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ABSTRACT: Many ring polymer systems of physical and
biological interest exhibit both pronounced topological effects
and nontrivial self-similarity, but the relationship between these
two phenomena has not yet been clearly established. Here, we use
theory and simulation to formulate such a connection by studying
a fundamental topological property�the random knotting
probability�for ring polymers with varying fractal dimension, df.
Using straightforward scaling arguments, we generalize a classic
mathematical result, showing that the probability of a trivial knot
decays exponentially with chain size, N, for all fractal dimensions:
P0(N) ∝ exp(−N/N0). However, no such simple considerations
can account for the dependence of the knotting length, N0, on df,
necessitating a more involved analytical calculation. This analysis reveals a complicated double-exponential dependence, which is
well supported by numerical data. By contrast, functional forms typical of simple scaling theories fail to adequately describe the
observations. These findings are equally valid for two-dimensional ring polymer systems, where “knotting” is defined as the
intersection of any two segments.

1. INTRODUCTION
In recent years, ring polymers have become one of the most
intensely studied subjects of soft matter physics research, as
these molecules exhibit fascinating topological interactions.1−4

Such interactions lead to remarkable dynamical and rheological
behavior,5−7 play a fundamental role in mechanically inter-
locking polymers and molecular machines,8,9 and have close
connections with the physics of DNA and cellular chroma-
tin.10−15 The latter example has also motivated research on the
structure and dynamics of polymers with varying fractal
dimension, df,

16−21 as chromatin in the nucleus appears to
have 2.5 ≤ df ≤ 3 depending on the length scale,22−24 differing
from the more familiar values of df = 2 for the ideal chain and df =
3 for the fractal globule.25 These variations in fractal dimension
are not merely academic: they are associated with gene
expression and have implications in the diagnosis and prognosis
of various medical conditions.26−29 Clearly, the interplay
between topology and fractal dimension is a topic of great
significance in chromatin biophysics and beyond.

In light of the importance, researchers have recently begun to
examine the combined effects of topology and self-similar-
ity,30,31 but many of the most basic questions remain
unanswered or simply unasked. For example, among the most
fundamental problems of polymer topology is determining the
probability that a closed curve of N segments will form a
nontrivial knot, denoted P(N).1,2 Although this topic has
received a great deal of attention for ideal and self-avoiding
polymers, the manner in which P(N) depends on df is entirely
unknown. One expects df to have a considerable effect on the

topological properties of ring polymers because the molecule
size scales as R N d1/ f ; rings with larger fractal dimension
should be effectively denser, making segment contacts and
crossings more likely. However, a more quantitative under-
standing is clearly needed for studying the complex systems
highlighted above. Here, we offer new insights into this problem
using theory and numerical experiments. We first apply scaling
arguments to obtain the functional form of P(N), finding that
the classic mathematical result 1 − P(N) = P0(N) ∝ exp(−N/
N0) holds for arbitrary df, which is verified through numerical
calculations. We then perform a detailed statistical calculation to
determine the relationship between the random knotting length,
N0, and df. The result is a complex double-exponential form that
cannot be rationalized by typical scaling theories. We verify
these results numerically and show that they apply also to lower
dimensional analogues.

2. MODEL AND METHODS
2.1. Theoretical Model. For concreteness, we focus on a

simple physical model to develop our theory and evaluate it
numerically: the so-called “beta model”,16,20 which we adapt to
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ring polymers. The conformation of the polymer is written in
terms of the normal/Fourier modes:

=
=

ijq NX R exp(2 / )q
j

N

j
1 (1)

where Rj is the position of the jth repeat unit (or bead). These
modes represent structure on the scale of N/2q′ segments,
where q′ = min(q, N − q). The mode q = 0 corresponds to the
center of mass, which is irrelevant for our discussion and ignored
hereafter. An effective Hamiltonian is written as

= | |
=

H X
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q q
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so that the modes are Gaussian distributed with zero mean and
variance 1/λq(χ). The eigenvalues are given by

= k q N4 sin ( / )q
( )

