-
ing algorithm but its relative change from using APID to Biolnt
units was positive in almost all cases (21 out of 24 comparisons).
Based on these results, we argue that Biolnt-U outperforms the
use of predicted networks based solely on gene expression data
and therefore Biolnt units more closely recover real tissue-
specific functional modules.

2.3. TS Biolnt libraries recap functional landscape of TS transcriptomes

An ultimate goal in constructing Biolnt libraries is to dissect
how the interactome is coordinated into TS functional consortia.
On this basis, we corroborated that TS Biolnt libraries recapitulate
the functional landscape of TS transcriptomes resembling well-
established biological properties.

We assessed TS transcriptome coverage at each step of the
framework. A tissue-naive human PPI network retrieved from APID
[2] was found to incorporate >90% of genes identified in each TS
transcriptome [38] (see (i) in Fig. 1D). Biolnt units are generated
from Gene Ontology annotations, so the performance directly
relies on the characterization state of the proteins. We found
that >80% of proteins incorporated in TS networks are functionally
annotated (see (ii) in Fig. 1D). Of note, the statistical functional
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A Framework to identify Biolnt-U: 4 steps
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Fig. 1. Biolnt-U framework performance overview. (A) Schematic illustration of Biolnt-U framework. (i) First, we reconstruct tissue-specific (TS) protein-interaction (PPI)
network by mapping TS RNA-seq profiles from 33 human tissue samples to tissue-naive PPI data. (ii) TS networks are functionally annotated using Gene-Ontology Biological
Process (GO-BP) terms. (iii) TS networks are functionally enriched to keep only functions characteristic of each tissue compared to tissue-naive network. (iv) Biolnt units are
generated from the lists of enriched functions in each tissue context. The Biolnt units are made by groups of proteins physically interacting and annotated by the same
enriched GO-BP term. Only Biolnt units including <200 proteins are selected to construct the 33 TS Biolnt libraries. (B) Bar plot summarizing total number of Biolnt units
identified in each TS library. (C) Density plot describing the number of proteins incorporated in each Biolnt unit in each TS library. (D) Line plot describing the transcript/gene
recovery along the framework. X-axis points represent three of the steps defined in the framework (in panel A): (i) total transcripts/genes in TS RNA-Seq profiles; (ii) proteins
in TS networks annotated with at least one GO-BP; and (iv) final number of proteins in the selected Biolnt units. Step (ii) and (iii) returned very similar protein coverage (not
shown for clarity). Colored bars and lines in panel B, C and D point to six illustrative specific libraries from tissues: testis, bone-marrow, spleen, lymph-node, muscle and
brain. (E) Bar plot summarizing Biolnt-U performance at identifying tissue-consistent Biolnt units in three representative tissues: immune, brain, muscle. TP: Number of
functions correctly annotated (ii), enriched (iii) or selected (iv) in the expected tissues. FP: Number of tissue-specific functions assigned to other than the expected tissues.

enrichment did not affected TS transcriptome coverage (step (iii)
omitted in Fig. 1D).

In order to minimize shallow functional terms, only Biolnt units
with <200 proteins were selected for the Biolnt libraries. This filter-
ing step discarded ~50% of the enriched GO-BP terms and reduced
the TS transcriptome coverage down to 40% (see (iv) in Fig. 1D).
Supplementary Table 1 summarizes the properties of each tissue
set in the successive steps. Knowing that vague and general terms
of GO-BP tend to be associated with many genes, it is likely that
large Biolnt units, including numerous genes, are not functionally
very informative. Therefore, we interpret that the genes/proteins
we missed by filtering by size were only annotated with shallow
terms (i.e., superficial in the Gene Ontology and rather general),
and so are assigned to still poorly defined functions.

Despite the sharp decrease, we confirmed in the forthcoming
analysis that the filtering of large Biolnt units did not exclude
tissue-specific annotations. To assess the ability of Biolnt-U to
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characterize tissue-specific (TS) and housekeeping (HK) processes,
we classified the Biolnt units into 22 broad “functional categories”
(Supplementary Table 2). For three representative tissues, we cal-
culated the number of these “functional categories” correctly
enriched to the expected tissue (considered as true positive cases,
TP) and the number of tissue-specific functions assigned to other
than the expected tissues (false positive cases, FP) (Fig. 1E). We
confirmed that the functional enrichment was crucial to discard
FP annotations, especially in brain and muscle libraries (Fig. 1E,
blue bars). Moreover, we confirmed that size filtering does not
affect the selection of tissue-specific Biolnt units (Fig. 1E, red bars).

