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Purification of Crimean–Congo 
hemorrhagic fever virus 
nucleoprotein and its utility 
for serological diagnosis
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Justin Masumu2,3,6, David Hawman7, Heinz Feldmann7 & Ayato Takada1,8,9*

Crimean–Congo hemorrhagic fever virus (CCHFV) causes a zoonotic disease, Crimean–Congo 
hemorrhagic fever (CCHF) endemic in Africa, Asia, the Middle East, and Southeastern Europe. 
However, the prevalence of CCHF is not monitored in most of the endemic countries due to limited 
availability of diagnostic assays and biosafety regulations required for handling infectious CCHFV. In 
this study, we established a protocol to purify the recombinant CCHFV nucleoprotein (NP), which is 
antigenically highly conserved among multiple lineages/clades of CCHFVs and investigated its utility 
in an enzyme-linked immunosorbent assay (ELISA) to detect CCHFV-specific antibodies. The NP gene 
was cloned into the pCAGGS mammalian expression plasmid and human embryonic kidney 293 T 
cells were transfected with the plasmid. The expressed NP molecule was purified from the cell lysate 
using cesium-chloride gradient centrifugation. Purified NP was used as the antigen for the ELISA to 
detect anti-CCHFV IgG. Using the CCHFV NP-based ELISA, we efficiently detected CCHFV-specific IgG 
in anti-NP rabbit antiserum and CCHFV-infected monkey serum. When compared to the commercially 
available Blackbox CCHFV IgG ELISA kit, our assay showed equivalent performance in detecting 
CCHFV-specific IgG in human sera. These results demonstrate the usefulness of our CCHFV NP-based 
ELISA for seroepidemiological studies.

Crimean–Congo hemorrhagic fever virus (CCHFV) is an enveloped and segmented negative-sense RNA virus 
belonging to the genus Orthonairovirus, family Nairoviridae, order Bunyavirales. Its genome consists of L, M, 
and S segments encoding RNA-dependent RNA polymerase, glycoproteins Gn/Gc, and nucleoprotein (NP), 
respectively1,2. CCHFV causes a zoonotic arbovirosis of medical significance, Crimean–Congo hemorrhagic 
fever (CCHF), endemic in Africa, Asia, the Middle East, and Southeastern Europe3,4. CCHF is the most widely 
distributed tick-born zoonosis, as demonstrated by the detection of the virus and virus-specific antibodies in 
over 57 countries, expanding continually its geographic distribution linked to the habitat of its reservoir/primary 
vector-host, Hyalomma ticks. CCHFV also infects domestic animals, wildlife, and birds5,6. Although CCHFV 
infection of these animals and birds, despite high viremia, is clinically asymptomatic, they play a role as potential 
sources of human CCHF, which is linked to a public health warning6–9.
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In most of the endemic countries, CCHFV infection is not regularly monitored due to the limited availability 
of diagnostic assays and it is often identified in the wake of nosocomial infections. CCHFV is one of the World 
Health Organization priority pathogens needing urgent research and development, with attention to diagnostic 
tools, to ensure preparedness for potential outbreaks10. However, most of the existing diagnostic tools such as 
in-house assays are not readily available, and commercialized assays are not cost-effective for serosurveillance 
studies7,10. In addition, CCHFV requires the highest level of biocontainment (Biosafety level 4), hampering its 
handling for experimental studies. Thus, there are only a few laboratories that can handle infectious CCHFV for 
virus isolation and production of its whole native viral antigens for serological diagnostic assays that are expected 
to be less affected by genomic diversity of CCHFVs than genetic detection7,8,10,11.