(3)

where q = 0, 1, ..., N − 1 and k = dkBT/b2 is the spring constant
for an isolated dumbbell in d dimensions.a We use units such
that kBT = b = 1, so that the model is effectively athermal. For a
fractal polymer, the mean-squared mode amplitudes scale as
| | +X N q1/ ( / )q q

d2 ( ) 1 2/ f ;32,33 choosing χ = 1 + 2/df
therefore reproduces the desired structure at large length scales,
as can be verified by the Taylor expansion of λq(χ). For df = 2, the
ordinary ideal bead−spring (Rouse) model is recovered.
2.2. Computational Methods. To test our theoretical

predictions, we perform numerical experiments using the model
described above. Polymer configurations with desired df are
sampled by generating N − 1 Gaussian random vectors with
variances of 1/λq(χ) for q ≥ 1; the bead positions then follow via
the inverse Fourier transform.34 The knot type for each
configuration is determined by calculating the Alexander
polynomial35 using the Topoly36 and pyknotid37 packages. For
each set of parameters (df, N), we collect between 2 × 104 and
105 sample configurations.

3. RESULTS AND DISCUSSION
3.1. Form of the Knotting Probability. 3.1.1. Scaling

Arguments. To begin, we consider the functional form of P(N).
The famous Frisch−Wasserman−Delbrück conjecture,38,39

formulated in the early 1960s, argues that this probability
should approach unity as N increases. This was later proven
mathematically for several polymer models,40−44 both ideal and
self-avoiding, and on- and off-lattice. In particular, it was shown
that the knotting probability approaches unity with an
exponential form

×P N N N( ) 1 const exp( / )0 (4)

where the random knotting length,N0, depends on the details of
the physical model under consideration. Numerical simulations
have also convincingly demonstrated the validity of eq 4 for a
variety of polymer systems,45−51 suggesting a highly universal
relationship. This naturally leads to the question: does this form
hold for arbitrary df? This query can be addressed at the scaling
level by extending the exposition originally offered by
Grosberg.52

The polymer can be coarse-grained into blobs of g segments. If
the polymer is knotted, the knot can be manifested in two
different ways. First, the coarse-grained chain of N/g blobs may
be knotted; because the polymer is self-similar, the associated

probability is simply P(N/g). Second, the knots may exist within
the blobs. We express the probability that a blob of g segments is
knotted by the function ϕ(g).b Assuming the blobs are
independent, we can now write an equation for P(N):
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The first term on the right accounts for knotting at the global
scale, and the second accounts for the probability of finding a
knot in at least one of the N/g blobs. One may also consider
knots that form due to entanglements at the interface between
contacting blobs. However, a mean-field treatment suggests that
such considerations merely introduce a correction that may be
ignored in the limit N → ∞ for physically relevant fractal
dimensions (see Appendix A). Equation 5 may be rearranged to
yield an expression for ϕ(g):

=g
P N

P N g
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( )
( / )

g N
0

0

/i
k
jjjjj
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{
zzzzz (6)

where P0(N) = 1 − P(N) is the probability that the polymer is
unknotted. Because the left-hand side is independent ofN, allN-
dependence on the right must vanish. This is only possible if the
function P0(N) has an exponential character, i.e., P0(N) = const
× exp(−N/N0), consistent with the rigorous mathematical
result mentioned earlier. Inserting this form into eq 6, we find
ϕ(g) = 1 − exp[−(g − 1)/N0]. Because N0 is typically on the
order of 102 or more,53 we have the approximate equality ϕ0(N)
≈ const × P0(N), where ϕ0(N) = 1 − ϕ(N). Note that we have
specified neither the length scale for the coarse-graining, g, nor
the fractal dimension, df. Thus, we see that self-similarity itself
implies the exponential form of the knotting probability. The
effects of df (as well as the specifics of the physical model) enter
only through constants such as the knotting length, N0.
3.1.2. Numerical Results. The probabilities of the trivial knot

for ring polymers with 6/5 ≤ df ≤ 5 are shown in Figure 1 on a
logarithmic scale. The clear linear dependence of ln P0(N) on N
for all df indicates that all systems exhibit the exponential

