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Postural behavior recognition 
of captive nocturnal animals based 
on deep learning: a case study 
of Bengal slow loris
Yujie Lei1,2,5, Pengmei Dong3,5, Yan Guan1,5, Ying Xiang1,5, Meng Xie4, Jiong Mu1,2*, 
Yongzhao Wang1 & Qingyong Ni3*

The precise identification of postural behavior plays a crucial role in evaluation of animal welfare 
and captive management. Deep learning technology has been widely used in automatic behavior 
recognition of wild and domestic fauna species. The Asian slow loris is a group of small, nocturnal 
primates with a distinctive locomotion mode, and a large number of individuals were confiscated 
into captive settings due to illegal trade, making the species an ideal as a model for postural behavior 
monitoring. Captive animals may suffer from being housed in an inappropriate environment and may 
display abnormal behavior patterns. Traditional data collection methods are time-consuming and 
laborious, impeding efforts to improve lorises’ captive welfare and to develop effective reintroduction 
strategies. This study established the first human-labeled postural behavior dataset of slow lorises and 
used deep learning technology to recognize postural behavior based on object detection and semantic 
segmentation. The precision of the classification based on YOLOv5 reached 95.1%. The Dilated 
Residual Networks (DRN) feature extraction network showed the best performance in semantic 
segmentation, and the classification accuracy reached 95.2%. The results imply that computer 
automatic identification of postural behavior may offer advantages in assessing animal activity and 
can be applied to other nocturnal taxa.

Animal behavior can be generally defined as a decision-making process, which is a balance between a set of solu-
tions that can guarantee high levels of welfare and allow animals to be independent of the surroundings and the 
 environment1. The long-term repetition of stressful situations may lead to the repetition of the same associated 
postural behavior and make them become chronic  states2. Thus, the measurement of animal activity and the 
related bio-processes and bio-responses are crucial in welfare assessment and captive management. Specifically, 
frequent monitoring of animals’ postural behavior in quantitative terms helps captive managers to verify the wel-
fare state by early recognition of health anomalies evidenced through reduced locomotion, food intake, or social 
 behaviors3, and the early detection of pathology symptoms, injuries, or problems in the captive  environment4. 
As an initial step, the precise identification of these behaviors plays a vital role in ensuring unbiased monitor-
ing results that affect decision-making. Video-based data collection is increasingly used in animal behavior 
 monitoring5. Given that artificial recording and video analysis are both highly labor-intensive and possibly 
bias-prone, automatic behavior recognition could become critical to achieve acceptable  throughput6,7. Advanced 
technologies like machine learning, deep learning, and artificial intelligence, as well as big data technologies and 
high-performance computing, have emerged in recent years and opened new modes for data-intensive  research8.

Deep learning is a machine learning method based on artificial neural networks with representation learning, 
and it allows computational models with multiple layers to learn representations of data with multiple levels 
of  abstraction9. As deep learning has been successfully applied into various domains of science, business and 
government, it has made major advances in animal  studies10. Particularly, the convolutional neural network 
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(CNN) has been extensively used in face and action recognition of wild and domestic fauna species, e.g. golden 
monkey (Rhinopithecus roxellana)11, giant panda (Ailuropoda melanoleuca)12, pig (Sus scrofa domestica)13, and 
Tibetan antelope (Pantholops hodgsonii)14. As one of the fundamental problems in deep learning, object detec-
tion is intended to find targeted objects in the images or videos and determine their categories and positions, 
representing the core issues of computer  vision15. Thus it has been related to many applications including face 
recognition, behavior analysis and autonomous  driving16. For images containing cluttered background and 
diverse object parts, however, object detection is not skilled in dealing with precise classification. As another 
research hotspot in deep learning, semantic segmentation divides an image into several parts based on similar 
characteristics and common pixel points and processes the image at the pixel level, and thus it can minimize 
negative background  effects17. Therefore, the combined methods have been increasingly applied in the individual 
identification and action recognition of  animals13,18.