2.4. Biolnt units represent functional assemblies beyond molecular
machines

Molecular machines are commonly defined as “assemblies of
molecular components that are designed to perform machine-
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like movements” [3]. The main components of many molecular
machines are proteins/polypeptides, such as the proteasome,
spliceosome, respiratory chain complexes, etc. Being that molecu-
lar machines lie at the center of every biological process, we expect
Biolnt units to incorporate them. To address this issue, we took
advantage from the CORUM repository as gold standard of curated
molecular machines [14], and evaluated the degree of overlap with
TS-Biolnt libraries. We first confirmed that ~90% of proteins
involved in molecular machines are actually mapped in TS PPI net-
works and functionally annotated in GO-BPs (Fig. 2A). CORUM pro-
tein coverage dropped when filtering-out Biolnt units with more
than 200 proteins, indicating that a fraction of CORUM-annotated
molecular machines were only incorporated in the largest Biolnt
units. It is noteworthy though that the decrease in coverage was
less pronounced than when considering overall transcripts possi-
bly indicating that CORUM complexes are also incorporated in
smaller Biolnt units (Fig. 2B). As expected, due to their central roles
in cellular activity, we observed that proteins involved in molecu-
lar machines tend to be more ubiquitously expressed than proteins
not identified as being part of any molecular machine in the
CORUM repository (Wilcoxon Rank Sum test, p-value < 1074,
Fig. 2C).

In order to assess the protein overlap between Biolnt units and
CORUM complexes (BiU-CO pairs), we first combined the TS-Biolnt
units into a unified library. The combination of all Biolnt units
identified along the 33 tissues returned a unified Bioint library con-
sisting on 728 unique Biolnt units including 7765 proteins overall.
Due to the size imbalance between Biolnt and CORUM complexes,
the pair-wise overlap was addressed using Simpson’s similarity
(SS) index (see Methods). For each Biolnt unit, we calculated the
maximum SS index found with at least one CORUM complex
(Fig. 2D). Next, we compared the percentage and total number of
overlapping complexes at increasing SS index intervals (Fig. 2E
and F). Lastly, we evaluated the SS index distribution along all pairs
of complexes sharing at least one protein (Fig. 2G). We first con-
firmed that all Biolnt units partially intersected with numerous
molecular machines (SS index >0.25, Fig. 2D and E). Further, we
found that more than half of the Biolnt units can partially incorpo-
rate up to 50 molecular machines (SS index 0.25-0.50 Fig. 2F).
Most notably, more than 60% of Biolnt units displayed a SS index
higher than 0.75 with at least 5 CORUM complexes in average
(Fig. 2D and E). Fig. 2H illustrates several examples of Biolnt units
incorporating complete or close to complete molecular machines.
We found that numerous CORUM molecular machines incorpo-
rated into single Biolnt units were related to DNA and RNA meta-
bolism. This is in good agreement with the fact that ribonucleic
acid biogenesis and processing is exerted through successive bio-
chemical processes that require the collaboration of multiple
molecular machines. Overall, these results indicate that Biolnt
units can recapitulate how multiple molecular machines collabo-
rate in more complex biological processes. Supplementary Table 3
provides the full results of the pairwise SS analysis between Biolnt
units and CORUM complexes in human. Supplementary Table 4
provides all properties and relevant information regarding the
Biolnt units generated from the analysis.

2.5. Biolnt units are not redundant and recapitulate protein
multifunctionality

We also addressed the overlap between Biolnt units (BiU-BiU
pairs) to evaluate functional redundancy and protein multifunc-
tionality. We found that almost every Biolnt unit slightly over-
lapped with at least one additional Biolnt unit (SS index <0.25,
Fig. 2E). Furthermore, ~57% out of the >10° possible BiU-BiU com-
binations shared at least one protein indicating that Bioint units
frequently overlap (Fig. 2G). Notwithstanding, the SS index was
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consistently lower than the one observed for BiU-CO pairs. Like-
wise, the number of complexes overlapping with a SS index >0.25
was significantly lower than when considering the BiU-CO overlap
(Wilcoxon Rank Sum test, Fig. 2E). The low but consistent overlap
suggests that most proteins tend to be involved in varied func-
tional consortia. Thus, the overlap analysis confirmed that Biolnt
libraries are not exceedingly redundant but rather recapitulate
protein multifunctionality. Conversely, Biolnt units incorporate
complete or close to complete molecular machines characterizing
the molecular activities at the center of biological processes (sche-
matic interpretation in Fig. 21I).

2.6. The functional landscape of tissue-specific Biolnt libraries is
consistent with the characteristic functions of each tissue

We next investigated whether TS Biolnt libraries recapitulate
the functional landscape expected for each tissue. To do so, the
Biolnt units incorporated in each TS Biolnt library were first
assigned to 22 broad functional groups (see Methods). Then, we
evaluated the distribution of these 22 functional classes along
the 33 reference tissues. The analysis corroborated that TS pro-
cesses such as muscle or neuron-related processes are distinctively
enriched in the expected tissues (hyper-geometric test, p-
value < 0.05, Fig. 3A). This is shown, for example, for: neuron and
brain, mitosis and testis, or muscle and heart. Conversely, transver-
sal processes as signaling, DNA, RNA or protein metabolism were
consistently identified across all the tissues, corroborating that
these Biolnt units are actually reflecting housekeeping (HK) func-
tions. Notwithstanding, multiple HK functional classes were signif-
icantly enriched in particular organs. Direct inspection of these
cases, however, reveals striking agreement with known organ
and tissue biology. Examples include the enrichment of
signaling-related Biolnt units in lung tissue, lipid metabolism pro-
cesses enrichment in liver, or mitosis overrepresentation in testis.
This result is in conformity with the general conception that differ-
ent tissues rely more heavily on certain basal processes than
others. Furthermore, the analysis revealed that the function types
considered as HK can be divided in two subgroups based on their
distribution across the tissues (Fig. 3B). The majority of Biolnt units
related to RNA, mitochondria, organelle trafficking, protein meta-
bolism and localization were essentially detected across all tissues
(blue plots in Fig. 3B). In contrast, many functional groups as sig-
naling, mitosis or cytoskeleton incorporated Biolnt units with
mixed expression patterns (purple plots in Fig. 3B).