Figure 1. Probability of finding a trivial knot (01) as a function of N for
ring polymers with fractal dimension df = 6/5 (circles), 3/2 (upward
triangles), 5/3 (downward triangles), 9/5 (right triangles), 2 (left
triangles), 11/5 (squares), 5/2 (diamonds), 3 (wide diamonds), 7/2
(×’s), 4 (pentagons), 9/2 (stars), and 5 (hexagons). The decay is
exponential for all systems.
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behavior predicted above. On the basis of these results, we
conclude that the exponential form of the knotting probability is
valid for all fractal dimensions, although the knotting lengths N0
(i.e., the slopes) clearly have a strong dependence on df. Note
that although the finite compressibility of real polymers
prohibits fractal dimensions greater than the spatial dimension
for long chains, we have nevertheless included some values
above this threshold because they sometimes appear in polymer
models of physical interest54,55 and because they serve to
demonstrate the generality of our results.
3.2. Random Knotting Length and Fractal Dimension.

3.2.1. Conceptual Arguments and Limiting Cases. Next, we
aim to understand and quantify the dependence of N0 on df.
Intuitively, this should be a strictly decreasing function: as df
grows, the polymers occupy less volume and segments far apart
along the chain contour are more likely to overlap, leading to
more opportunity for knotting. In the limit of large df,N0 should
approach a small but finite value, as there is a minimum required
number of segments needed for knotting (known as the “stick
number”, equal to six for the simplest knot, 31

35). Of course, for
such small values of N, the chain is not fractal in any meaningful
sense. Nevertheless, the existence of a rigorous mathematical
lower bound for knotting implies that N0 is similarly bounded.

At the other limit, df → 1, the situation is more subtle. In
particular, the ring closure requirement implies that such small
fractal dimensions are only realized quasi-locally, and the
“global” fractal dimension is always greater than unity. Even at
this local level, the knotting cannot be achieved with df = 1 since
knotting requires that the chain “double back” on itself, which is
not possible for rigid rod conformations. Thus, we may observe a
divergence of N0 as df → 1 but do not entertain any particular
expectations.

Between the limits discussed above, the form of the
dependence is unknown and difficult to anticipate on the basis
of scaling arguments. For example, postulating that knotting
becomes probable once the local segment density becomes
larger than some critical value would lead to a function with
some residual N dependence, which is at odds with the simple
exponential behavior demonstrated for all df, as described above.
Moreover, scaling results for confined knotted systems cannot
be applied here since those systems include walls that help
randomize segmental orientations,56 whereas fractal polymers
can possess long-ranged correlations.
3.2.2. Statistical Calculation. Lacking a simple scaling

argument, we carry out a more direct calculation on the basis
of statistical mechanics. For concreteness, we use the same
model described above, although the results are generally
applicable to any model so long as variations in large-scale fractal
dimension may be introduced without significantly altering the
local polymer conformations (see Discussion section below).
The (configurational) partition function of the system is written

= [ ]Z HX Xd exp ( )N N . We introduce also the constrained

partition function, = [ ]Z HX Xd exp ( )N N
0 0

where the
symbol ∫ 0 indicates that one only carries out the integration
over regions of phase space for which the polymer is unknotted.
The probability of observing a trivial knot may then be written
P0(N) = Z0/Z. Taking the derivative with respect to χ, we have

=
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where the angled brackets ⟨...⟩0 and ⟨...⟩ denote ensemble
averages in the constrained (unknotted) and unconstrained
ensembles, respectively. We now use eq 4 to evaluate the
derivative on the left-hand side of the previous formula and use
eqs 2 and 3 to evaluate the derivatives on the right. After
applying the equipartition theorem, | | =X 1/q q

2 ( ), for the
unconstrained average, we finally obtain
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Further progress requires that we understand how the polymer
structure is affected by knotting (or unknotting), which involves
some approximations on account of the mathematical difficulty;
this is discussed in the following.

To determine the values of | |Xq
2

0, we make use of the classic
arguments of Grosberg.52 In short, chain segments with more
than N0 monomers repel one another through a topological
excluded volume. As a result, the polymer conformations are not
affected on small length scales but become self-avoiding on
larger ones. Given the self-similar nature of the polymers and the
physical interpretation of the modes Xq as describing the
polymer structure on the scale of N/2q′ segments, we postulate
the following relations:
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X
k q N N

q N N
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where γ is a new scaling exponent reflecting the self-avoiding
nature of the polymer at large length scales. The factor of

k/4N N/2
( )

0
in the first line of eq 9 ensures that the mode

amplitudes are continuous at q′ =N/2N0. Clearly, we must have
γ ≥ χ because excluded volume interactions can only swell the
chain.

