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Simple Summary: Head and neck squamous cell carcinoma (HNSCC) is the most common mucosal
malignancy of the head and neck and a leading cause of cancer death. HNSCC arises from different
primary anatomical locations that are typically combined during radiomic analyses assuming that
the radiomic features, i.e., quantitative image-based features, are similar based on histopathologic
characteristics. However, whether these quantitative features are comparable across tumor sites
remains unknown. The aim of our retrospective study was to assess if systematic differences exist
between radiomic features based on different tumor sites in HNSCC and how they might affect
machine learning model performance in endpoint prediction. Using a population of 605 HNSCC
patients, we observed significant differences in radiomic features of tumors from different locations
and showed that these differences can impact machine learning model performance. This suggests
that tumor site should be considered when developing and evaluating radiomics-based models.

Abstract: Current radiomic studies of head and neck squamous cell carcinomas (HNSCC) are
typically based on datasets combining tumors from different locations, assuming that the radiomic
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features are similar based on histopathologic characteristics. However, molecular pathogenesis
and treatment in HNSCC substantially vary across different tumor sites. It is not known if a
statistical difference exists between radiomic features from different tumor sites and how they
affect machine learning model performance in endpoint prediction. To answer these questions,
we extracted radiomic features from contrast-enhanced neck computed tomography scans (CTs) of
605 patients with HNSCC originating from the oral cavity, oropharynx, and hypopharynx/larynx.
The difference in radiomic features of tumors from these sites was assessed using statistical analyses
and Random Forest classifiers on the radiomic features with 10-fold cross-validation to predict tumor
sites, nodal metastasis, and HPV status. We found statistically significant differences (p-value ≤ 0.05)
between the radiomic features of HNSCC depending on tumor location. We also observed that
differences in quantitative features among HNSCC from different locations impact the performance
of machine learning models. This suggests that radiomic features may reveal biologic heterogeneity
complementary to current gold standard histopathologic evaluation. We recommend considering
tumor site in radiomic studies of HNSCC.

Keywords: head and neck squamous cell carcinomas; radiomics; machine learning; classification;
metastasis; human papilloma virus

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy
constituting more than 95% of head and neck cancers and is the eighth leading cause of
cancer death [1–3]. HNSCC is by far the most common mucosal malignancy of the head and
neck arising most commonly from the oral cavity, oropharynx, larynx, and hypopharynx,
and less commonly from the paranasal sinuses or the nasopharynx, although the latter is
more commonly encountered in Asia.

Currently, clinical management of HNSCC is based primarily on TNM staging, which
is essential for treatment planning and prognostication. The T-category is mostly based
on primary tumor size and local disease extension, including invasion of critical organs;
the N-category is determined by involvement of cervical lymph nodes, their size and
laterality; the M-category dictates the presence of distant metastasis [4]. Although HNSCC
TNM is largely anatomic based, in the most recent updated TNM staging in the 8th edi-
tion of the American Joint Committee on Cancer (AJCC) staging manual, HPV (human
papilloma virus) status is incorporated as a molecular marker in the staging system of
oropharyngeal tumors, with increased recognition of its important role in carcinogenesis
and prognostication [5,6]. Epstein–Barr virus (EBV) drives pathogenesis of nasopharyngeal
carcinoma by promoting cell growth, anti-apoptosis, and metastatic features and also is
pathologically and clinically distinct from the more common mucosal HNSCCs [7]. Other-
wise, similar histopathologic criteria and grading are used for oral cavity, oropharyngeal,
hypopharyngeal, and laryngeal tumors. Oral cavity SCC is not as sensitive to radiotherapy
and chemotherapy as oropharyngeal or laryngeal SCC; therefore, surgery is considered
the primary treatment [4]. Laryngeal and hypopharyngeal cancers may be treated by
chemoradiation or surgically depending on the tumor stage and based on the tumor board
deliberations [4].