Previous studies have shown that some of the CCHFV structural proteins including NP are the predominant 
components that are antigenically conserved among CCHFV strains12–14 and induce a high immune response10,15. 
Recombinant CCHFV NPs expressed in insect, bacterial, plant, and mammalian cells have been used as antigens 
for serological assays13,16–18. However, the expression and purification processes often affect its conformation, 
structure, and antigenicity14,19–21. Herein, we report a simple procedure for expression and purification of the 
recombinant CCHFV NP in mammalian cells and its utility as an antigen for host species-independent serologi-
cal assays for detection of CCHFV-specific IgG in serum/plasma samples.

Methods
Plasmids and expression of CCHFV NP.  CCHFV (strain IbAr10200) was propagated in Vero E6 cells 
in the BSL4 Laboratory of the Rocky Mountain Laboratories (RML), NIAID, NIH. RNA extraction was per-
formed according to standard operating protocols approved by the RML Institutional Biosafety Committee 
(IBC). Extracted RNA was used to synthesize cDNA using a SuperScript III reverse transcriptase kit (Invitro-
gen). The full-length NP gene was amplified using specific primers and cloned into a mammalian expression 
vector, pCAGGS/MCS. The NP sequence was confirmed by Sanger sequencing with a 3130xl/Genetic Analyzer. 
The Nairobi sheep disease virus (NSDV) NP gene (GenBank Accession number: NC_034386.1) was synthesized 
in pUCFa vector (Fasmac CO., LTD) and similarly cloned into the pCAGGS/MCS vector. Human embryonic 
kidney (HEK) 293 T cells seeded at 3–3.5 × 105 cells/ml were grown on a 12-well plate in Dulbecco’s Modified 
Eagle Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/ml penicil-
lin, and 0.1 mg/ml streptomycin at 37 °C in a 5% CO2 incubator for 24 h. The cells were transfected with the 
plasmid (1 µg) using a TransIT-LT1 Transfection Reagent (Mirus Bio LLC) and then incubated at 37 °C for 48 h. 
The cells were washed 3 times with phosphate-buffered saline (PBS), treated with 250 µl of a lysis buffer (150 mM 
NaCl, 5 mM EDTA pH 8.0, 50 mM Tris–HCl pH 8.0, 1.0% NP-40, 0.5% sodium deoxycholate, and 0.1% sodium 
dodecyl sulfate (SDS) with cOmplete, Mini, EDTA-free protease inhibitor (Roche Diagnostics) and incubated 
for 5 min on a swing rotator. The cell lysate was centrifuged at 12,000 rpm for 10 min at 4 °C. The supernatant 
was collected and used for SDS–polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting.

Serum samples.  A rabbit antiserum to CCHFV NP was used as a positive control serum13. A rabbit anti-
serum to Ebola virus (EBOV) NP22 was also used as a negative control rabbit serum. Mouse antisera were 
obtained by immunizing animals intraperitoneally with purified CCHFV and NSDV NPs (40–50 μg) twice at 
4-week intervals followed by serum collection 2 weeks after the second immunization. CCHFV (Hoti)-infected 
and EBOV (Kikwit)-infected monkey sera were treated with gamma-irradiation according to the RML IBC-
approved SOP before use23. These sera were collected from nonhuman primates using animal study protocols 
approved by the RML Animal Use and Care Committee. Studies were performed in compliance with the Animal 
Welfare Act and other relevant statutes and regulations relating to animals and experiments involving animals 
and adhered to the principles stated in the Guide for the Care and Use of Laboratory Animals, National Research 
Council, 2011. A panel of serum samples previously collected from CCHF-suspected patients during an out-
break in the Xinjiang Uygur Autonomous Region of China was used for validation of assays24. The sera used 
in the present study were collected under informed consent. In the case of unconscious patients and children 
less than 20 years of age, informed consent was obtained from their family members and parents, respectively. 
The use of these human sera was approved by the medical research ethics committee of the National Institute of 
Infectious Diseases for the use of human subjects, Tokyo, Japan (No. 10). All methods were carried out in accord-
ance with relevant guidelines and regulations.