Slow lorises (Nycticebus spp., Lorisidae) are small, arboreal and nocturnal primates native to south-east  Asia19. 
All the species have been listed on Appendix I of the Convention on International Trade in Endangered Species 
of Wild Fauna and Flora (CITES). While the wild populations have dramatically declined due to habitat loss and 
hunting, a considerable number of individuals are illegally traded as pets, and confiscated into zoos and rescue 
 centers20,21. Given the limited capability of the rescue facilities, captive lorises may suffer from incorrect diet, 
wounds or disease, and fear or  distress22,23. In typical husbandry environments, it is unlikely that the welfare 
of slow lorises can be sufficiently addressed, and the levels of low welfare may be at the root of captive lorises’ 
abnormal behavioral patterns. A few studies have reported that a large proportion of confiscated individuals 
display stereotypies, appetitive behaviors and inappropriate social  interactions24,25. Consequently, slow lorises may 
experience elevated mortality and perish quickly in captivity, making their reintroduction success  impossible22.

Comparisons of activity patterns, particularly postural behavior under different ecological conditions, allow 
for exploration of behavioral ecology, conservation and captive management. Among the nocturnal primates, 
postural modes were categorized into an equally varied array including slow climbing, bridging, branch running 
and walking, and vertical clinging and leaping, and slow lorises are considered slow climbing  specialists26,27. The 
“slow” locomotion mode and the large numbers of captive individuals make the slow loris an ideal model for 
behavior monitoring. Previous studies have also reported that their postural behavior is influenced by variation in 
their  environment28,29. For captive or semi-captive wild animals, action recognition is crucial to make assessment 
of their welfare status and conduct best-practice reintroduction  releases30,31. For instance, proficient locomotion 
skills are critical for the orangutans to safely and efficiently forage high up in  trees32. Due to the large amount of 
humanpower and time that occurs in traditional observation and monitoring of nocturnal  research20, however, 
obtaining precise, quantitative descriptions of postural behavior remains a challenge.

We established a human-labeled dataset for postural behavior recognition of captive Bengal slow lorises (N. 
bengalensis) and propose an object detection + semantic segmentation model. For the first time we introduce 
deep learning technology into automatic behavior identification of nocturnal primates based on a night-vision 
video system. The framework will contribute to researchers’ abilities to conduct high-throughput analysis of 
animal behavior in a short period of time, and enhance the possibilities for constant monitoring. Compared 
with other approaches, successfully established computer evaluation can offer the advantage of seamless data 
processing from real-time videos, without additional cost or personnel effort. Together with further machine 
learning techniques, automatic postural behavior recognition can be used to generate animal activity overviews 
and thus represent potential indicators for animal welfare, conservation and captive management.

Method
Definition of postural behavior. In this study, we aimed to validate the feasibility of computer vision in 
identifying the general behavior of captive slow lorises. Though the detailed ethograms have been provided in a 
few  literatures33,34, we used a simplified postural behavior classification defined as follows:

Feeding: gnawing, biting, grabbing, licking, and chewing food.
Moving: body stretching and climbing.
Resting: staying at a certain position and keeping immobility.
Socializing: contacting or proximity (< 0.3 m) between individuals.
While feeding and socializing can be identified by the main parts of the bodies and the neighboring append-

ages (e.g. water and food bowls) or individuals, moving and resting cannot be precisely recognized due to similar 
image characteristics in object detection. Thus we combined the moving and resting behavior into move-rest in 
the object detection experiment, and identified them by semantic segmentation.