In addition to the traditional role of imaging for staging and post-treatment follow-up
of HNSCC, there is increasing interest in the use of quantitative features extracted from
the images or radiomic features for the characterization of HNSCC [8]. Radiomic features
have demonstrated varying predictive values in recent years for molecular subgroup,
HPV status, stage, locoregional control (LRC), progression-free survival (PFS), and overall
survival (OS) of HNSCC [3,9–19]. Using machine learning algorithms, the quantitative
image-based features extracted from cervical lymph nodes have also demonstrated the
potential to predict the presence of metastasis in the lymph nodes [20,21].
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Radiomic features can be influenced by the methodologies used at every stage of
the analysis from image acquisition to feature extraction. Image quality and the extent
of image preprocessing as well as the parameters used during image preprocessing can
have a substantial impact on the reliability of radiomic features and the potential of these
features capturing tumor heterogeneity [22,23]. These variabilities can lead to a lack of
reproducibility and generalizability of the reported radiomic features [24,25]. We also
hypothesize that the variation between radiomic features can also be influenced by the
tumor site.

So far, most of the radiomic studies evaluating HNSCC are either heavily or exclusively
based on analysis of tumors arising in the oropharynx or they combine tumors from
different anatomical locations, with a few exceptions [10,11,17,19]. Given that the HNSCC
genetic landscape, molecular pathogenesis, risk factors, and treatment response vary
significantly across different primary tumors, we hypothesize that the quantitative radiomic
features of HNSCC are site-dependent, and they might affect the performance of machine
learning models in endpoint prediction. We study this hypothesis using two endpoints:
nodal metastasis and HPV status. If this hypothesis is validated, site-specific radiomic
features have the potential to reveal biologic heterogeneity that can be complementary to
the current gold standard histopathologic classification of HNSCC.

2. Materials and Methods
2.1. Patients & Inclusion Criteria

This retrospective study was approved by the institutional ethical review boards, and
the requirement of informed consent was waived. We retrospectively identified 605 con-
secutive patients diagnosed with primary pathology proven HNSCC with pretreatment
computed tomography (CT) scans between 2010 and 2016, including 164 arising from
oral cavity (OC), 200 oropharynx (OP), and 241 from larynx or hypopharynx (LHP). The
tumor category (T-category) was determined by a multidisciplinary tumor board. The
gold standard for lymph node involvement is pathological confirmation on resected lymph
nodes, which was available for 186 patients; for the remaining cases without cervical lymph
node dissection, the final decision of nodal category (N-category) at tumor board was used
as the reference standard. The gold standard for HPV status is based on surrogate marker
p16 immunohistochemistry (IHC) on biopsy or surgical samples. A summary of patients’
clinical information, lymph node metastasis, and HPV status is provided in Table 1.

Table 1. Patient demographics and class distribution of lymph node metastasis (LN) and human
papilloma virus (HPV) status across tumor sites—oral cavity (OC), oropharynx (OP), and larynx or
hypopharynx (LHP). Note that for LN and HPV status, there are missing values for some patients.

OC OP LHP Total

Number of cases 164 200 241 605
Age 64 (24–90) 61 (33–87) 65 (27–88) 64 (24–90)

Sex (Male:Female) 111:53 161:39 201:40 473:132
LN (+/−) 93:70 175:25 78:163 346:258

HPV (+/−) 0:9 134:63 11:55 145:127

2.2. Image Acquisition

CT scans of the neck were obtained after intravenous iodine contrast injection us-
ing multidetector scanners (Toshiba Aquilion 64, Aquilion one, Aquilion prime, Toshiba
(Canon) Medical System, Tochigi-ken, Japan). Images were acquired from the frontal
sinuses to the aortic arch, after double bolus intravenous injection of iopromide contrast
(Ultravist, Bayer Healthcare, Whippany, NJ, USA). The first bolus of 50 mL was injected
at a rate of 2 mL/s. After 120 s, a second bolus of 40 mL at 2 mL/s was injected. Images
were acquired 10 s after regions of interest (ROI) at the aortic arch reached 160 HU. Images
were acquired with a field of view of 220 mm in helical mode with a kVp of 120 and
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reconstructed axial images of 2 mm thickness using standard neck (soft tissue) kernel
(FC43). A typical CT dose length product (DLP) between 500 and 700 mGy*cm was used.

