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Error-related brain activation has been investigated for advanced brain-machine interfaces (BMI). However, how a delayed
response of cursor control in BMI systems should be handled is not clear. Therefore, the purpose of this study was to investigate
how participants responded to delayed cursor control. Six subjects participated in the experiment and performed a wrist-bending
task. For three distinct delay intervals (an interval where participants could not perceive the delay, an interval where participants
could not be sure whether there was a delay or not, and an interval where participants could perceive the delay), we assessed two
types of binary classifications (“Yes+No” vs. “I don’t know” and “Yes” vs. “No”) based on participants’ responses and applied
delay times (thus, four types of classification, overall). For most participants, the “Yes vs. No” classification had higher accuracy
than “Yes + No” vs. “I don’t know” classification. For the “Yes + No” vs. “I don’t know” classification, most participants displayed
higher accuracy based on response classification than delay classification. Our results demonstrate that a class only for “I don’t
know” largely contributed to these differences. Many independent components (ICs) that exhibited high accuracy in “Yes + No”
vs. “Tdon’t know” response classification were associated with activation of areas from the frontal to parietal lobes, while many ICs
that showed high accuracy in the “Yes vs. No” classification were associated with activation of an area ranging from the parietal to
the occipital lobes and were more broadly localized in cortical regions than was seen for the “Yes+No” vs. “I don’t know”
classification. Our results suggest that small and large delays in real-time cursor control differ not only in the magnitude of the
delay but should be handled as distinct information in different ways and might involve differential processing in the brain.

1. Introduction

In the realm of brain-machine interfaces (BMlIs), attempts
have been made to decode brain activity to allow the input
of commands into BMI systems. Due to its practical ad-
vantages, electroencephalography (EEG) has been widely
used in BMI systems to infer information about intention
to move the upper limb [1], targets and distractors [2],
finger movement [3], resting states or motor attempts to
move the paretic hand [4], intention to stand or sit [5], and
intended direction of movement [6, 7]. Information that is
not directly used could still be useful for improving BMI
systems.

Passive BMIs exploit implicit information from invol-
untary brain activity [8]. Likewise, such information can be
used to make unsupervised adaptive decoders for BMI
systems to improve their performance [9]. Error-related
potentials, which occur when an error is made [10], can be
used to inhibit the previous command upon detection or to
update BMI classifiers through reinforcement learning [11].
As the case may be, the magnitude of error-related potentials
reflects the degree of error [12], and several studies have
investigated error-related potential in various situations.
During a video game task, for example, outcome error and
execution error have been classified [13]. Moreover, it has
been reported that errors resulting from failures in motor
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control and sustained attention could be classified and that
these errors might involve differential processing mecha-
nisms [14]. A BMI system capable of ignoring command
inputs and making corrections when error-related potentials
are generated by moving in the opposite direction has also
been developed [15]. Even in driving tasks, brain activity
associated with discrepancies between cued direction and
human intention has been classified [16].

Controlling a cursor in real-time is a common perfor-
mance task in BMI systems used to execute practical
functions such as reaching, which is a common and fun-
damental action required to perform tasks in daily life. Since
errors can take many different forms depending on the BMI
system being used and the fact that error-related potentials
are task-dependent [17], various kinds of errors can occur
when attempting to control a cursor, such as movement in
an unintended direction, differences in end points and
movement speed, and misclicking; however, response lag to
user inputs in BMI systems used in real-time cursor control
should be particularly considered. While it is difficult to call
the delay an “error,” in this context, the term is related to the
performance of the system. Many kinds of errors may result
from discrepancies between brain activities associated with
the input of a command and the command configuration
already programmed into the BMI system; however, lagged
responses can occur even if a user supplies the system with
suitably relevant inputs. If the user recognizes that the delay
is an error and the BMI system learns from this dummy
training data, the performance of the system will get worse
over time. Moreover, since the user also tries to learn to
control the BMI system [18], communication with the
system may be prone to failure.

Even though delayed responses can result in commu-
nication failure between the user and the BMI system, few
studies have investigated these relationships. Errors them-
selves and error-related potentials that may be similar to
response delays have been investigated. Such delayed system
responses not only occur in BMI systems but are seen in
other systems as well, such as haptic interfaces [19]. It has
been reported that in haptic interfacing, task performance
can decrease due to delayed responses of the system [20, 21],
though the degree to which the delayed response affects
performance differs depending on the task [22]. In addition,
auditory delays can also affect normal speech [23], which can
negatively impact the user’s ability to communicate. Thus,
delayed responses must also be investigated in BMI systems.