Next, we require an estimate for γ, which we obtain using the
generalized Flory argument proposed by Matsushita et al.57 in
the context of fractional Brownian motion, which is also
associated with fractal polymer systems.30,58 The free energy of a
self-avoiding fractal polymer is expressed as the sum of
contributions from an interacting gas of segments and an ideal
Gaussian chain with a given fractal dimension, df:

= +F v
N
R

R
b Nd d

2 2

2 2/ f (10)

Here, v is the excluded volume parameter. Minimizing this free
energy with respect to R leads to

= + + +d d( 4 2 )/( 2) (11)

Despite the well-known shortcomings of Flory-type argu-
ments,59 this relation has been shown to be quite accurate in a
variety of systems31,60,61 and also agrees well with our own
numerical data (see Figure S1) and so may be used with a degree
of confidence. Moreover, the key analytical results of this study
do not actually depend on the precise value of the exponent γ, so
even if the exact dependence on df were unknown, the main
points of the paper would remain valid (vide inf ra). On the other
hand, eq 11 implies γ = χ for df = 3/2; that is, the topological
constraints no longer affect the chain conformations, which is
not physically plausible as (effective) excluded volume
interactions must swell the chain as mentioned earlier. In
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general, we do not expect eq 11 to remain valid for small fractal
dimensions, in particular df ≤ 1.7, corresponding to a self-
avoiding ring.

Upon combining eqs 8 and 9, the modes with q′ > N/2N0
drop out of the sum as these correspond to short length-scale
structure, which is unaffected by the topological constraint.
Moreover, because of the degeneracy in λq(χ) (due to the periodic
nature of the sine function), we can consider only terms for
which q≤N/2N0 (note the lack of an apostrophe!) and multiply
the results by 2. The differential equation now reads
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Because N0 is usually fairly large (on the order of 102 even for
very large df), all terms in eq 12 have q/N ≪ 1. We therefore
expand the quantities λq(χ) and sin(πq/N) about q/N = 0 and
ignore terms of order (q/N)2 or higher. In both cases, we retain
only a single term and have λq(χ) ≈ 4k(πq/N)χ and sin(πq/N) ≈
πq/N. With these substitutions and eq 9, we have
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where δ = γ − χ. We now express the logarithmic factor in eq 13
as = +q N N q N Nln( / ) ln(2 / ) ln( /2 )0 0 , which allows us to
separate the sum:
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where we have defined M = N/2N0. This representation makes
explicit the dependence on lnN0, which is seen in the first term
on the right. In the limitN→ ∞,M also becomes very large, and
we may approximate the sums as integrals:
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It is worth noting that the sums in eq 14 can in fact be evaluated
exactly in terms of Riemann and Hurwitz zeta functions.
However, after taking the limit N → ∞, one arrives at the same
results, so we prefer to present the simpler integral method
instead. The integrations are now performed to obtain
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Collecting terms proportional to N0 lnN0 and N0, dividing both
sides by N0, and using the definition μ = lnN0, we have
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Finally, we use the definition of χ = 1 + 2/df to change variables
and substitute eq 11 for γ in three dimensions to arrive at
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f d f d
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where f1(x) and f 2(x) are certain algebraic functions:
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Although these functions depend on the details of the polymer
model in question, the general form of eq 18 is determined only
by the scaling relations eqs 2, 3, and 9, which should be valid for
any large fractal ring polymer, regardless of the “molecular”
details. For most of the values of df considered here, f1(df) and
f 2(df) are roughly constant (see Figure S3), which leads to an
approximate solution:

= +d c c d c( ) exp( )f f1 2 3 (21)