2.7. Dissection of Biolnt units brings insight into the mechanisms
underlying tissue functional diversity: Ubiquitous (UB) and non-
ubiquitous proteins collaborate in HK and TE functions

Excluding the transcriptomic profiles of sexual tissues, we
found that a large fraction of the gene transcripts (9,686 expressed
genes) to be ubiquitously (UB) expressed across the TS transcrip-
tomes. However, the distribution of Biolnt units across tissues
drew a notably distinct pattern when compared to transcript
expression (Fig. 3C). We found 357 Biolnt units annotated in <5 tis-
sues (hereafter-called tissue enriched units, TEu) and 122 units
annotated in more than 28 tissues (housekeeping units, HKu).
While all TS networks incorporated ~70% of UB proteins on aver-
age, the percentage of housekeeping units dropped to 17.3%
(Fig. 3C). These trends are likely justified by the observation that
both HKu and TEu incorporated a mixed composite of UB and
nonUB proteins (Fig. 3F). In particular, we found that TE units
incorporated a large percentage of UB proteins and HK Biolnt units
also included a small fraction of nonUB proteins.

Being that different proteins can exert similar biochemical
activities, we hypothesized the same HK functional unit might
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incorporate varying proteins depending on the tissue of context.
Additionally, we sought to assess whether the percentage of pro-
tein variability in HKu could be associated to their functional roles.
We calculated the heterogeneity of each HKu as the percentage of
proteins found in common along all tissues (Fig. 3D). Protein vari-
ability analysis generated a bimodal density plot in which two
major groups can be distinguished: i) heterogeneous HKu with
more than 20% of protein variability and ii) highly consistent

le.)
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HKu with tissue variability below 10%. Similarly when evaluating
Biolnt unit distribution profile across tissues (Fig. 3B), we found
that heterogeneous HK units are more frequently associated to
functional classes with mixed expression patterns as signaling,
mitosis or stress-related processes; while monotonous HK units
are distinctively related to RNA, DNA or protein metabolism and
localization. Nonetheless, these trends might indicate that func-
tions considered as “mixed HK” are less characterized, at PPI
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and/or Gene Ontology level, than functions classified as consistent
HK units. Either way, these results support the notions that, ubiq-
uitous and non-ubiquitous proteins collaborate in TE or HK pro-
cesses and some HK functions could acquire additional relevance
in certain tissues.

2.8. Network characterization of ubiquitous and tissue-specific Biolnt
units

Protein localization at the global network can provide valuable
information on the coding-gene evolutionary history and current
functional essentiality. At the same time, the PPI location in the
Biolnt units can also indicate whether the protein interactions play
a core role in a given function or, rather, coordinate complex func-
tional mechanisms. On this basis, we evaluated the position of HK
and TE units in the TS networks using standard network connectiv-
ity measures (right box in Fig. 3F). We found that HK units fre-
quently incorporated more proteins and these predominantly
located in the main component (i.e., the largest connected subnet-
work of the Biolnt unit, Fig. 3F). Moreover, the proteins collaborat-
ing in the HK units displayed significantly larger average degree
(lager number of interactions per protein) and global clustering
coefficients (larger interaction density in the protein neighbor-
hood), indicating that HK units hold central positions in TS net-
works (with a significant difference according to the Wilcoxon
tests, Fig. 3F).

To further explore the biological implications of the collabora-
tion between UB and nonUB proteins, we addressed the frequency
of homotypic (UB-UB or nonUB-nonUB) and heterotypic (UB-
nonUB) PPI interactions at distinct locations in the TS networks:
(1) outside units, (2) within the same unit or (3) between two units
or one unit to outside (Fig. 3E). We applied the Chi-square test to
evaluate the statistical association between the type of PPI and
its location in the network (p-value < 10~%) and used Pearson’s
residuals to describe the positive or negative association between
the conditions. As expected given the ratio of UB and nonUB pro-
teins along Biolnt units, we found that UB-UB interactions are
more frequently located within Biolnt units while UB-nonUB het-
ero and nonUB-nonUB homotypic interactions are significantly
located outside the Bioint units. Most notably, heterotypic interac-
tions also appeared frequently connecting the Biolnt units with
proteins outside the units. Overall, these results indicate that HK
units are central in the TS networks and further; UB-UB PPIs lie
at the center of Biolnt units. On the other hand, the heterotypic
interactions between nonUB-UB proteins seem to be key to link
the functions in the network.