2D ROIs were manually drawn to segment the tumors on the axial contrast-enhanced
neck CT images using TexRAD software (TexRAD; University of Sussex, Falmer, England),
by a senior radiology resident, subsequently reviewed (with modifications if necessary)
through consensus by two expert head and neck radiologists. Since the boundary between
a tumor and nearby normal soft tissues is not always well defined, a conservative approach
to contouring was taken to remain within the tumor, even at the risk of not including
a small part of tumor edges. The slice with the largest area of the tumor was used for
radiomic analysis, similar to multiple prior studies. Examples of tumor ROI contours are
shown in Figure 1 for each of the anatomical locations (LHP, OP, and OC). Radiomic or
“texture” features were extracted from the ROI using TexRAD. Six quantitative features
were obtained based on gray-level intensity histogram, including the mean, standard
deviation, mean of positive pixels, entropy, skewness, and kurtosis, for each of six spatial
scale filters (SSF 0, 2, 3, 4, 5, 6) to highlight features ranging from fine to coarse textures [26],
for a total of 36 quantitative features per ROI. Spatial scale filters were derived from
a Laplacian of a Gaussian spatial band-pass filter to produce a series of derived images
highlighting features at different anatomic spatial scales ranging from fine to coarse textures
in the defined ROI. The SSF parameters of 2, 3, 4, 5, and 6 were used to enhance and extract
fine to coarse imaging signal intensity features. An SSF value of 2 resulted in a fine texture
feature with a radius of 2 mm, and an SSF value of 6 resulted in a coarse texture feature
with a radius of 6 mm [26].
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Figure 1. Examples of tumor segmentation using manually placed ROI contours in three different
primary tumor locations: larynx/hypopharynx (left), oropharynx (middle), and oral cavity (right).

2.3. Statistical Analyses

To study the potential significance of the tumor site-specific information in predictive
modeling, we assessed the association of tumor site with lymph node metastasis and
HPV status. This was done by performing chi-square tests of independence to assess if
an association exists between the anatomical site and the outcome of interest. The Python
library Scipy v1.5.2 was utilized to perform these statistical tests.

For comparison of the radiomic features of tumors at different sites, the tumors were
categorized into three groups based on the anatomical locations (OC, OP, and LHP). The
36 radiomic features extracted from each tumor from the three anatomical locations were
then analyzed by t-Distributed Stochastic Neighbor Embedding (t-SNE) using the MC3
v1.10.0 R package to characterize the clustering of these features according to tumor site as
a 2-dimensional visualization. Multivariate analysis of variance (MANOVA) was done to
determine if there was a statistically significant difference between the tumor site based
on the selected quantitative features across spatial scale filters. A post hoc analysis of
variance (ANOVA) was then performed to see which radiomic features differ across the
three tumor sites (OC, OP, and LHP). An adjustment for multiple comparisons using
Bonferroni correction [27] was performed to obtain an adjusted p-value, and an adjusted
p-value less than 0.05 was considered statistically significant. We used R v4.0.2 along
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with the R package rstatix v0.6.0 and the base package stats for carrying out the statistical
analysis for MANOVA and ANOVA.

2.4. Predictive Modeling of Different Outcomes Using Machine Learning

The 36 image-based radiomic features were used as input for building Random Forest
(RF) [28] classifiers to develop prediction models for different outcomes. We hypothesize
that tumor site-specific information can be reflected by radiomic features and consequently
can affect the performance of machine learning models.

To assess if radiomic features contain site-specific information, we built an RF model
to predict the anatomical site the tumors originated from using the radiomic features. This
was done to determine if the site of the tumor can be accurately predicted using radiomic
features alone.