Data collection. The data were collected from three wildlife rescue centers in Dehong, Xishuangbanna, 
and Puer, Yunnan, China. The Bengal slow lorises were housed together in a single cage in each site (Table 1). 
All the enclosures were simply enriched by dry wood and covered with iron wire mesh. The activities of slow 
lorises were constantly recorded by a night vision monitoring system (TCNC9401S3E-2MP-I5S and TC-
NC9501S3E-2MP-I3S infrared camera, Tiandy Technologies CO., LTD., Tianjin, China). More than 100  TB 
video files were obtained from the surveillance cameras installed on the top of the cages from April 2017 to 
June 2018, with a resolution of 1920 × 1080 pixels. We extracted the frames at 2 s intervals and after excluding 
duplicate and similar pictures, and selected 1600 monitoring screenshots as the YOLOv5 object detection data-
set. We marked the location of each individual whose action and postural behavior could be clearly identified, 
and classified into three postural behavior types: feeding, move-rest and socializing. After object detection using 
YOLOv5, we screened out 4,200 images referring to all the behavior types, and further screened out 1,000 images 
related to move-rest (containing moving and resting) for semantic segmentation. In the object detection and the 
semantic segmentation classification process, the dataset is divided into training set and test set at a ratio of 7:3.
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Experimental environment. All the experiments were conducted in the Sichuan Key Laboratory of Agri-
cultural Information Engineering on a Lenovo Thinkstation P920 (Server number TSP920-C621). We build a 
network based on the Pytorch framework (Python version: 3.6.13; Torch version 1.8.0) under the Windows 10 
system. The server used is configured with Inter Xeon Gold 5218 CPU, two NVIDIA Quadro RTX 5000 graphics 
cards, and 128G memory.

Overall framework. We annotated the postural behavior images collected from monitoring video files and 
divided them into three categories: feeding, socializing and move-rest (Fig. 1). The dataset obtained by YOLOv5 
was labeled with Labelme, and then the DeepLabv3 + network was used to extract the contour of the loris indi-
vidual and classify the behavior move-rest into moving and resting.

Evaluation index. We used precision, recall, average Precision (AP), mean average precision (mAP), 
semantic segmentation accuracy (Acc), classification accuracy  (Accclass) as evaluation criteria for the i-type. The 
definition is shown as follows:

Precisionall =
The number of postural behavior whose category is correctly predicted

The number of postural behavior predicted in all categories

Table 1.  Enclosure characteristics of each captive site for video data collection.

Captive site Dehong Xishuangbanna Puer

Coordinate 24.38287°N, 98.45872°E 22.39276°N, 100.89636°E 22.62198°N, 101.08916°E

Altitude (m) 850 1060 1600

Annual mean temperature (℃) 19.6 17.5 17.5

No. of individuals 4 9 9

No. of enclosures 1 1 1

Enclosure size (L × W × H) (m) 3.5 × 3.4 × 3.8 5.7 × 4.2 × 3.5 3.5 × 2.1 × 2.0

No. of cameras 2 3 2

Figure 1.  Processing of target detection, semantic segmentation and classification.
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Acc is used to calculate the ratio between the number of correctly classified pixels and the total number of 
pixels. The parameters are defined in Table 2.

Accclass is used to calculate the ratio between the number of correctly classified postural behavior and the 
total number of postural behaviors.

The Mean Intersection over Union (MIoU) is a standard measure of semantic segmentation, which is used 
to calculate the ratio of the intersection and union of the true value and the predicted value.

where Pii indicates that the i-type is predicted as i-type, and Pij indicates that the i-type is predicted as j-type.
We set the weight based on the frequency of category i or j, and multiply it by the intersection over union 

(IoU) of each category, and sum into the frequency weighted intersection over union (FWIoU).

Image data processing
Object extraction and classification. The deep learning technology in object detection is generally 
divided into two categories: one- and two-stage  detector35. The one-stage detector is an end-to-end process 
which does not need to generate candidate frames. It directly converts the positioning problem of the object 
frame into a regression-processing problem. Based on the candidate area, the two-stage object-detection algo-
rithm initially generates a series of candidate frames as samples, and then classifies them via the convolutional 
neural network (CNN). While the two-stage detection is represented by Faster R-CNN36–38, the YOLO series 
are the most representative algorithms in the one-stage object  detection39. As the latest version in this series, 
YOLOv5 has made major advances in training speed and  accuracy40. In present study, the YOLOv5 algorithm is 
used to extract the target individuals from the input image dataset (Fig. 2), and identify the three postural behav-
ior types: feeding, socializing, and move-rest. Four networks (YOLOv5s, YOLOv5m, YOLOv5x and YOLOv5l) 

Precisioni =
The number of correctly predicted postural behavior in the i − th category

The total number of postural behavior predicted to be the i − th category

Recalli =
The number of correctly predicted postural behavior in the i − th category

The actual number of postural behavior detected as the i − th category
.