2.9. Systematic mapping of disease genes (DG) in Biolnt-U reveals
potential large-scale topological vulnerabilities: DGs are widely
expressed but accumulate in TEu

The preferential location of disease-associated genes (DGs) in
the TS networks may bring valuable insights into sensitive points
in network connectivity. To explore this, we collected 9,259 DG
associations for 1,948 pathologies from the DisGeNET repository
[28]. Our global transcriptome covered 86.8% of DGs and con-
versely, 43.5% of transcripts (expressed genes) were associated to
at least to one disease (Fig. 4A). The DG coverage was barely
affected when considering the proteins in the TS-networks but
notably dropped in the selected Biolnt libraries (Fig. 4B). This indi-
cates once again that a fraction of DGs is only incorporated in units
including more than 200 proteins. Furthermore, we found that
more than 55% of total DGs were ubiquitously expressed and over-
all, displayed a broader expression profile than nonDG proteins
(Wilcoxon Rank Sum test, p-value < 104, Fig. 4C).
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However, when evaluating the DG% by Biolnt unit, we found
DGs preferentially accumulate in TE units with lower percentage
of UB proteins (Fig. 4D and E). In fact, the Biolnt Units that incorpo-
rate the highest percentage of DGs are almost exclusively anno-
tated in <5 tissues. Unexpectedly though, Biolnt units
accumulating >50% of DGs are more sparsely connected (i.e., exhi-
bit an smaller main component and more subnetworks), but incor-
porate proteins with more central positions in the TS network
(Fig. 4G). To evaluate whether the DGs tend to accumulate in any
particular type of function, we took profit from the functional clas-
sification retrieved in Fig. 3B, and found that Biolnt units including
50-80% DGs were implicated in most types of functions (column Y
in Fig. 4F). However, Biolnt units accumulating more than 80% of
DGs were found to be more frequently related to TE or mixed
HK/TE processes. Concordantly, the less targeted Biolnt units were
distinctively associated to HK biological processes.

2.10. Interaction of proteins encoded by DGs predominantly located
between highly overlapping TEu

Having confirmed that tissue-enriched Biolnt units (TEu) tend
to incorporate more DGs, we next questioned whether the PPIs
between DGs would present distinctive positions in the HK units
or in the TE units, that might indicate topological vulnerabilities.
We found that DG-DG interactions were more frequently located
within Biolnt units while nonDG-nonDG interactions were more
frequent outside (Fig. 4H). More important, DG-DG interactions
were also notably located between TE units. We also found that
DGs tend to be found in Biolnt units presenting a larger overlap
when compared to nonDGs (Fig. 4I).

The connectivity properties of any protein directly depend on
the range of PPI available at each TS network. This feature might
be crucial to understand the variable impact the same DG can have
in different tissues. We found that the variation (in terms of stan-
dard deviation) of betweenness and degree coefficients were sig-
nificantly larger in DGs than other proteins not associated to any
disease (Fig. 41). This observation may provide critical insights into
the mechanisms underlying TS disease-phenotypes linked to DGs
with wide distribution.

2.11. Genes associated with TS diseases accumulate significantly in
Biolnt units characteristic of the target tissue

To further explore the mechanisms underlying the emergence
of TS patho-phenotypes, we next proceed to evaluate the DG map-
ping at disease-specific and tissue-specific levels. From the 1,948
diseases annotated in DisGeNET, we identified 463 diseases unam-
biguously associated with 11 tissues (for example, “nefrotic fail-
ure” is a kidney dysfunction or “T-cell lymphoma” is associated
to alterations in the immune system). The complete list of
disease-tissue associations and DGs is available in Supplementary
Table 5. It is reasonable to assume that the functions with most
critical roles for a given tissue will accumulate more DGs found
in the patient population. Likewise, it is also reasonable that a
functional unit will only be efficient when a large fraction of its
components are available in normal standards. Of note, the DG
associations in DisGeNET do not only refer to causal mutations
but also to biomarkers or de-regulated genes. Thus, it is plausible
we could find several DGs simultaneously altered in the same
patient. On this basis, we estimated the potential impact of each
disease in the TS functions by addressing the overrepresentation
of disease-specific DGs in each Biolnt unit (hyper-geometric test,
p-value < 0.05).

Most diseases exhibit tissue-specific phenotypes from which it
follows that DGs should accumulate in certain tissues in particular
(hereafter referred to as “tissue-consistent” impact). We have also
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almost all types of functions (Fig. 5A). Thus, to increase the analysis
resolution, we only considered Bioint units enriched in DGs for at
least 10 tissue-consistent diseases (corresponding to top 3rd Quar-
tile) (Fig. 5B). We found that the Biolnt units enriched in tissue-
consistent DG lists are accordingly involved in functions specific

discussed in previous section that different cell types might spe-
cialize in certain functions. Based on this, we speculate the DGs
of tissue-consistent diseases might accumulate in functional
classes characteristic of given tissue physiology. The Biolnt units
enriched in tissue-consistent DGs were homogeneously related to
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to the tissues in consideration. This trend was most conspicuous in
TE Biolnt units related to immune, muscle or neuron functions,
wich are predominantly enriched in DGs from tissue-congruent
diseases. Likewise, the clustering analysis corroborated that tissues
associated to the same broad histological groups (colored rows in
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Fig. 5B) significantly accumulate DGs in units involved in the same
functional classes (columns in Fig. 5B). This analysis further
enabled to discern that several function classes considered as HK
processes were distinctively altered in different tissues. For exam-
ple, DNA-related functions appeared to be more frequently altered
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in female-organ diseases than in gastro-intestinal disorders. Like-
wise, stress and signaling-related functions were preferentially
altered in immune system-related disorders.