Next, to assess if this site-specific information can affect the performance of a machine
learning model for endpoint prediction, we built RF models using samples of tumors from
specific anatomical sites (LHP, OP, and OC) as well as RF models built using a site combined
approach—i.e., no stratification based on tumor site. To do this, we developed RF classifiers
for predicting nodal metastasis and HPV status in two different scenarios: (scenario 1) when
data from a single tumor site were used for model development (Figure 2A) and (scenario
2) when data from all tumor sites were used for model development (Figure 2B). To prevent
sample size from being the factor impacting model performance, datasets with an equal
number of samples were used for both scenarios. Therefore, if site-specific information has
no effect on model performance, one would expect that a model built using samples from
all tumor sites at most leads to equal performance compared to models developed using
samples from a single site. Each model was built, and its performance was measured based
on accuracy, precision, recall, F1, and AUC score. To achieve statistically reliable results,
we built 100 separate models, each with a dataset extracted based on scenario 2. For each
site, the value of n selected for the number of samples used for building the site-combined
models matched the number of available samples for that site. To alleviate the effect of
the stochastic nature of model training on the results of the statistical analysis, we built
100 models for each sample site (scenario 1). Finally, we used a Wilcoxon rank-sum test to
assess if there was any significant difference between the performance of the models built
based on scenario 2 and the performance of the models developed based on scenario 1.
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In order to build RF models, we followed the common practice for developing machine
learning models [29]. To achieve an unbiased estimate of generalization error, 30% of the
patients were randomly selected and set aside as the test group. Data from the remaining
70% were used for model development. The data partitioning in this paper was conducted
in a stratified manner to preserve the distribution of samples for each endpoint of interest
across training, validation, and test sets. Considering the relatively small number of features
in comparison to sample size and the implicit mechanism of RF for selecting informative
features, we did not use any explicit feature selection/reduction. Further, to overcome
class imbalance, we used SMOTE (synthetic minority over-sampling technique) [30] on the
training/validation set (but not on the test set).

We used grid search with a 10-fold cross-validation to train RF models and fine-tune
their hyperparameters (see Appendix B). The hyperparameters that resulted in the best
average F1-score on validation folds and the model trained using those hyperparameters
were then selected. An unbiased evaluation of the model generalization error was then
achieved using the test set, which had not been seen by the model. The performance
measures reported in the paper were calculated based on the test set. Further, as the results
on small classes in datasets with high class imbalance are not statistically reliable, we did
not build stratified models for a site and endpoint of interest if the ratio between classes
was equal to or smaller than 5:1. All machine learning models were trained and evaluated
using Python v3.6.10 and scikit-learn v0.23.2.

3. Results
3.1. Association between Tumor Site and Lymph Node Metastasis and HPV Status

A chi-square test of independence was conducted to assess if an association ex-
ists between tumor site and nodal metastasis status. The resulting chi-square test sug-
gested a significant relationship between tumor site and the nodal metastasis status,
χ2(2, N = 604) = 135.79, p < 0.001. Table 2 shows the conditional probability of nodal
metastatic status given the tumor site of samples in our dataset. Only based on tumor site,
for the OP samples, we can predict a nodal metastatic status with 87.5% accuracy; similarly,
for LHP samples, we can make a nonmetastatic status prediction with a 67.6% accuracy.

Table 2. Conditional probabilities of lymph node metastasis given the tumor site (LHP: larynx or
hypopharynx; OC: oral cavity); OP: oropharynx).

Sites Nonmetastatic Metastatic

LHP 0.676 0.324
OC 0.429 0.571
OP 0.125 0.875

It is well established that there is an association between OP primary site and HPV
positive HNSCC clinically, and this was also reflected in our dataset. A chi-square test
of independence was conducted to assess if there was an association between the tumor
site and HPV status. The result of the chi-square test suggested a significant relationship
between tumor site and the HPV status, χ2(2, N = 272) = 63.01, p < 0.001. Table 3 shows
the conditional probability of HPV status given the tumor site. Only using the knowledge
of tumor site, for LHP samples in the dataset, we can predict HPV negative with 83.3%
accuracy, i.e., if one predicts all LHP samples as HPV negative, such a prediction has 83.3%
accuracy. Please note that there is no OC sample in the dataset with a positive HPV status.
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Table 3. Conditional probability of HPV (human papilloma virus) status given the tumor site (LHP:
larynx or hypopharynx; OC: oral cavity); OP: oropharynx).