APi =
The sum of all precision of the the i − th postural behavior

The number of all pictures with the i − th postural behavior

mAP =
The sum of the average accuracy of all categories

The number of categories

Acc =
TP+ TN

TP+ TN+ FP+ FN

Accclass =
The Number of postural behavior correctly classified

The total number of postural behavior

MIoU =
TP

FP+ FN+ TP

MIoU =
1

n+ 1

n∑

i=0

Pii∑n
j=0 Pij +

∑n
j=0 Pji − Pii

FWIoU =
TP+ FN

TP+ FP+ TN+ FN
×

TP

TP+ FP+ FN

FWIoU =
1

∑k
i=0

∑k
j=0 Pij

k∑

i=0

∑k
j=0 PijPii

∑k
j=0 Pij +

∑k
j=0 Pji − Pii

Table 2.  Definition of the parameters.

Actual result

Positive Negative

Expected result
Positive TP FN

Negative FP TN
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were generated by YOLOv5, and the YOLOv5s presented the superior performance due to a higher speed and 
accuracy rate. While the processing speed is acceptable, the highest accuracy rate reaches 95.1%.

Feature extraction network used in semantic segmentation. ResNet. ResNet, derived from 
VGG19 network, is a convolutional neural network proposed by Microsoft  Research41. Joined with the residual 
units, ResNet network effectively alleviate the gradient disappearance and model degradation by a short-circuit 
mechanism. In addition, the ResNet CNN uses jump connections and consequently alleviate the problem of the 
vanishing gradient caused by increasing depth in a deep neural network.

MobileNet. The MobileNet model is a lightweight deep neural network proposed by Google in 2017, and the 
MobileNet family includes MobileNetV1, MobileNetV2, and  MobileNetV342. The model is a simple streamlined 
architecture that replaces the regular convolution layer with depth wise separable convolution layer. MobileNets 
are low-latency and low-power models that yield small networks. It is one of the most commonly deployed mod-
els in edge computing due to limited parameters, reduced computation and high accuracy.

Xception. Xception is an extension of Inception V3 proposed by Google which replaces the standard Inception 
modules with deep separable  convolutions43,44. The Xception architecture has 36 convolutional layers forming 
the feature extraction base of the network. The layers are structured into 14 modules, all of which have linear 
jump connections except for the first and last modules. Xception significantly outperforms Inception V3 due to 
a more efficient use of model parameters without increasing the complexity of the  network43.

Dilated Residual Networks (DRN). By replacing the under-sampling layer inside the residual network model 
with dilated convolution, DRN (Dilated Residual Networks) yield higher accuracy in ImageNet classification 
than their non-dilated  counterparts45, without increase in depth or model complexity. However, the use of 
dilated convolutions may lead to gridding artifacts. In this section, we develop a scheme for removing this effect 
from output activation maps produced by DRN (Fig. 3). An initial DRN constructed is referred to as DRN-A, 
which uses dilated convolution instead of under-sampling. We replace the pooling layers with convolution fil-
ters. An intermediate stage of the construction is referred to as DRN-B and the final construction is referred to 
as DRN-C.

Contour extraction and classification of moving and resting. Semantic segmentation aims to assign 
a categorical label to every pixel in an  image46. The DeepLab network, proposed by  Google47, is specifically 
designed to deal with semantic segmentation, and four versions are currently released, namely DeepLabv1, Dee-
pLabv2, DeepLabv3 and DeepLabv3 + .By adding a simple but effective decoder module, Deeplabv3 + extend to 
refine the segmentation results, particularly along object boundaries (Fig. 4). It further explores the Xception 
model and apply the depthwise separable convolution to Atrous Spatial Pyramid Pooling and decoder mod-