Therefore, the purpose of the study was to investigate
how participants respond to delayed cursor control, which is
a typical application of BMI systems. Wrist bending was
performed to control a cursor, and we investigated brain
activity during delayed responses. We divided the delay
interval into three groups depending on its length: an in-
terval where participants were unable to perceive the delay,
an interval where participants could not be sure whether
there was a delay or not, and an interval where participants
were able to perceive the delay. Then, we performed two
kinds (“Yes +No” vs. “I don’t know” and “Yes vs. No”) of
binary classifications based on participant’s responses and
an applied delay (overall, four types of classification). In
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addition, we identified independent components (ICs) that
were associated with high accuracy rates.

2. Materials and Methods

2.1. Experimental Procedure. Six individuals (five males and
one female) with a mean age of 27.0 years (standard devi-
ation: 3.22) participated in the experiment. The lone female
participant was left-handed; the other participants were all
right-handed. All participants provided written informed
consent prior to participating in the experiment. This study
was approved by the ethics committee of the Tokyo Institute
of Technology (ethics approval number: 2019001), and the
experimental protocol was conducted in accordance with the
ethical standards outlined in the Declaration of Helsinki.
Before the experiment, a participant sat in a chair in
front of a monitor and was allowed to adjust the chair to feel
comfortable. The participant was affixed with an electro-
encephalogram (EEG) cap to which electrodes were at-
tached. Two markers for a motion sensor were attached on
the participant’s wrist and on a plastic stick that the par-
ticipant was instructed to hold during the experiment.
Figure 1 shows the flow of a single trial. At the start of the
experiment, a red circle, used as an initial position indicator,
was aligned in the center of the screen to fix the initial
position of movement. The participant controlled the cyan
pole (tracer) by bending his/her wrist on the dominant side
while holding the stick with the marker. The tracer was
moved along the gray arc as shown in Figure 1. When the
tracer reached the red circle, another red circle appeared on
the screen as a target. The target was positioned to allow
participants to access it by bending their wrists by 35 de-
grees; this angle was selected to allow participants to bend
their wrists easily for an extended duration and to allow for
the greatest possible range of motion. The target appeared on
the left side of the screen for the right-handed participants
and on the right side for the left-handed participants. The
participants were instructed to wait at least 1.5s before
reaching the target because the delay was applied to the
tracer after 1s. The timing of the delay was selected to make
it more difficult for the participant to know whether the
delay was applied or not as the tracer reached the initial
position indicator. The duration of the delay was between
0ms and 200 ms; the delay changed between runs by 20 ms
intervals. When the participant reached the target, the tracer
and the target disappeared, and a question appeared on the
screen asking whether the participant perceived the delay or
not. When the participant was sure there was a delay, the
participant was instructed to press the key to indicate “Yes.”
When the participant was sure there was no delay, the
participant was instructed to press the key to indicate “No.”
When the participant was not sure whether there was a delay
or not, the participant was instructed to press the key to
indicate “I don’t know.” When the participant pressed the
corresponding key to respond, the initial position indicator
appeared for the next trial. This procedure was repeated so
that all participants performed five runs, each consisting of
140 trials; therefore, each participant repeated trials ten
times for each delay between 20 ms and 200 ms; they then
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F1GURE 1: Flow of a single trial. At the beginning of the trial, an initial position indicator (identified by the red circle on the first screen)
appeared on the screen to allow the participant to fix the initial position of the movement. When the tracer (cyan pole) reached the initial
position indicator, a new target (larger red circle on the second screen) appeared. After 1s, a delay was applied to the tracer, but nothing
changed on the screen. During this stage, the participant performed self-paced reaching. If the participant initialized in the stage without the
delay, a “Wait more” message appeared on the screen and data for that trial were discarded. When the tracer reached the target, the target
and the tracer disappeared and the participant was asked whether he or she perceived the delay, to which they needed to respond by pressing

a corresponding key. This procedure was repeated for each trial.

repeated trials 40 times per run without the delay. The trials
were presented in pseudo-random order, with a rest between
runs.