Immunofluorescent assay.  HEK293T cells were cultured for 24 h in a chambered cell culture slide glass 
coverslip (Thermo Fisher Scientific) pre-coated with Cultrex Poly-L-Lysine (Bio-techne) and then transfected 
with the NP-expression plasmid using TransIT-LT1 transfection reagent (Mirus Bio LLC). At 24 h post-trans-
fection, cells were washed with cold PBS and fixed with 4% paraformaldehyde for 20 min. After washing with 
PBS, the cells were incubated for 30 min with PBS supplemented with 1% bovine serum albumin. As primary 
and secondary antibodies, rabbit antiserum to CCHFV NP and Alexa Fluor 448-labeled donkey anti-rabbit IgG 
(H + L) (Aurion Immuno Gold Reagents & Accessories) were used, respectively. The cells were also stained with 
4′,6-diamidino-2-phenylindole, dihydrochloride (DAPI). They were analyzed by confocal microscopy (Zeiss 
LSM 780) for image acquisition and processing using Zen software (Carl Zeiss Microscopy GmbH).

SDS‑PAGE and Western blotting.  Samples (i.e., cell lysates, fractions of cesium chloride [CsCl] gradient 
centrifugation, and purified NP) were mixed with Laemmli sample buffer (Bio-Rad) with 5% β-mercaptoethanol, 
boiled for 5 min, and then loaded for 12% SDS-PAGE, followed by Coomassie blue staining with Quick-CBB 
Plus (Fujifilm Wako Chemical Corporation) and Western blotting. For Western blotting, separated proteins were 
transferred onto a polyvinylidene membrane (Immobilon-P, Merck), followed by blocking with 3% skimmed 
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milk in PBS. The membrane was then washed with PBS containing 0.05% Tween-20 (PBST) 3 times and soaked 
for 1 h in 1% skimmed milk in PBST containing the anti-CCHFV NP rabbit serum. After washing with PBST 
3 times, the membrane was incubated for 1  h with horseradish peroxidase (HRPO)-conjugated goat anti-
rabbit IgG antibodies (KPL), followed by washing with PBST 3 times. Bound proteins were visualized with a 
3,3′,5,5′-tetramethyl-benzidine (TMB) liquid substrate system for membrane (Sigma).

Purification of recombinant CCHFV NP.  HEK293T cells were seeded at 3–3.5 × 105 cells/ml on 10 cm 
dishes. Twenty-four hours later, the cells were transfected with 10 µg of the plasmid encoding the CCHFV NP 
gene using TransIT-LT1. Transfected cells were harvested at 48–72 h post-transfection and washed 3 times with 
cold PBS by centrifugation 2 times at 4 °C. The cells were resuspended with PBS and transferred into a 1.5 ml 
tube and pelleted. Then PBS was removed, and the cells were stored at − 80 °C until use. Frozen cells were thawed 
on ice for 10 min and treated with 600 µl of lysis buffer (10 mM Tris–HCl, pH 7.8, 0.15 M NaCl, 1.0 mM EDTA, 
and 0.25% NP-40) in the presence of Halt Protease Inhibitor Single Use Cocktail (Thermo Scientific). Cells were 
mixed by pipetting and then incubated at 4 °C for 30 min with a SCINICS Revolution Mixing rotator (RVM-
101). The lysate was centrifuged at 12,000 rpm at 4 °C for 10 min and the supernatant was collected. The super-
natant was then loaded on the top of 20–50% (w/v) discontinuous CsCl gradients in Tris-buffered saline (TBS) 
layered from the top to bottom in 1 ml volumes of 20, 30, 40, and 50% CsCl in a 5 ml centrifuge tube (Beckman), 
followed by high-speed centrifugation using a SW55Ti rotor in a BECKMAN COULTER Optima L-100 XP 
ultracentrifuge at 280,000 × g at 4 °C for 4 h. Fractions (500 µl) were collected from the top to bottom and then 
analyzed by SDS-PAGE and Western blotting to check for the presence of CCHFV NP and its purity in collected 
fractions. CCHFV NP fractions were pooled and diluted with TBS and pelleted by centrifugation 280,000 × g 
for 30–60 min as previously described25. The supernatant was discarded and CCHFV NP was resuspended with 
100 µl PBS with Halt Protease Inhibitor (Thermo Fisher Scientific). The concentration of purified NP was meas-
ured using a Nanodrop ND 1000 spectrophotometer (Thermo Fisher Scientific). Purified NP was re-analyzed by 
SDS-PAGE and Western blotting. The purified CCHFV NP was then stored at -80 °C until use. For large-scale 
CCHFV NP purification, HEK293T cells were grown in a 150 × 25 mm dish. For purification, CsCl layers (2.2 ml 
each of 20, 30, 40, and 50%) in Ultra-Clear tubes (Beckman) and an SW41 rotor was used (210,000 × g at 4 °C 
for 15 h). Fractions (1 ml) were collected and NP fractions were pooled and pelleted at 210,000 × g for 2 h and 
processed as described above. NSDV NP was also purified in the same methods described above.