Figure 2.  The images of postural behavior extracted by YOLOv5.
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ules, leading to a faster and stronger network. As one of the most popular encoder-decoder networks, Deep-
Labv3 + include encoding and decoding paths. The encoder uses Dynamic CNN network (or Xception, VGG, 
ResNet) as backbone to extract basic features, and then uses dilated convolution to extract feature maps, and 
finally mix them with a 1 × 1 convolution. In the decoder part, the encoder features are first bilinearly upsam-
pled and then concatenated with the corresponding low-level features from the network backbone. After the 
concatenation, a few 3 × 3 convolutions were applied to refine the features followed by another simple bilinear 
 upsampling48. The effects of semantic segmentation are illustrated in Fig. 5.

Model evaluation. The precision, recall and mAP of the object detection were shown in Table 3 and Fig. 6, 
and the training effects of the semantic segmentation are shown in Table 4 and Fig. 7. The recognition accuracy 
of socializing, feeding and move-rest reached 95.1%. In the second step of joint training, the DRN feature extrac-

Figure 3.  DRN network structure diagram.

Figure 4.  DeepLabv3 + network structure diagram.
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Figure 5.  Semantic segmentation image of loris postural behavior (red indicate moving behavior and green 
indicate resting).

Table 3.  The effect of the YOLOv5 network.

Postural behavior Precision Recall mAP

All 0.951 0.938 0.949

Feeding 0.951 0.932 0.951

Move-rest 0.941 0.948 0.953

Socializing 0.961 0.940 0.942

Figure 6.  Precision, recall and mAP of object detection classification.

Table 4.  Training effects of four different networks.

Network Training time Category Eopch10 Eopch20 Eopch30 Eopch40 Epoch50

DRN 2h20m
Acc 0.926 0.955 0.961 0.964 0.968

AccClass 0.913 0.940 0.940 0.943 0.952

MobilNet 38 m
Acc 0.908 0.933 0.939 0.955 0.959

AccClass 0.902 0.916 0.894 0.939 0.943

ResNet 1h23m
Acc 0.895 0.928 0.933 0.938 0.944

AccClass 0.878 0.934 0.938 0.938 0.944

Xception 1h34m
Acc 0.764 0.782 0.815 0.847 0.860

AccClass 0.582 0.677 0.706 0.787 0.801
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tion network showed the best performance. The accuracy of DRN-based semantic segmentation reached 96.8%, 
and the classification accuracy of moving and resting reached 95.2%.

The evaluation index shows that YOLOv5 has a high accuracy in object detection classification, while the 
DRN is superior to other feature extraction networks in semantic segmentation. The present study aims to 
detect a precise behavior recognition algorithm to pave the way to constant monitoring of nocturnal animals. 
In this way, the accuracy rate has priority over other indicators, such as training speed. Thus, the DRN is finally 
adopted as our backbone.

Discussion
This study created a novel model for automatic postural behavior recognition of confiscated Bengal slow lorises. 
For this nocturnal primate species, the key frames were extracted from night-vision surveillance video, and a 
combined method of object detection and semantic segmentation was introduced. Compared with domestic 
and farm animals, the captive slow lorises have more flexible limbs and diverse locomotion postures, and the 
boundaries of the semantic segmentation images between each behavior are relatively blurred with few differ-
ences. Therefore, the unified classification using the traditional method of semantic segmentation is limited in 
its ability to recognize behaviors. Given the simplified and stable enclosure environment in captive settings, we 
took into account the postural behavior itself and the surrounding background in identification. The behavioral 
types with obvious background characteristics and action features were classified in initial object detection, and 
together with the semantic segmentation process, a relatively high recognition accuracy was achieved. In addi-
tion, image data was extracted from a frame every two seconds in realizing the real-time monitoring of loris 
postural behavior. Both high accuracy and processing speed imply the integrated approach of YOLOv5 and 
DeepLab v3 + is qualified in behavior recognition of confiscated slow lorises, and shows promise for application 
to other captive nocturnal animals.