2.2. Data Acquisition and Preprocessing. The angle data of
the wrists were calculated from the positions of the two
markers on the wrist and the stick. Each position was
measured using the Optotrak Certus motion capture system
(NDL, Inc., Waterloo, Canada) and sampled at 100 Hz. Based
on the international 10-20 system, EEG signals were
measured from 64 channels (Fpl, Fp2, Fpz, AF3, AF4, AF7,
AF8, AFz, F1, F2, F3, F4, F5, F6, F7, F8, Fz, FT7, FT8, FC1,
FC2, FC3, FC4, FC5, FC6, FCz, C1, C2, C3, C4, C5, C6, Cz,
T7, T8, TP7, TP8, CP1, CP2, CP3, CP4, CP5, CP6, CPz, P1,
P2, P3, P4, P5, P6, P7, P8, P9, P10, Pz, PO3, PO4, PO7, POS,
POz, O1, 02, Oz, and Iz) using the ActiveTwo system
(BioSemi, Amsterdam, The Netherlands), sampled at
2,048 Hz.

EEGLAB [24] was used for preprocessing of the EEG
signals, which were re-referenced based on an average
reference value and filtered using a band-pass filter
(1-40 Hz). Epochs were then extracted from 1s before the
onset of the movement to 1 s after the onset. Epochs in noisy
trials and trials where the participant did not wait at least
1.5s after the target appeared were rejected. We performed
independent component analysis to obtain independent
electrical sources using the extended Infomax algorithm in
EEGLAB [25]. ICs related to noise were rejected.

2.3. Classifications. Four types of binary classification were
employed. Two classifications were based on the partici-
pants’ responses (“Yes +No vs. I don’t know” and “Yes vs.

No”); the other classifications were based on the actual
delays. Since the threshold to detect delays varies among
individuals, we classified participants into three classes: a
class where the participant detected a delay in most of the
trials (“Yes”), a class where the participant did not detect a
delay in most of the trials (“No”), and an unsure class (“I
don’t know”). Classifications based on actual delay times
were also employed for “Yes + No” vs. “I don’t know” and
for “Yes vs. No.” Table 1 shows the duration of the delay for
each class. The interval was determined by the selection rate
for each answer for each participant (see the Results
section).

Linear discriminant analysis (LDA) classifiers were used
to generate four types of binary classifications. Classifiers
were implemented using the Statistics and Machine
Learning Toolbox in MATLAB (MathWorks, Inc., Natick,
MA, USA). During a period from the onset of the movement
to 1s after the onset, the time series of the remaining ICs
were used for analysis. Since a high sampling frequency for
EEG signals generates too many factors, the data were
downsampled to 100 Hz to reduce computation loads. We
used one IC for each classification to determine the relative
contribution of each for detecting delays; thus, the ICs could
be compared by performance within a classification. Since
each IC was used for each classification, as was the last 1's of
each epoch, 100 features were fed into each classifier. The
performance of each classifier was assessed using five-fold
cross validation. For each fold, the dataset for each partic-
ipant was partitioned into five smaller datasets with the same
number of datapoints using the Statistics and Machine
Learning Toolbox in MATLAB. The last remaining dataset
had a different number of datapoints when the dataset was
not divided by five, without a remainder.
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TaBLE 1: Delay for each response class based on the delay (unit: ms).

Was a delay felt? P1 P2 P3 P4 P5 P6

No (not felt) 0-70 0-30 0-70 0-50 0-30 0-30

I don’t know (not sure) 70-170 30-90 70-110 50-110 30-110 30-110

Yes (felt) 170-200 90-200 110-200 110-200 110-200 110-200

3. Results From a BMI system’s viewpoint, our results imply that in

Figure 2 displays individual selection rates based on the
duration of the delay. For most of the participants, a delay
threshold had to be reached before they became confident
that they perceived the delay. However, participant 1 showed
a consistent selection rate for “I don’t know” at all delay
intervals, resulting in a lower selection rate in trials with a
long delay compared to other participants. All participants,
except for participant 1, were more unsure of the existence of
a delay in trials with short delays of 40-100 ms compared to
other delay durations. The selection rate for the “I don’t
know” response was the highest for participant 4 for most
delay intervals, while participant 3 exhibited the lowest
selection rate for this response for most delay intervals.