2.12. Biolnt units enriched in tissue-consistent DGs (BiUrc) exhibit
distinctive network properties

From the total 8,285 of Biolnt units identified in the 25 TS
libraries considered for DG mapping (Supplementary Table 5),
60% were significantly enriched in DGs of tissue-consistent
pathologies (set named BiUyc in the schematic representation in
Fig. 5C). Nonetheless, a 35.8% of these Biolnt units were also
enriched in DGs associated to diseases specific to other tissues (re-
ferred to as tissue-inconsistent, and set BiUyyc in Fig. 5C). This indi-
cates that the enrichment in DGs is not sufficient to justify the
emergence of the pathology. Thus, we speculated that the Biolnt
units that are really decisive to trigger pathomechanisms must
hold distinctive properties in the network topology. To explore this
hypothesis, the 25 TS libraries enriched in at least one tissue-
consistent pathology were grouped in 11 major organ groups (Sup-
plementary Table 5) to then compare the topological properties of:
Biolnt units enriched in tissue-consistent diseases (named BiUrc);
Biolnt units enriched in tissue-inconsistent DGs (BiUyc); and Biolnt
units not enriched in any DGs (BiUy, Fig. 5D).

The network analysis at disease-specific level revealed the same
trends observed for the systematic DG mapping (Fig. 4). Biolnt
units accumulating DGs of tissue-consistent diseases (set BiUrc in
red in Fig. 5C and D) tend to be expressed in fewer tissues and
incorporate less UB proteins than Biolnt units not affected by any
disease or enriched in tissue-inconsistent DGs (sets BiUr;c and BiUx
in Fig. 5C,D). Furthermore, the comparative analysis revealed that
the Biolnt units in set BiUrc frequently included proteins with
higher degree and betweenness coefficients in the global TS PPI
networks. Most remarkably, Biolnt units enriched in DGs of
tissue-consistent diseases displayed a larger overlap with addi-
tional functional units. In fact, the DGs assigned to tissue-
consistent diseases are 1.5 times more frequently located at the
intersection between Biolnt units than proteins encoded by nonDG
(Wilcoxon test, p-value < 10~%). However, an unexpected observa-
tion is that the percentage of proteins in main component is similar
but Biolnt units in set BiUrc exhibit a larger number of discon-
nected subnetworks according to our current map of protein
interactions.

2.13. A case study: Mapping of differentially expressed genes to Biolnt
units predicts most vulnerable tissues and functions in pulmonary
fibrosis and psoriasis

The dissection of the molecular mechanisms underlying com-
plex diseases is still an open challenge. One of the most widely
used strategies to investigate pathological conditions is the identi-
fication of differential expressed genes (DEg) in RNA-Seq profiles
from patient-derived samples.

However, the most popular algorithms for DEg analysis assess
the expression of each gene independently, thus DEg datasets fre-
quently include a large number of transcripts/proteins discon-
nected from the PPI network. Likewise, gene expression is highly
dynamic and so DEg datasets characterizing the same disease often
give different profiles. All this makes the DEg data difficult to inte-
grate and interpret. The integration of differential gene expression
profiles with functional enrichment analysis in protein interaction
networks has been recently proposed to assist in the prioritization
of disease-relevant targets [27]. In a similar argumentative line and
to test the analytical procedure presented in this work, we next
illustrate how the mapping of disease-related DEg profiles into
Biolnt libraries can improve the prioritization of potential func-
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tional targets. We selected and analyzed two independent tran-
scriptomic profiles characterizing gene expression changes in
patients suffering from psoriasis and idiopathic pulmonary fibrosis
[26,31]. Within these datasets, 91% of fibrosis-related and 83.5% of
psoriasis-related DEg were mapped in our unified transcriptome
dataset, respectively (Fig. GA and B).