Electron microscopy (EM).  Freshly purified NP was dialyzed against TBS overnight using an EasySep 
dialysis membrane MD-014–50 (Tomy Seiko) according to the manufacturer’s instructions. The protein was 
then concentrated using Amicon Ultra-0.5  mL Centrifugal Filters, Ultracel-3  K (Merck Millipore). Concen-
trated CCHFV NP samples (5 µl) were applied on a collodion-coated copper grid (Nisshin EM) for 5 min then 
the excess sample was absorbed using filter paper. A 20 µl drop of 2% uranyl acetate (UA) solution was applied 
for 10 min. The grid was then treated with new drops of UA solution 2 times for each 1 min. EM images were 
observed using a Hitachi H7650 transmission electron microscopy (TEM) system (Hitachi High Technology 
Corporation). For immunogold staining, the rabbit antiserum to CCHFV NP and 5 nm gold-labeled goat anti-
rabbit IgG (Biorbyt LLC) were used, followed by 2% UA staining.

Enzyme‑linked immunosorbent assay (ELISA).  ELISA was performed as previously described22. 
Briefly, 96-well ELISA plates (Nunc Maxisorp) were coated with the purified recombinant NP antigen, inac-
tivated whole viral antigens (gamma-irradiated supernatant from CCHFV-infected SW-13 cells), or mock 
supernatant (supernatant from mock-infected Vero E6 cells) overnight at 4 °C, followed by blocking with 3% 
skimmed milk in PBS, and incubated with primary antibodies (i.e., rabbit, monkey, or human sera) in PBST 
containing 2% FBS for 1  h at room temperature. Bound antibodies were visualized with HRPO-conjugated 
goat anti-rabbit IgG (H + L) (Rockland), goat anti-monkey IgG(γ) (Rockland), and goat anti-mouse IgG (H + L) 
(Jackson ImmunoResearch) antibodies or Purified Recomb Protein A/G (Thermo Fisher Scientific)26, and the 
TMB liquid substrate system for ELISA (Sigma). The reaction was stopped by adding 1 N phosphoric acid, and 
the optical density was measured. A commercially available ELISA-based serum diagnosis kit, Blackbox CCHFV 
IgG ELISA Kit (Blackbox-ELISA)16 (Diagnostic Development Laboratory, Bernhard Nocht Institute for Tropical 
Medicine) was used according to the manufacturer’s protocol. ELISA index values were calculated based on the 
values of optical density (OD) at 450 and 620 nm for both the CCHFV NP-based ELISA and Blackbox-ELISA 
according to the formula provided by the manufacturer.