Figure 3 shows mean accuracy rates based on response
and delay classifications. For most of the participants, the
“Yes+No” vs. “I don’t know” response classification was
associated with the highest accuracy compared to other types
of classifications (p < 0.01 for participants 2, 3, 5, and 6 based
on a t-test comparing the “Yes+No” vs. “I don’t know”
response classification and the “Yes + No” vs. “I don’t know”
delay classification). For participant 4, the accuracy of the
“Yes +No” vs. “I don’t know” response classification and the
“Yes +No” vs. “I don’t know” delay classification was similar
(p>0.05 for participant 4, based on a t-test comparing the
“Yes + No” vs. “I don’t know” response classification and the
“Yes+No” vs. “I don’t know”delay classification). Partici-
pant 1 showed the higher accuracy for the “Yes vs. No” delay
classification, while the other participants showed lower
accuracy for the “Yes vs. No” delay classification than the
other kinds of classifications. Moreover, accuracy for the
“Yes + No” vs. “I don’t know” response classification and the
“Yes vs. No” delay classification was similar for participant 1
(p>0.1).

We investigated which ICs contributed to the highest
accuracy rates for each type of classification. Figure 4 shows
the top five ICs that achieved the highest accuracy for the
“Yes+No” vs. “I don’t know” classification. Figure 5 shows
the top five ICs that achieved the highest accuracy for the
“Yes vs. No” classification.

4. Discussion

In this study, we performed two types of binary classifica-
tions (“Yes + No” vs. “I don’t know” and “Yes vs. No”) based
on the participants’ responses and the duration of the delays.
For most participants, the “Yes vs. No” classification was
associated with higher accuracy than the “Yes+No” vs. “I
don’t know” classification. That is, classifying participants’
confidence in their response, regardless of a delay, was easier
than classifying based on whether there was a delay or not.

cases where brain activity can be affected by a delay in the
BMI system, short delays do not allow a user to be sure
whether there is a delay or not; these short delays may be
more problematic, as longer delays provide enough time to
perceive the lag. For the “Yes+No” vs. “I don’t know”
classification, most participants displayed higher accuracy in
the response classification than in the delay classification.
For all participants, selection rates were below 100% for
intervals where they responded with “I don’t know,” which
means that participants’ responses were different even be-
tween trials with the same delay. The performance for the
“Yes +No” vs. “I don’t know” classification based on actual
delay times was lower than for the “Yes+No” vs. “I don’t
know” response classification. In addition, our results show
that a class solely for “I don’t know” largely contributed to
these differences, indicating that some information associ-
ated with uncertain responses, rather than delay times,
might be represented by information processing in certain
areas of the brain. Since participants might think they cannot
control the cursor when there is a significantly large delay,
“Yes vs. No” might be classified by a sense of agency [26], as
ICs are associated with brain areas related to a sense of
agency, such as the presupplementary motor area [27], the
parietal-premotor network [28], and the inferior parietal
areas [29]. For “No” and “I don’t know” responses, par-
ticipants might think they have a sense of agency, but in
cases where they respond with “I don’t know,” they might
experience poor control performance even though they can
control the cursor by themselves.

Many ICs that showed high accuracy in the “Yes + No”
vs. “I don’t know” response classification were related to
areas of the brain ranging from the frontal to the parietal
lobes, and some of these signals were narrowly localized in
the brain, as shown in Figure 4. At the same time, many ICs
that showed high accuracy in the “Yes vs. No” classification
were related to areas of the brain ranging from the parietal to
the occipital lobes, with broader cortical localization com-
pared to the areas associated with the “Yes + No” vs. “I don’t
know” classification, as shown in Figure 5. The medial
frontal cortex plays an important role in monitoring per-
formance outcomes [30]. It has been reported that the
frontal midline in the theta band is strongly associated with
error-related negativity [31], and the medial prefrontal
cortex, which modulates error-related processing, com-
municates with the lateral prefrontal cortex to comprise a
network for action monitoring [32]. In addition, it has been
reported that brain activity in the anterior cingulate cortex is
related to processing of error-related information [33]; this
area is activated not only by the error itself but also by
correct outcomes in situations where repetitive errors can be
anticipated [34]. These previous studies may support our
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FiGure 2: Individual selection rates based on the duration of the delay. Each plot represents a “yes” response (a), a “no” response (b), and an
“I don’t know” response (c). The selection rate for each response is plotted against the duration of the delay (ms).