We next collected DGs associated with psoriasis and fibrosis in
DisGeNET. Despite of the large number of DGs already associated
to fibrosis (203), only 6.9% were found to be DEg in the transcrip-
tome profile (Fig. 6A). On the other hand, we only identified 30 DGs
associated to psoriasis and none was DEg (Fig. 6B). Similar to our
previous analysis, we calculated the overrepresentation of DEg in
each Biolnt unit across all tissues (hyper-geometric test, p-
value < 0.05) and selected the 25% most affected units. Interest-
ingly, we found that the tissues including more functional units
significantly enriched in DEg were precisely those in which the
symptoms are commonly observed (Fig. 6C). Furthermore, the
functional types accumulating highest percentage of Biolnt units
enriched in DEg were also related to functions suspected to be crit-
ical in the diseases (Fig. 6D and E). Finally, Fig. 6F and G summarize
the functional signatures associated to the Biolnt units enriched in
DEg from fibrosis and psoriasis profiles in lung and spleen tissues,
respectively. To simplify the analysis, we collapsed the Biolnt units
(dots) presenting a Wang’s Semantic similarity coefficient >0.6 into
functional clusters (top 10 largest clusters are arranged in Y axes).
In particular, the Biolnt units most targeted by fibrosis-related DEg
in lung included membrane permeability, proteolysis and apopto-
sis signaling-related functions [35]. In the case of psoriasis, stress-
related protein folding and degradation-regulatory pathways were
consistently altered in immune-related organs [39]. The analysis
confirmed that DE genes preferentially accumulate in biological
processes already involved with fibrosis and psoriasis. Therefore,
our analysis illustrates how Biolnt units can provide additional
insight into why these functions are more vulnerable and also sug-
gest new DG candidates for further evaluation.

3. Discussion

The topological characterization of TS networks is crucial to dis-
sect the mechanisms underlying tissue functional diversity and
identify potential vulnerabilities, namely those related to genetic
disorders. However, to our best knowledge, most investigations
have focused on characterizing the topology of individual proteins
and DGs without considering their functional context (recently
reviewed by [19,24,43]. However, it should be noted that PPI net-
works are static representations of all the physically possible inter-
actions, and these may not be always biologically meaningful. We
advocate that the integration of proteins within their functional
context can improve the assessment of network properties rele-
vant for cell physiology. On this basis, we designed a network-
based strategy to characterize functionally collaborating TS PPI
consortia. We applied this framework on 33 human TS networks
and conducted a systematic study of the topology patterns associ-
ated to distinct normal and pathological states. This analysis
revealed how the topological properties of functional units may
elucidate the mechanisms of TS functional diversity and deregula-
tion (hypothesis illustration in Fig. 7).

As the very name implies, housekeeping (HK) functions are
essential for the survival of any type of cell and are mostly exerted
by ubiquitous (UB) proteins expressed in all tissues. Evolutionary
selection has favored proteins involved in these functions and so
UB proteins dominate TS network composition, accumulate more
PPIs and locate at central positions in TS networks [6,7,11,23].
Beyond the characterization of individual proteins, the systematic
analysis of TS Biolnt libraries further supported an in-depth com-
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parison between HK and TE functions. We corroborated that HK
units are related to core functions such as organelle trafficking,
RNA or protein metabolism and are mostly made up of UB proteins
with significantly larger degree and betweenness coefficients than
proteins exclusively involved in TE functions. Most HK units
included a small percentage of nonUB proteins that varied across
the TS networks. In parallel, TE units also incorporated a large per-
centage of UB proteins (Fig. 7A). While the extensive re-use of UB
proteins in TS functions is well described [7,8,30], the role of
nonUB proteins in HK functions is less studied. Our analysis cor-
roborated that UB-UB PPIs are frequently located within functional
units highlighting their fundamental roles at the core of the biolog-
ical processes (Fig. 7C). Conversely, we found that heterotypic
nonUB-UB interactions preferentially connect functional units

with other proteins outside the network. Our observations are in
line with a recent investigation showing that cell-specific interac-
tions link protein complexes in the TS interactome [20] and under-
score that nonUB proteins are critical players in the coordination of
both HK and TE functions.

It is reasonable to assume that the characterization of mecha-
nisms underlying tissue functional diversity will bring insights into
the events triggering TS diseases. The pioneer studies characteriz-
ing the DGs topology suggested that deleterious proteins tend to
display TS expression [15,21]. Currently though, we find innumer-
ous instances of UB proteins involved in diseases with tissue-
restricted phenotypes. This indicates that TS protein expression is
not sufficient to explain the emergence of TS diseases [19]. Barshir
and colleagues found that DGs tend to display tissue-exclusive PPIs
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in the tissue where the disease is manifested [6]. Lee and col-
leagues reached a similar conclusion when exploring the topology
of neuron-related TS networks and hypothesized this might be key
to understand the high prevalence of neurological diseases [22].
The systematic mapping of DGs onto Biolnt units corroborated that
the transcript products of DGs tend to be more widely expressed
than those coded by nonDGs (Fig. 7E). Interestingly though, DGs
tended to accumulate in functional units annotated in fewer tis-
sues and DG-DG interactions and were more frequently located
at the interface of TE and HK functions or connecting TE functions
to other proteins outside in the network (Fig. 7G). These results
suggest that the impairment of TE functional coordination might
be a key feature to spread TS homeostasis deregulation and over-
come the threshold to trigger TS pathophenotypes (Fig. 7D and H).