Results
Expression and purification of CCHFV NPs.  HEK293T cells were transfected with the pCAGGS plas-
mid (pCAGGS-CCHFV/NP) for expression of the recombinant CCHFV NP and the cellular expression of the 
recombinant NP was observed using immunofluorescence assays (Fig. 1). We confirmed that CCHFV NP was 
successfully expressed by the transfection and formed densely stained inclusion body-like structures in the cyto-
plasm. We then purified the NP molecule from the transfected cells by equilibrium density gradient centrifuga-
tion in CsCl solution as described in “Methods”. The presence of the NP molecules in each fraction obtained 
from the CsCl density gradient centrifugation was analyzed with SDS-PAGE followed by Coomassie blue stain-
ing and Western blotting. According to the electrophoretic mobility consistent with the expected molecular mass 
of CCHFV NP (about 52 kDa), we detected the NP band in almost all the fractions, suggesting the presence of 
multiple forms of the NP oligomer (Fig. 2). To observe the morphology of NP molecules in the fractions, we per-
formed TEM using the NP-rich fractions (e.g., fraction #8 in Fig. 2). TEM micrographs of the protein revealed 
that these fractions contained NPs in its oligomeric form showing ring- and helical-shaped architectures and 
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their aggregates19, suggesting NP-NP intermolecular interaction forming complex structures in the fractions 
(Fig. 3). We then pooled the NP-rich fractions (fractions #8, #9, and #10 in Fig. 2) and collected them as purified 
CCHFV NP as described in “Methods”. The average OD260/OD280 ratio of purified NP fractions from multiple 
rounds of purification was 2.2, suggesting the presence of nucleic acids bound to the NP molecules.

Establishment of the purified recombinant CCHFV NP‑based ELISA.  We then used the purified 
CCHFV NP as an antigen for ELISA (5, 10, and 20 µg/ml) and investigated its utility to detect NP-specific IgG 
antibodies using the rabbit antiserum to CCHFV NP and CCHFV-infected monkey serum (Fig.  4a,d). The 
supernatants from CCHFV-infected Vero E6 cells and mock-infected supernatant were also used as positive and 
negative control antigens, respectively (Fig. 4b,c,e,f). In this experiment, host animal species-specific second-
ary antibodies (i.e., HRPO-conjugated anti-rabbit IgG and anti-monkey IgG antibodies) were used. We found 
that IgG antibodies to the CCHFV NP antigen, as well as to whole CCHFV antigen in the infected cell culture 

Figure 1.   Cytoplasmic localization of expressed CCHFV NP. HEK293T cells transfected with the CCHFV 
NP-expressing plasmid were stained with DAPI (shown in blue) (a) and the rabbit antiserum to CCHFV NP 
followed by the donkey anti-rabbit IgG (H + L) antibody conjugated with Alexa Fluor 448 (shown in green) (b). 
Merged images of the stained cells are also shown (c). Scale bars represent 20 µm.

Figure 2.   Purification of CCHFV NP by CsCl density gradient centrifugation. pCAGGS-CCHFV/
NP-transfected HEK293T cells were lysed and fractionated through CsCl density gradient centrifugation as 
descibed in Methods. Each fraction was analyzed by SDS-PAGE (a) and Western blotting (b). Crude lysates of 
pCAGGS-CCHFV/NP- and mock-transfected HEK293T cells and purified NP obtained from pooled fractions 
8–10 are also shown.
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supernatant, were clearly detected in the rabbit antiserum and CCHFV-infected monkey serum but not in the 
EBOV-infected monkey serum and negative control sera. The endpoint antibody titers of the rabbit antiserum 
and the CCHFV-infected monkey serum to the purified NP antigen were 25,600–102,400. There was no remark-
able difference in the obtained OD values between 10 and 20 μg/ml concentrations of the NP antigen, although 
the 5 μg/ml concentration of the antigen gave slightly lower OD values.