Sites Negative Positive

LHP 0.833 0.167
OC 1.00 0.00
OP 0.320 0.680

3.2. Site-Specific Variation and Differences in Radiomic Features between Different Tumor
Anatomic Sites

Figure 3 illustrates the distributions of quantitative features used in this study. There
were significant differences in radiomic features of HNSCC tumors from different anatomi-
cal sites based on MANOVA (p-value < 0.001) with partially separate clustering of tumors
from OC, OP, and LHP sites on t-SNE (Figure 4). The post hoc results of ANOVA tests
in Table A1 of Appendix A showed that radiomic features calculated based on average
and standard deviation of intensity values, as well as radiomic features calculated based
on entropy, skewness, and kurtosis of intensity values, were statistically different across
tumor sites (adjusted p-value ≤ 0.05). As such, many of the features showed significant
differences between tumor sites.

3.3. Radiomic Features Can Capture Tumor Site-Specific Information

As demonstrated above, radiomic features vary significantly across different tumor
sites in HNSCC. In this section, we assess the hypothesis that these differences are sub-
stantial in a way that they can affect the performance of machine learning models. In the
absence of site-specific information, one expects that a classification model developed for
predicting three classes (LHP, OP, and OC), after addressing data imbalance, achieves an ac-
curacy of about 0.333. Deviation from this value can be attributed to the tumor site-specific
information encoded in radiomic features. To assess this hypothesis, we developed an RF
model to classify samples based on their tumor sites. The model achieved an accuracy of
0.709, a precision of 0.705, a recall of 0.703, an F1 score of 0.703, and AUC of 0.869. The
results show a large deviation from 0.333, which is the baseline performance assuming no
association between radiomic features and tumor sites.

3.4. Stratification According to Primary Tumor Site Affects Prediction Performance of Lymph Node
Metastasis and HPV Status

For each tumor site, the results of Wilcoxon rank-sum tests for comparing the perfor-
mance of models built using samples from all sites combined and the model developed
using samples from one single site are represented in Table 4. These include the results
for RF models developed for lymph node metastasis prediction (LHP and OC) and the
results for HPV status prediction for OP. Since the number of HPV samples for LHP and
OC were not sufficient for developing RF models, we did not develop models for LHP and
OC for HPV status prediction. As can be observed from Table 4, the calculated performance
of models developed using samples from all tumor sites was significantly higher than
that of models built only using samples from a single tumor site. This over-optimistic
performance reflects an association between collected samples and the primary tumor sites
rather than an association with the true tumor characteristics, as further elaborated on in
the Discussion section. The accuracy, precision, recall, F1 score, and AUC score achieved
for each model are available in the Supplementary File S1.
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Table 4. The results of Wilcoxon rank-sum tests for comparing the performance of RF (Random
Forest) models when all tumor sites were combined and used for model development (scenario
2) versus when only samples from one tumor site were used for model development (scenario 1).
LN-LHP: lymph node metastasis prediction using features from larynx or hypopharynx sites; LN-OC:
lymph node metastasis prediction using features from oropharynx site; HPV-OP: human papilloma
virus status prediction using features from oropharynx site).

Endpoint-Site Statistics Accuracy Precision Recall F1 AUC

LN-LHP
(N = 241)

statistic 8.34 12.22 10.17 12.09 9.71
p-value <0.001 <0.001 <0.001 <0.001 <0.001

LN-OC
(N = 163)

statistic 11.54 9.96 7.13 8.40 11.97
p-value <0.001 <0.001 <0.001 <0.001 <0.001

HPV-OP
(N = 197)

statistic 11.12 0.32 7.73 4.06 11.67
p-value <0.001 <0.001 <0.001 <0.001 <0.001

4. Discussion

We demonstrated that significant differences between quantitative features exist in
HNSCC from different primary tumor anatomical locations, despite similar histopathologic
classification as HNSCC, and that this difference has an impact on the performance of
machine learning algorithms in predicting different endpoints of interest.

One may be inclined to assume that HNSCCs at different anatomic sites would have
similar radiomic features based on their similar pathologic classification and grading. This
has been used as justification for combining HNSCC tumors from different anatomic sites
in many radiomic studies. However, our results suggest that this is not the case. Rather,
the quantitative radiomic features of HNSCC are site-dependent and appear to reveal
biologic heterogeneity. This challenges the common assumption and, importantly, raises
concern for potential biases that, if not taken into account, will reduce the reliability and
generalizability of radiomic-machine learning models.