A more thorough analysis of TS diseases revealed that DGs accu-
mulate more frequently in functional units found in the disease-
target tissues. This observation was particularly apparent in TS
functions related to muscle, immune function or neuron physiol-
ogy. Nonetheless, many DGs accumulated in Biolnt units in tissues
other than the expected, indicating that DG enrichment is not the
only event accounting for disease manifestation. In our view, this
observation illustrates why the functional characterization of
DGs might fall short to understand pathological mechanisms. Pro-
teins are multifunctional and collaborate both in HK and TE func-
tions. In turn, proteins establish dynamic PPIs and, as suggested
in this work, acquire varying relevance depending on their TS
interactome context (Fig. 7D). In particular, our topological analy-
sis reiterated that the functional units accumulating tissue-
consistent DGs were actually TE Biolnt units with significantly lar-
ger overlap with additional units (Fig. 7E). Although multifunc-
tional proteins have been previously associated to pathological
events, our analysis brings further evidence towards this from a
TS functional perspective.

In parallel, we made the unexpected observation that Biolnt
units accumulating most DGs are more sparsely connected, while
tending to incorporate significantly more central proteins in the
TS network. Dynamic interactions are known to play critical roles
in the regulation and coordination of protein function. However,
high-throughput PPI detection techniques preferentially detect
stable interactions and thus, are more likely to dismiss transient
PPIs. Although caution must be taken until the advent of more sen-
sitive technologies, this observation suggests that the most vulner-
able functions tend to include numerous transient interactions not
yet identified. Our conjecture is aligned with previous results indi-
cating that biological and disease modules do not necessarily coin-
cide with topological clusters [1,13,41]|. If confirmed, this
observation would question the pivotal role of clustering algo-
rithms in the design of network-based methods for biomedical
research.

To illustrate the benefits of the Biolnt framework in a real case
problem, we took advantage of two public transcriptome profiles
from patients suffering from psoriasis and pulmonary fibrosis.
The scarcity of already known psoriasis-causal genes together with
the low overlap between fibrosis DGs and the corresponding DE
transcriptome reflects the need for additional research bridging
the molecular and patho-phenotypic observations. The analysis
presented here demonstrates the ability of our method to indepen-
dently identify the most afflicted tissues and functions and thus
bring novel insights to refine DG prioritization methods.

The Biolnt-U framework sets the stage for novel approaches to
explore the functional relevance of TS topological properties.
Nonetheless, it also has limitations. The identification of Biolnt
units relies on PPI and Gene Ontology datasets, which are known
to be overfitted by proteins of significant research interest. Until
a more comprehensive characterization of the interactome and
functionome, our investigation is likely to underestimate poorly
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characterized players. On the other hand, the analysis exploits sta-
tic networks and ignores cell-specific temporal information of the
particular tissue. The integration of dynamic and quantitative
expression data could surely benefit network-centered investiga-
tions. Notwithstanding, is worth recalling that the use of quantita-
tive data would also increase the analytical complexity. To
compensate the lack of spatiotemporal data, we enabled functional
units to overlap. In this way, we could evaluate all the possible
combinations of functional consortia.

Overall, the work presented here showcases the relevance of
evaluating network topology from the functional perspective. The
large-scale topological vulnerabilities inferred from our analysis
could contribute to the refinement of network-based methods for
DG candidate prioritization. Likewise, the evaluation of the topo-
logical context of DGs across tissues could facilitate the identifica-
tion of the most critical drug targets while avoiding unpredicted
off-targets.

4. Methods
4.1. Computational pipeline to define Biolnt units

Reconstruction of TS networks. RNA-Seq datasets represent-
ing 33 major tissues and organs were retrieved from Uhlén and col-
leagues work [38]. The datasets were filtered to only evaluate
transcripts expressed above 1 FPKM (Fragments Per Kilobase of
transcript per Million). The dataset was TMM-normalized
(Trimmed mean of M values) using the limma R package [33]. Bio-
logical replicates were combined calculating the average transcript
expression. Next, human physical PPI data reported at least in two
experiments was retrieved from the APID repository in April 2021
[2]. The tissue-naive PPI network was filtered to create a TS net-
work including only interactions between proteins coded by tran-
scripts expressed in each TS transcriptome. The TS networks were
simplified to remove self-loops and isolated proteins using the
igraph R package [9].

Functional enrichment of TS networks. The GOfuncR R pack-
age was used to functionally characterize TS networks in compar-
ison to the unspecific network using Gene Ontology Biological
Process (GO-BP), hyper-geometric test, FDR = 0.1 on 500 random-
izations [17]. Functional enrichment was simplified into functional
groups by collapsing terms with more than 0.9 Jaccard’s similarity
coefficient, defined as the number of common elements between
two sets, divided by the union set size. When GO-BPs are collapsed,
the new functional group includes all proteins associated to each
term but is assigned to the functional description with fewest
characters.