The form of eq 21 is noteworthy: it indicates that the knotting
length N0(df) has a double-exponential character. Accordingly,
the knotting probability is a triple exponential in df. It is not clear
what kinds of scaling arguments (if any) could explain this
nontrivial dependence. However, for relevant choices of the
constants ci (see below), eq 21 satisfies the anticipated attributes
ofN0(df), i.e., strictly decreasing and with a finite limit at df → ∞.
3.2.3. Numerical Validation. To verify the double-

exponential character, we fit the data sets in Figure 1 according
to eq 4 and plot the resulting values of μ = lnN0 as a function of
df in Figure 2. The data support the theoretical result as the

values can be fit extremely well by eq 21 throughout the entire
range of df. On the other hand, the data cannot be fit by
logarithmic functional forms, which correspond to polynomial
or power-law dependencies that are commonly associated with
scaling arguments.59 Note that the statistical uncertainties in
Figure 2 are smaller than the data points and therefore cannot
explain the differences in the quality of fit. A detailed statistical

Figure 2. Logarithm of the knotting length lnN0 ≡ μ as a function of df.
Statistical errors are much smaller than the size of the markers. The data
are well fit by the double-exponential function, eq 21, but not by a
logarithmic form, μ = c1 ln(df + c2) + c3.
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analysis also offers strong support for the exponential form
rather than the logarithmic (see Appendix B).

3.2.4. Finite Size Effects. As mentioned above, the functions
f1(df) ≈ f1 and f 2(df) ≈ f 2 are approximately constant for the
systems considered here. Thus, we should observe the relations
c2 = f1 and c3 = −f 2/f1. However, the analytical calculations
predict values of c2 ≈ −0.065 and c3 ≈ −2.35 while the fitted
parameters are c2 = −1.138 and c3 = 3.703. The source of this
discrepancy is related to finite-size effects. Equation 9 agrees
only semiquantitatively with the simulation data and tends to
underestimate the mode amplitudes at small q, which in turn
leads to underestimates for dμ/d(df) (see the Supporting
Information). As N is increased, these deviations decrease,
although there is a fairly broad crossover between the two scaling
regimes that is not captured by eq 9.

These finite size effects should be captured by eq 8, which
applies for all N, not only the limit N → ∞. To see this, we
evaluate these derivatives from the mode amplitudes and
compare with both the analytical estimates and a simple
numerical differentiation. We see that as N increases, the
derivatives approach the “true” values obtained from the data in
Figure 2, demonstrating the validity of eq 8 and highlighting the
importance of these corrections.
3.2.5. Lower Dimensional Systems. Interestingly, the general

forms of our results do not depend on the dimensionality. Of
course, knotted curves cannot exist in four dimensions,35,62 so
only lower-dimensional analogues are relevant. In such circum-
stances, the exponential form of the “knotting” probability
should still hold, and eqs 8−18 will remain unchanged except for
modifications in the functions f1(x) and f 2(x). To test this
conjecture, we numerically examine the beta model in two
dimensions, describing a given conformation as “knotted” if any
two segments intersect; the resulting data are shown in Figure 4.
We find that our results are perfectly applicable to this scenario,
as evidenced by the exponential character of μ as a function of df.
Note that power-law or linear relationships between N0 and df
are once again unsatisfactory, as in the 3D case, with strong
support from statistical analysis (see the Supporting Informa-
tion).

3.3. Discussion. The key results of this paper are contained
in eqs 4, 9, and 18 and represent a starting point for studying how
topology and fractal dimension are coupled in ring polymer
systems. Although we have discovered some fundamental
phenomenology and identified the underlying physics, a number
of questions, both old and new, remain unanswered. For
example, our data suggest that as df → ∞,N0 → 33. This value is
certainly model-dependent but is much larger than the
minimum stick number of six mentioned earlier. It is unclear if
or how these two values are related to each other. At the other
end of the spectrum, it is strange that the double-exponential
form eq 21 holds for df < 1.7, for which we expect the Flory
argument to break down; indeed, systems with small df still
exhibit considerable swelling in the unknotted state (see Figure
S1). Perhaps most importantly, we have not been able to
formulate any simple physical reasoning for the double-
exponential form ofN0(df). The complex, nontrivial dependence
makes it challenging to compare systems with different N or df
on equal footing (for example, by matching their segment
densities or chain sizes). In turn, other topological properties
such as knot complexity, knot type distributions, and linking
probabilities are difficult to predict, although we expect similarly
complicated functional forms.