Since our current data is collected by a limited number of surveillance cameras which are mostly located 
at the upper side of the cage, the observation angle is restricted in a certain area, leading to a disproportionate 
dominance of dorsal pictures of slow loris in the image dataset. Like other studies in video-based behavior recog-
nition (e.g. 13,49), the restricted camera number, coverage and angle impede the efforts to obtain qualified images. 
In addition, in contrast to the diurnal counterparts, most of the night-vision images of nocturnal animals had 
lower resolution  quality50, making the individual boundaries difficult to be identified. Therefore, in further study, 
multiple high-resolution surveillance cameras should be set up at different angles in the enclosures. Moreover, in 
the three captive sites of the present study, the slow lorises were mostly housed in a group. Feeding and resting 
behavior displayed by two or more individuals together may be recognized as socializing in automatic identifica-
tion. The three-way decision rule can be introduced into the subsequent test, namely that one can make a delayed 
decision on the recognition when the behavior types were characterized by similar  features51.

In recent decades, traditional CNN models have achieved dramatic progress on image recognition, and a large 
number of extensions to process video data have been proposed. However, these models have limited capabilities 
to process variable length of input sequences. Given that animal behavior is composed of consecutive events, the 
constant monitoring based on time series may be unfeasible under the current networks, and thus the welfare-
related abnormal repetitive actions, e.g. stereotypical behavior, cannot be detected. As an alternative approach, 
Recurrent Neural Networks (RNN) inputs the hidden layer data of the previous moment as the data of the 

Figure 7.  Evaluation index of the second step of joint training: (a) Semantic segmentation accuracy, (b) 
Classification accuracy, (c) MIoU, (d) FWIoU.
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current moment, allowing the temporal information to be  preserved52. Compared with the traditional algorithms 
which assume a fixed spatio-temporal receptive field, RNN can be compositional in spatial and temporal layers. 
To overcome the limitation of simple RNN models known as “vanishing gradient”, Long Short-Term Memory 
(LSTM) RNN model has been proposed  further53,54. In this way, the LSTM-RNN would be a promising network 
to be involved in achieving the goals of automatic behavior detecting, recognizing and monitoring.

Computer vision has been emerging as a new tool in the real-time automation of animal monitoring systems 
due to its non-intrusive and non-invasive properties, as well as its ability to present high throughput information. 
While Precision Livestock Farming has become a reliable solution to the challenges in automatic monitoring of 
domestic animals and assessment of welfare  status55, only a few models related to computer vision were provided 
for wild animals. For those living in captive or semi-captive settings, without a sensor or collar, video data-based 
deep learning technology appears to be a feasible approach in automatic behavior recognition and welfare evalu-
ation. The present framework provided a reliable, objective and reproducible method in measuring slow loris 
behavior. While husbandry activities are usually scheduled for the convenience of  caregivers56, the models also 
have the potential to overcome the time restrictions in manual observation by expanding the datasets at a 24/7 
time scale, which is particularly important in meeting the needs of nocturnal animals. Unfortunately, the cur-
rent framework is too limited to identify more detailed ethograms or postures of captive or semi-captive slow 
lorises. Thus, this attempt must be considered preliminary and a case study, and in future research, we will look 
into how an advanced computer vision technology would measure more complex physiological and ethological 
responses to husbandry conditions, and precisely distinguish normal, abnormal or disturbed behavior in a wide 
range of species.

Conclusion
While computer vision has been increasingly used in farm animal monitoring, research on captive or semi-captive 
wild animals remains scarce, impeding the efforts to precisely evaluate their housing conditions and welfare sta-
tus. We introduced the deep learning technology into the postural behavior recognition of a nocturnal primate 
species. An object detection + semantic segmentation network displayed high accuracy in classifying four behav-
ior types. As a case study, we investigate the potential of deep learning technology for the behavior recognition 
and classification of the captive nocturnal primates. The results show that YOLOv5 and DeepLabv3 + based on 
DRN have acceptable processing speed and accuracy in preliminary posture recognition, and paired with other 
machine learning technology, the model would contribute to establish a wide range of dataset for behavior ecol-
ogy analysis and welfare improvement of captive or semi-captive animals.
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