Generation of TS-Biolnt libraries. The functional enrichment
of TS-networks was used to identify the Biolnt units, which consist
of groups of proteins physically interacting and annotated under
the same enriched GO-BP term. The inconsistencies across high-
throughput PPI data and the constant PPI data growth in multiple
repositories suggest the human interactomic data is still far from
complete. Knowing this, we enabled Biolnt units to be formed by
non-connected subnetworks. The isolated clusters were discarded
only when the main component (largest subnetwork) represented
more than 90% of the total Biolnt unit. On the other hand, proteins
can display transient and varied PPIs. Additionally, most proteins
are multifunctional and are frequently annotated with several
GO-BP terms. In order to recapitulate protein multifunctionality
and the network dynamics, we enabled proteins to be involved
in several units simultaneously. The Bioint units were classified
in 28 functional categories by performing a direct text mining of
key words found in the description of functional units. The list of
key terms is available at Supplementary Table 2. From the total
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28, we selected the 22 functional categories associated with suffi-
cient Biolnt units. The network topological analysis was focused on
betweenness, degree and clustering coefficient measures that were
evaluated using the igraph R package [9].

4.1.1. Reconstruction of mouse predicted tissue-specific networks and
Biolnt units

We reconstructed predicted interactomes for four tissues, based
on tissue-specific RNA-Seq profiles obtained from normal mouse
samples (ArrayExpress E-MTAB-6081 [37] and tissue-naive mouse
interactome (APID database accessed on May 2022, [2]). As sug-
gested by the authors, transcripts expressed above 1.4 RPKM (cor-
responding to the top 3rd Quartile) were selected for the analysis.
We were unable to reconstruct the thymus and lung networks
because the RNA-Seq profiles lack the samples. Then, the Biolnt
libraries were defined from the predicted networks using the same
parameters as for human. We applied six clustering methods avail-
able in igraph R package (walktrap, fast greedy, louvain, spinglass,
infomap and, leading eigenvalue) in experimental (SILAM) and pre-
dicted (APID) networks. In the case of APID networks, only the ’sp-
inglass’ method was evaluated as it yielded clusterings with higher
modularities for all the tissues, while in SILAM networks we found
variable modularity coefficients. We used Wallace coefficient [29]
to evaluate the clustering agreement between clusters in SILAM
against clusters in APID or Biolnt units (Supplementary Fig. 1).

4.2. CORUM protein complex intersection

The molecular machines described at the CORUM repository
[14] were used as gold standard to evaluate the ability of Biolnt-
U method to identify already established protein functional com-
plexes. Curated 'core’ complexes were retrieved from CORUM data-
base in March 2021. The dataset was filtered to only evaluate
CORUM complexes including at least 3 distinct proteins. In order
to assess the protein overlap between CORUM and Biolnt-U, we
first combined TS Biolnt libraries into a unified version. Biolnt units
annotated to the same GO-BP term along different tissues were
collapsed to include all TS proteins. The full description of unified
and TS Biolnt units is available in Supplementary Table 4. The aver-
age size of the Biolnt units was >17 times larger than CORUM pro-
tein complexes. Due to the wide difference in size, the overlap
analysis between CORUM complexes and Biolnt units was per-
formed applying Simpson’s similarity (SS) coefficient, defined as
the number of common elements between two sets, divided by
the minimum set size (complete analysis available in Supplemen-
tary Table 3).

4.3. Disease-gene association

Disease gene (DG) associations were retrieved from the DisGe-
NET repository in December 2020 [28]. Disease references anno-
tated as 'Symptom’, 'Finding, 'Injury or poisoning’ and 'Individual
Behavior’ were discarded. DGs with a confidence score lower than
0.1 were discarded. Only diseases including 10 to 200 genes were
evaluated. Similar to functional enrichment, disease list was sim-
plified by collapsing terms with more than 0.9 Jaccard’s similarity
coefficient. When diseases are collapsed, the new disease group
includes all genes associated to each pathology but is assigned to
the disease description with fewest characters. In order to evaluate
the performance of the Biolnt-U framework, we created a list of
463 diseases with 11 presumable tissue-specific phenotypes. To
generate the TS disease list, we used the same text mining
approach as for the functional classification of Biolnt units. The
DG list and disease classification is available in Supplementary
Table 5.
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4.4. Gene expression profiles from public repositories

Two independent RNA-Seq transcriptomic profiles characteriz-
ing gene expression changes in samples derived from patients
affected with psoriasis (GSE166388) and idiophatic pulmonary
fibrosis (GSE24206) were downloaded from the Gene Expression
OmniBus [5]. Differential gene expression analysis was performed
using the GEO2R tool available through the GEO platform. Tran-
scripts with fold change (FC) values of |log,FC|>2 and |log,FC|>1.5
and p-value < 0.05 were selected as differentially expressed genes
(DEg) in fibrosis and psoriasis datasets, respectively. The DEg data-
sets were mapped in the Biolnt units to calculate the % of DEg by
Biolnt unit. Then, the Biolnt units including DEg above the 3rd
Quartile (0.9% and 1.3%) were considered the most potentially
altered functional processes in fibrosis and psoriasis profiles,
respectively.

4.5. Biolnt-U method and output availability

All the analyses presented in this work were performed in R stu-
dio environment and figures were generated using ggplot2 and
ComplexHeatmap R packages [18,32,34,42]. The framework can be
employed for other species and only requires PPI and TS transcrip-
tomic data. The R functions necessary to generate additional Biolnt
units are available in Github repository https://github.com/Gama-
PintoLab/Biolnt-U.
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