It is also important to recognize the assumptions and
limitations of the present calculation. We have assumed that
an effective Hamiltonian may be defined for the unconstrained
ensemble in which the Fourier modes are independent and
Gaussian-distributed. Clearly this assumption is not without
merit since it forms the basis of much of modern polymer
theory.59 In fact, even some topologically constrained and self-
avoiding systems satisfy one or both of these restrictions,63,64

whereas we only require it for the unconstrained model.
Moreover, the covariances of the Fourier modes in ring
polymers are identically zero.65 While this does not prove
statistical independence, it does offer hope that any correlations
may be neglected with relative safety. In writing eq 9, we have
also assumed that self-avoiding fractal polymers of arbitrary df
are also self-similar; that is, they have a well-defined fractal
dimension. Fortunately, this assumption has some support in the
literature.31 Importantly, the results place no restrictions on the
values of χ or γ, so the form of eq 12 is universal for all systems

Figure 3. Derivatives dμ/d(df) as calculated from numerical differ-
entiation of the data in Figure 2 (black circles, solid lines), analytical
estimate (black circles, dashed lines), and according to eq 8 (colored
symbols, dotted lines). N increases as the color changes from blue to
orange.

Figure 4. Logarithm of the knotting length lnN0 ≡ μ as a function of df
for two-dimensional systems where knotting is defined by segment
intersections. The double-exponential form eq 21 is valid in this lower
dimensionality as well.
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with a two-fractal character and a specified crossover length
scale. It is perfectly natural that the result does not depend
strongly on molecular details because the small length scale
properties are unaffected by topological restrictions and
therefore do not contribute to changes in N0. Indeed, the only
model-dependent part of our results is a factor of ln(π/2), which
appears in the function f 2(x). Changes in the algebraic functions,
however, do not alter the exponential character of μ or the
resulting double-exponential character ofN0, which follows from
eq 12.

However, one must be cautious in interpreting the results: in
this work, we have examined the effect of fractal dimension on
N0 with all other considerations equal. In other words, we vary
fractal dimension within a single, particular polymer model,
leaving other confounding factors untouched. By contrast, if one
compares different systems/models in which both df and many
other parameters are varied, such a comparison loses its
usefulness. For instance, models of polymer globules (either
fractal or equilibrated) involve considerations of local bead
packing and fluid structure, which are entirely absent in idealized
random walks. Meanwhile, local fluid structure takes on an
entirely different character in commonly used lattice models.
Such variations in local conformation greatly modify the
persistence lengths of the systems and frustrate any comparison
on the basis of fractal dimension. Therefore, this kind of analysis
is not appropriate. To reiterate, the particular choice of model is
unimportant so long as a well-defined fractal dimension exists
and can be varied without significantly altering local chain
conformations. This is not merely an academic exercise: the beta
model (and other similar ones) were developed to help
understand the structure and dynamics of chromosomal
DNA,21 which is presently one of the most active areas of
polymer and soft matter research.

4. CONCLUSION
The interplay between topology and fractal dimension is a
relatively new field of study but has important physical
implications. In particular, because the knotting probability is
intimately related to topological contributions to the free energy,
we anticipate that our results will be helpful in understanding a
variety of (bio)polymer systems. For example, in concentrated
ring polymer solutions and melts, the polymer conformations
are subject to topological constraints that prevent both knotting
and linking. Similarly, the unknottedness of chromatin is
believed to be crucial for its biological function,15 and the
mechanics of other DNA-based systems such as Olympic gels66

and kinetoplasts67 will depend strongly on the presence of
knotted moieties.68−70 Many of these systems also exhibit
nontrivial self-similarity, making these results�and this subject
more broadly�an exciting area of inquiry.