Modification of the CCHFV NP‑based ELISA using HRPO‑conjugated protein A/G.  To modify 
the CCHFV NP-based ELISA to detect NP-specific antibodies from a wide variety of animals, we examined the 
utility of HRPO-conjugated protein A/G in different conditions of ELISA using the rabbit antiserum (Fig. 5). We 
tested 3 different concentrations of the purified NP antigen (2.5, 5, and 10 μg/ml) with serial dilutions of HRPO-
conjugated anti-rabbit IgG antibody (host-specific) or HRPO-conjugated protein A/G (species-independent) 
reagent to detect bound IgG antibodies in the rabbit antiserum. We found that 10 μg/ml gave the highest OD 
values for both HRPO-conjugated reagents and confirmed the dilution-dependent curves of the OD values, 
indicating that the HRPO-conjugated protein A/G reagent worked properly and could also be employed for the 
CCHFV NP-based ELISA. According to the curve trend, we used the antigen concentration of 10 μg/ml and 
1:10,000 dilutions of HRPO-conjugated protein A/G, for the following experiment.

The performance of the CCHFV NP‑based ELISA compared to Blackbox‑ELISA.  To further 
confirm the utility of our CCHFV NP-based IgG ELISA with the HRPO-conjugated protein A/G reagent, its 
performance was compared to a commercially available kit, Blackbox-ELISA, which can be used for human 
serum samples. Forty-five human serum samples collected during an outbreak in a known CCHFV endemic 
area were simultaneously tested using our CCHFV NP-based ELISA and Blackbox-ELISA. Among the 45 patient 
serum samples, 16 sera were previously defined as CCHFV IgG positives24. The newly established CCHFV NP-

Figure 3.   Electron micrographs of purified CCHFV NP. Purified CCHFV NP fractions were dialyzed overnight 
against TBS and then concentrated. Helical (upper right top panel), ring (upper right middle panel), and 
aggregated forms (upper right bottom panel) of the NP structures are shown. Polyclonal goat anti-rabbit IgG 
antibodies labeled with 5 nm gold particles were used for immunoelectron microscopy (bottom panel). TEM 
was operated at 80 kV, 1.0 µm, × 24.0 k magnification. Scale bars represent 100 nm.
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based ELISA detected all 16 of those positive samples, whereas Blackbox-ELISA detected only 15 of the positive 
samples (Table 1). We found that the OD index values obtained for the CCHFV NP-based ELISA and Blackbox 
ELISA showed a high positive correlation (correlation coefficient R2 = 0.98), indicating that these ELISA proce-
dures had similar capacities to detect CCHFV NP-specific antibodies (Fig. 6). The sensitivity and specificity of 
our CCHFV NP-based ELISA were estimated by comparing the results to the Blackbox-ELISA and confidence 
intervals (CI) based on the Poisson-distribution approximation were calculated (Table  1). All 15 Blackbox-
ELISA-positive samples were positive with the CCHFV NP-based IgG ELISA and most of the Blackbox-ELISA-
negative samples (29/30) were also negative with CCHFV NP-based ELISA, which represented a sensitivity of 
100% (15/15) (95% CI 78.20–100) and a specificity of 96.6% (29/30) (95% CI 82.78–99.92). Negative and positive 
predictive values were 100% (29/29) (95% CI 88.06–100) and 93.8% (15/16) (95% CI 69.76–99.84), respectively. 
The agreement rate with the Blackbox-ELISA was 97.8% (95% CI: 88.23–99.94).
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Figure 4.   Detection of CCHFV NP-specific IgG in ELISA with purified CCHFV NP and whole CCHFV viral 
antigens. ELISA plates were coated with purified NP (5, 10, and 20 µg/ml) (a, d), serially diluted (1:500, 1:1,000, 
and 1:2,000) CCHFV-infected cell culture supernatant (Virus sup.) (b, e), or mock-infected supernatant (Mock 
Ag.) (c, f). Serial dilutions of the rabbit antiserum (a, b, c) and CCHFV-infected monkey serum (d, e, f) were 
used as primary antibodies, followed by detection with HRPO-conjugated anti-rabbit IgG and anti-monkey IgG 
antibodies, respectively. Negative control rabbit and monkey sera and EBOV-infected monkey serum were also 
tested.
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Limited cross‑reactivity among antisera to CCHFV and NSDV NPs.  CCHFV patients and/or 
CCHFV-infected animals (e.g., sheep and goats) may have antibodies cross-reactive to NSDV, which is phyloge-
netically related to the CCHFV serogroup. Conversely, NSDV-infected animals may have cross-reactive antibod-
ies to CCHFV. Thus, we produced mouse antisera to CCHFV and NSDV NPs and compared their reactivity to 
both antigens (Fig. 7). We found only a limited cross-reactivity among the antisera, suggesting that our CCHFV 
NP-based ELISA principally detected CCHFV-specific IgG antibodies.