These results of comparing the association between tumor site and lymph node
metastasis and HPV status (Section 3.1) indicate that tumor site information significantly
contributed to the performance of predictive models in our dataset. Although this site-
specific information can boost the performance of predictive models, it might not always be
medically informative and relevant to the phenotype of interest and might be just a direct
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or indirect consequence of the experimental design or data collection strategy. Further,
the result of the classification model developed for predicting tumor sites (Section 3.3)
showed a large deviation from the baseline performance, assuming no association between
radiomic features and tumor sites. This large deviation indicates the existence of tumor
site-specific information in radiomic features.

We therefore showed the importance of stratifying HNSCC tumors according to the
tumor site when evaluating machine learning models developed using radiomic features.
This is essential when developing machine learning models based on datasets with a
class imbalance based on tumor sites, where the class imbalance resulted from a specific
experimental design or data collection strategy and was not medically relevant to the
endpoint under study.

We also demonstrated the feasibility of predicting nodal disease involvement using
radiomic features from primary tumors, which has the potential to overcome some of the
current challenge in imaging diagnosis of nodal metastasis and has an impact on future
treatment planning. We expect that the findings in this research will help to develop more
accurate and more generalizable machine learning models for various endpoints of interest
involving diagnosis and treatment of HNSCC patients.

It should be noted that our results do not suggest, that for any given dataset, radiomic
features from different tumor sites vary and affect the results of machine learning models.
Rather, our experiment proves that such a scenario is possible, and therefore, radiomic
studies should consider tumor sites as a potential confounding factor. We also acknowledge
studies that have considered tumor site as a potential confounder in data analysis. For
example, Huang et al. [3] used radiomic features extracted from pretreatment CT scans
of 113 HNSCC patients to distinguish several molecular phenotypes. They reported that
the tumor site has no effect on the extracted radiomic features and the resulting models.
As another example, Feliciani et al. [31] studied the utility of radiomics features extracted
from pretreatment 18F-FDG PET images to predict treatment outcome in 90 HNSCC pa-
tients treated with concurrent chemoradiation therapy. They reported that their model is
tumor-site agnostic. Unfortunately, consideration of tumor site as a potential confounding
factor is rare in radiomics studies. This consideration is another step toward developing
generalizable radiomics models that can be utilized in clinical settings.

In this paper, we considered laryngeal and hypopharyngeal cancers under one group.
The choice to consider laryngeal and hypopharyngeal cancers as one group was made due
to the lower prevalence of these cancers and to avoid a highly imbalanced dataset. This is a
limitation of our study; however, this does not affect the conclusions made in the paper.
We suggest considering laryngeal and hypopharyngeal cancers as two different sites for
predictive modeling applications.

In line with the published literature, our results support the utility of radiomic features
for predicting different tumor characteristics, including the HPV status. It is crucial to note
that for the prediction of HPV status, the class distribution of our dataset was balanced
when combining tumors from all sites (HPV positive to negative ratio of 145:127). However,
sample sets from individual sites were highly class-imbalanced (HPV positive to negative
ratio of 11:55 for LHP, 0:9 for OC, and 134:63 for OP)—a reflection of the known association
of HPV with the OP anatomical site—and the total number of cases with HPV status
available is relatively small for LHP and OC. Considering the highly imbalanced nature
of HPV status across tumor sites, if tumor site is ignored for analysis or evaluation, a
machine learning model might predict all tumors from a specific site as HPV positive
(or negative) just based on tumor site-specific features, rather than utilizing HPV-specific
features for prediction.

Another example of the bias and potentially misleading performance can be seen
in the results shown in Table 4, where the calculated performance of models developed
using samples from all tumor sites was significantly higher than that of models built only
using samples from a single tumor site, despite using the same number of samples for
model building and having higher heterogeneity. This over-optimistic performance is
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due to an association between collected samples and the primary tumor sites rather than
an association with the true tumor characteristics. The model built using only samples
from one tumor site, however, can only rely on the radiomic feature predictive of the
condition under study. These results highlight the importance of considering tumor site for
constructing and evaluating machine learning models in head and neck cancer.