■ APPENDIX A. KNOTTING BETWEEN BLOBS
In the blob picture discussed in the main text, knots were
assumed to form within blobs or at the whole-chain level. It is
also conceivable that knots form due to interactions between
blob surfaces which would be lost upon further coarse-graining.
Here we consider the effect of these interactions at the scaling
level. We begin by modifying eq 5 of the main text to include the
contributions of blob−blob interactions to the knotting
probability:
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The new third term on the right represents the probability that
the ring is knotted at the interblob level and not at the intrablob
or whole-chain scales (which are captured in the first two terms).
The term ψ(g) is the probability that two contacting blobs are
linked to one another (although we use the term “linked” rather
loosely), and M is the number of such contacts. We estimate the
number of contacting blobs at the mean-field level:M≈ (N/g)2/
V where V R N d3 3/ f is the volume occupied by the
polymer. We now substitute this estimate and rearrange eq 22:
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As N → ∞, the exponent N g( / ) d1 3/ f on the left approaches
zero for df < 3 and unity for df = 3. In either case, the N
dependence drops out, and the exponential form of the knotting
probability is preserved. For larger fractal dimensions, this term
actually increases with N, so the dependence cannot be ignored
on the same grounds. However, for such compact polymers, the
blobs are highly overlapping, so we expect that most of the
knotting associated with blob−blob interactions should be
accounted for in the whole-chain-scale knotting, i.e., the first
term in eq 22, leaving blob surface interactions as a small
correction.

■ APPENDIX B. STATISTICAL ANALYSIS
Here we detail the statistical analysis used to produce error
estimates in Figure 1 and to verify the superior performance of
the double-exponential form in Figures 2 and 4. Each simulation
with a given set of parameters {N, df} generates a series of
independent configurations which are either knotted or
unknotted according to the probability P0(N, df). Formally,
this may be considered a Bernoulli process. To estimate the
uncertainty in the observed value of P0, we use the fact that in
Bayesian inference the conjugate prior distribution of a Bernoulli
process is the beta distribution, whose parameters are
determined by the number of positive (unknotted) and negative
(knotted) observations.71 This models the distribution of the
true probability given the observed outcomes. Because we
conduct many trials for each {N, df}, the distributions become
approximately Gaussian, so we estimate the uncertainties in
Figure 1 as double the variances of the associated beta
distributions.

To determine the uncertainty in the values of μ ≡ ln(N0), we
use a direct sampling method. From each of the beta
distributions determined above, we draw 104 random samples,
fitting each set to eq 4 to determine N0(df). We find that the
resulting distributions of μ are approximately normal and
therefore use the associated variances in fitting the data of
Figures 2 and 4. The resulting 95% confidence intervals are
smaller than the data markers in Figure 2 and are therefore
omitted in that graph.

To compare the exponential and logarithmic fits of the data,
we use the Bayesian information criterion (BIC), which is
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commonly used in model comparison and selection.72 Roughly
speaking, the BIC reflects the likelihood of observing the data
given the optimized model, with lower values corresponding to
more likely models. Models with a greater number of parameters
are also penalized, though that is not a concern for the present
comparison. Note that the absolute BIC values are not
important, only the differences between those of the models
under consideration. For our purposes, noting that the
distributions of μ are approximately normal and similar in
variance, the BIC can be approximated (up to an additive
constant) as

= +n nBIC ln(RSS/ ) const (24)

where n is the number of data points (12) and RSS is the residual
sum of squares. As a general guideline,72 differences of two or
more cannot be explained by random fluctuations in the data
and constitute meaningful evidence that one model is better
than another. Differences of 10 or more essentially eliminate the
inferior model from consideration. In our case, we observe BIC’s
roughly 22.4 and 5.8 points lower for the exponential fits
compared to the logarithmic fits in three and two dimensions,
respectively. As a result, we may say that the data strongly favor
the exponential fit rather than the logarithmic, demonstrating
that typical scaling forms are not appropriate for describing the
dependence of random knotting length on the fractal dimension.
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■ ADDITIONAL NOTES
aIn earlier literature, the exponent χ in the eigenvalues λq(χ) is
denoted instead by β. However, we have used a different symbol
to avoid confusion with the inverse temperature, also commonly
denoted β.
bThe blobs are effectively linear (open) chains, for which knots
do not formally exist. Therefore, knotting can only be defined
after some chain closure procedure which joins the two free
ends. Accordingly, we assume that the function ϕ(g) describes
the probability that the associated linear chain is knotted after
this (unspecified) procedure.
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