Discussion
Although CCHFV remains one of the priority pathogens needing urgent research and development of diagnos-
tics, experimental studies involving live infectious CCHFV are restricted to the highest level biosafety contain-
ment laboratories around the world10,11,16. Alternatively, recombinant CCHFV proteins have been used to study 
their functions or to develop serological diagnostic tools. For example, CCHFV NP has been expressed in insect, 
bacterial, mammalian, and plant cells and used as a protein antigen to detect virus-specific antibodies8,13,16,17,27,28. 
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Figure. 5.   Detection of CCHFV NP-specific IgG using rabbit antiserum. ELISA plates were coated with the 
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control serum were used as primary antibodies. Serial dilutions of the HRPO-conjugated anti-rabbit IgG 
antibody (a) or the protein A/G reagent (b) were used for the detection of bound NP-specific antibodies.

Table 1.   Performance of the CCHFV NP-based ELISA compared to Blackbox-ELISA. Sensitivity: 100% 
(15/15) (95% CI 78.20–100). Specificity: 96.6% (29/30) (95% CI 82.78–99.92). Negative predictive value: 100% 
(29/29) (95% CI 88.06–100). Positive predictive value: 93.8% (15/16) (95% CI 69.76–99.84). Agreement rate: 
97.8% (44/45) (95% CI 88.23–99.94).

Blackbox-ELISA

 +   −  Total

CCHFV NP-based ELISA

 +  15 1 16

 −  0 29 29

Total 15 30 45
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However, accessibility to these serological diagnostic tools remains limited, probably because of the unavailability 
of the antigens or specific monoclonal antibodies for constant production and provision.

In this study, using the HEK293T cell line and pCAGGS plasmid, both of which are widely used for exog-
eneous protein expression in a large number of laboratories, we successfully expressed and purified full-length 
CCHFV NP. The cytoplasmic and granular (i.e., inclusion body-like) localization of CCHFV NP expressed in 
the cells was similar to that expressed in HeLa cells or CCHFV-infected Vero E6 cells17,29. Importantly, we used 
the untagged NP construct and purified it without affinity chromatography procedures, which generally require 
multiple steps that should be optimized depending on each laboratory condition to obtain a pure protein20. Thus 
far, NP constructs with a histidine-tag at the N- and/or C-terminal have been shown to be purified through affin-
ity tag-based chromatography and used for diagnostic purposes16,24,27,28 or biological studies30. However, these 
methods are often unavailable for some laboratories due to cost and/or laboratory equipment issues. In addition, 
it is conceivable that untagged NP is antigenically more native than tagged forms and some conditions during the 
affinity purification process (e.g., low pH) might negatively affect the structure and function of NP20. Indeed, a 
CCHFV NP fusion protein containing a 6 × histidine-tag purified under denaturing conditions has been shown 
to be relatively unstable, although it can detect CCHFV IgG21. Thus, we believe that, compared to affinity tag-
based purification, our method is a simpler and more effective purification procedure that enables us to obtain 
recombinant CCHFV NP that is conformationally close to authentic NP produced in CCHFV-infected cells.