Our study has a number of limitations. First, the quantitative features we used
comprised only first-order histogram-based texture features. We showed that these features
were significantly different among different primary tumor locations and could affect the
performance of machine learning models, but we should be careful to extrapolate this
conclusion to all radiomic features used in current investigations. While we expect similar
findings, for future studies, we suggest studying other radiomic features, including features
based on Gray Level Cooccurrence Matrix, Gray Level Run Length Matrix, and Gray
Level Size Zone Matrix [30]. These quantitative features should be tested for site-specific
differences in HNSCC. Second, our study used 2D manual tumor segmentation instead
of a 3D volumetric approach. This may not address intratumoral heterogeneity; however,
no consensus in literature has been reached regarding the most optimal approach in this
regard [32]. Third, class imbalance exists in individual tumor sites. This is unavoidable
and mostly due to the nature of the tumor itself.

More specifically, we did not have a large enough sample size to test for LHP and
OC individually for the prediction of HPV status. Future multicentered collaboration
with larger and different datasets can potentially address this issue and provide external
independent validation. It should, however, be noted that our study consists of a large
cohort as compared to most published HNSCC studies.

5. Conclusions

In this research, we sought to assess if systematic differences exist between radiomic
features resulting from different tumor sites in HNSCC and how these differences might
affect machine learning model performance in endpoint prediction. Our statistical analysis
showed that radiomic features are significantly different depending on the tumor location.
This implies that radiomic features can capture site-specific information that could be a
potential layer of information used by predictive models in the classification of HNSCC
tumors, impacting machine learning model performance.

These findings suggest that tumor site should be considered when developing and
evaluating radiomic-based predictive models in HNSCC. Our research is a step toward
developing reliable and generalizable radiomic-machine learning models with the potential
to be deployed in clinical settings.
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Appendix A

Table A1. Adjusted p-values for post hoc analysis of variance (ANOVA) among HNSCCs from three
different sites.

Feature Adjusted p-Value

SSF0_entropy 1.36 × 10−6

SSF0_kurtosis 4.02 × 10−2

SSF0_mean 7.99 × 10−11

SSF0_mpp 2.92 × 10−11

SSF0_sd 1.06 × 10−3

SSF0_skewness 1.97 × 10−4

SSF2_entropy 2.52 × 10−1

SSF2_kurtosis 3.01 × 10−14

SSF2_mean 2.64 × 10−14

SSF2_mpp 2.55 × 10−21

SSF2_sd 2.04 × 10−23

SSF2_skewness 9.41 × 10−23

SSF3_entropy 5.65 × 10−2

SSF3_kurtosis 2.57 × 10−23

SSF3_mean 8.38 × 10−12

SSF3_mpp 5.76 × 10−18

SSF3_sd 3.65 × 10−16

SSF3_skewness 6.04 × 10−33

SSF4_entropy 1.97 × 10−3

SSF4_kurtosis 6.90 × 10−19

SSF4_mean 4.38 × 10−9

SSF4_mpp 5.65 × 10−9

SSF4_sd 3.10 × 10−13

SSF4_skewness 1.30 × 10−29

SSF5_entropy 3.28 × 10−6

SSF5_kurtosis 9.52 × 10−13

SSF5_mean 1.08 × 10−08

SSF5_mpp 9.34 × 10−02

SSF5_sd 1.07 × 10−13

SSF5_skewness 8.98 × 10−23

SSF6_entropy 1.01 × 10−9

SSF6_kurtosis 1.17 × 10−6

SSF6_mean 9.33 × 10−10

SSF6_mpp 1.00
SSF6_sd 4.04 × 10−14

SSF6_skewness 1.15 × 10−12
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Appendix B

In this paper, we used the RandomForestClassifier from the ensemble module of the
scikit-learn package. We utilized this classifier using a GridSearchCV from the model_selection
module with the following arguments:

n_estimators: 100
bootstrap: True
max_depth: [4, 5, 6, 7]
max_features: [4, 5, 6]
min_samples_leaf : [4, 5, 6]
oob_score: True
The rest of the arguments were kept as default values. For each model, the com-

bination of parameters that led to the maximum macro F1 score was used to build the
trained classifier.
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