results, which showed ICs related to the areas associated with
the “Yes+No” vs. “I don’t know” response classification,
reflecting how uncertain delay is perceived for a user of a
BMI system. For the “Yes vs. No” classification, few ICs that
achieved high accuracy were related to the frontal or central
areas; most of the ICs were observed from the parietal and
occipital lobes. These areas are related to the dorsal pathway,
which is important for information processing from the
primary visual cortex to the posterior parietal lobe [35, 36]
that is associated with visual sensory perception [37]. It is
difficult to know precisely which functional areas in the
brain are related to small delays, since the frontal lobe
performs many, varied tasks; for example, the anterior

cingulate cortex plays a role in conflict detection, error
monitoring [38], and response adaptation [39]. Our results
suggest that larger delays may not have any relationship with
these functions. Moreover, our results suggest that small and
large delays in real-time cursor control differ not only in the
magnitude of the delay but may be processed in different
ways.

We selected some ICs that achieved high accuracy to
investigate how the brain recognizes large delays within
trials. We observed event-related spectral perturbations
(ERSP) [40] of each IC that achieved high accuracy in the
“Yes vs. No” delay classification. Figure 6 shows ERSPs of
certain ICs related to the processing of visual information for
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classification was based on the delay duration, regardless of participant’s response. Each class for the delay classification was determined
based on the selection rate for each participant (refer to Table 1).
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FIGURE 4: The top five independent components (ICs) that achieved the five highest accuracy rates for the “Yes + No”
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@0
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classification. Each row represents the ICs for each participant (P1-P6). The five ICs in the left grouping are for the response classification,
and the five ICs in the right grouping are for the delay classification. The accuracy rates of the five ICs are ranked in the order of decreasing

accuracy, moving from left to right.

participants 1, 4, and 6. The ICs in the trials with a delay
exhibited delayed activation compared to the trials without a
delay, suggesting that delayed recognition of the onset of the
motion is a key factor contributing to the classification.
Likewise, since this recognition of the onset of motion had
no relation to participants’ responses, more ICs that con-
tributed to high accuracy rates were found in the “Yes + No”

s. “I do not know” delay classification than in the “Yes-
+No” vs. “I don’t know” response classification.

In our experiment, most of the participants were unsure
of the existence of a delay in trials where the duration of the
delay ranged from 40 to 100 ms. However, when we tried to
categorize the delays as uncertain and certain, it was difficult
to define uncertain delays because participants could
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participants 1, 4, and 6. The ICs that achieved the highest accuracy for participants 1 and 4, and the top two highest accuracies for participant
6 based on the “Yes vs. No” delay classification are shown, respectively. The dotted line at 0 s represents the initiation of the movement. The
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respond differently even in trials where the duration of the
delay was the same. Instead, the duration of the delay was
related to task performance. Point-to-point movement is
normally modeled and assessed by Fitts’ law [41, 42], which,
when fitted with a linearly combined delay term, explained
93.5% of the variance, indicating that task performance may
be linearly related to the duration of the delay [43].

We investigated brain activity during delayed cursor
control, which can often occur in BMI systems. This can be
used to construct intelligent BMI systems to update a decoder
online when a BMI system experiences an error. So far,
teedforward control has been employed in a BMI system that
decodes neural signals to use them as an input command and
obtain movement parameters [44]. When a BMI system
works well and a user wants to move, feedforward control is
sufficient; however, when the system experiences an error
because it does not perceive correct user intention, a feedback
controller is needed to perform calculations and correct for
the delay. This feedback controller is different with a decoder.
For real-time control, both the feedforward controller and the
feedback controller are components of the system. Input
commands generated by the brain are corrected by summing
the output of the feedback controller and then transferred as
corrected signals, rather than the individual components
working in isolation. In this study, we investigated brain
activity involved in controlling responses based on the du-
ration of delays. Our results showed that, unlike in general
situations when a system is working optimally, when there is a
delay between intention to move and the actual movement
itself, signals can be generated that are not optimal for
feedforward control. Thus, additional systems such as a
feedback controller are needed in BMIs; based on our results,
commands generated by feedforward and feedback control-
lers should be separated for the system to work optimally.

5. Conclusion

In this study, we confirmed that small and large delays in
real-time cursor control might result in differential pro-
cessing in the brain. However, since the delay may not al-
ways be an error, how the delay is related to other kinds of
errors should be investigated based on the magnitude of the
delay. Understanding these mechanisms may allow for the
advanced construction of BMI systems for real-time cursor
control in which learning can occur from these errors.
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