The essential nature of NP is to bind nucleic acids and to form a ribonucleoprotein (RNP) complex. Both 
termini of the CCHFV S segment are involved conjointly in this essential function, RNA binding30. Like other 
viruses in the genus Orthonairovirus, CCHFV NP binds to nucleic acids and then undergoes a conformational 
change19,31. It was corroborated that his-tagged NPs purified by affinity chromatography with the OD260/OD280 
ratios 1.3 and 1.49 had high-ordered oligomeric RNP structures that exhibited head and stalk domains19,32. When 
the RNP complex is formed, the stalk domain is thought to display a highly conserved epitope region that was 
suggested to be used for a universal CCHF diagnostic approach13,14. In the present study, the average ratio of 
OD260/OD280 (2.2) of the purified CCHFV NP was greater than those described previously, suggesting that it 
contained more RNA associated with NP molecules. This difference may be explained by the functionality of 
both termini (i.e., with or without tag sequences) to form the RNP complex. These observations suggest that 
untagged CCHFV NP purified through CsCl density gradient centrifugation is an NP-RNA complex that may 
expose the stalk domain more efficiently than tagged NP, which might result in increased ELISA cross-reactivity 
through the universal CCHFV NP stalk domain’s epitopes.

Commercially available CCHFV serological tools are specifically intended for the detection of human IgM 
or IgG (i.e., Blackbox CCHFV, VectoCrimean-CHF)16,33. On the other hand, serological surveillance of CCHFV 
infection in animals is also important and serves as an indicator of CCHF risk to humans34,35. Protein A/G is 
known to bind to multiple IgG classes of most mammalian species, including humans, domestic animals (cattle, 
goats, sheep, horses, rabbits, pigs, dogs, cats, alpacas, etc.), and wildlife. It has been widely used for purification 
of antibodies with affinity chromatography and, when conjugated with enzymes (e.g., HRPO), for routine immu-
noassays as an antibody detection tool26,36–42. In this study, we demonstrated the utility of the purified CCHFV 
NP antigen together with the HRPO-conjugated protein A/G reagent. This procedure has the advantages of 
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Figure 6.   Correlation of IgG reactivity in human sera between the CCHFV NP-based ELISA and Blackbox-
ELISA. ELISA plates were coated with purified NP (10 µg/ml). Serum samples were used at 1:100 dilution. The 
HRPO-conjugated protein A/G reagent (1:10,000 dilution) was used to detect bound antibodies. Scatter plots 
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simplicity and versatility. For species whose IgG affinity to protein A/G is not proven, host-specific secondary 
antibodies may remain useful.

It has been suggested that CCHFV NP is the most conserved viral protein among members of the Nairoviridae 
family12–14. It is noteworthy that NP of the IbAr10200 strain was recognized by antibodies in a monkey infected 
with another CCHFV strain, Hoti, belonging to a different clade from IbAr1020043. The detection of CCHFV 
NP-specific IgG in Chinese patients’ sera using one of the African strains, IbAr10200, also demonstrated sero-
logical cross-reactivity among genetically distinct strains/lineages, suggesting potential worldwide application 
of our CCHFV NP-based ELISA. On the other hand, it is important to pay attention to possible cross-reactivity 
of CCHFV NP antibodies to NSDV, which is a nairovirus in another serogroup, since some CCHFV-susceptible 
animals (e.g., sheep and goats) may have antibodies to this virus. However, we assume that there might be limited 
cross-reactivity since CCHFV NP was not recognized by antibodies directed against Dugbe virus belonging to 
the Nairobi sheep disease virus serogroup44,45. Indeed, our data also suggest that specificity of serum antibodies to 
CCHFV and NSDV could be distinguishable in NP-based ELISA. In future studies, the purified CCHFV NP anti-
gen still has to be evaluated for IgM detection, which is important for clinical use during acute CCHFV infection.
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