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ABSTRACT

We developed jMorp, a new database containing
metabolome and proteome data for plasma ob-
tained from >5000 healthy Japanese volunteers
from the Tohoku Medical Megabank Cohort Study,
which is available at https://jmorp.megabank.tohoku.
ac.jp. Metabolome data were measured by pro-
ton nuclear magnetic resonance (NMR) and liquid
chromatography–mass spectrometry (LC–MS), while
proteome data were obtained by nanoLC–MS. We re-
leased the concentration distributions of 37 metabo-
lites identified by NMR, distributions of peak inten-
sities of 257 characterized metabolites by LC–MS,
and observed frequencies of 256 abundant proteins.
Additionally, correlation networks for the metabo-
lites can be observed using an interactive network
viewer. Compared with some existing databases,
jMorp has some unique features: (i) Metabolome data
were obtained using a single protocol in a single
institute, ensuring that measurement biases were
significantly minimized; (ii) The database contains
large-scale data for healthy volunteers with various
health records and genome data and (iii) Correlations
between metabolites can be easily observed using
the graphical viewer. Metabolites data are becom-
ing important intermediate markers for evaluating the
health states of humans, and thus jMorp is an out-
standing resource for a wide range of researchers,
particularly those in the fields of medical science,
applied molecular biology, and biochemistry.

INTRODUCTION

Clarifying interactions between the genome and environ-
mental factors is important for personalized healthcare and
medication development to overcome problems of miss-
ing heritability (1). For this purpose, genome cohort stud-

ies have been carried out in many countries, such as UK
biobank in the United Kingdom and deCODE in Iceland,
where great effort has been exerted to collect precise health
and medical information to define the phenotypes of each
participant. Typically, health status information is deter-
mined through biochemical tests and questionnaires, which
is effective for some genome cohorts, but it also exhibits
some limitations. For example, biochemical tests typically
assess a limited number of items, and questionnaires con-
tain various kinds of noise such as recall bias and/or self-
selection bias, because they rely on participant responses.

To overcome these limitations, a genome cohort recently
began using multi-omics analyses to define the molecular
phenotypes of each person. The most illustrative example
is LifeLines-deep study (2), a subcohort of LifeLines in
the Northern Netherlands, where 1500 participants were se-
lected from 167 000 participants (3) and subjected to multi-
omics analyses such as DNA methylation analyses, gene
expression analyses, plasma metabolome analyses, and gut
metagenome analyses, in addition to whole genome anal-
yses. The results of the study indicated that multi-omics
analyses with cohort studies are highly effective for analyz-
ing gene-environment interactions (see (4) for gut metage-
nomics and (5) for disease and methylation/transcription).

In Japan, Tohoku University Tohoku Medical Mega-
bank Organization (ToMMo) (6) conducted multi-omics
(metabolome and proteome) analyses of 5093 plasma sam-
ples collected from Japanese (male: 2077, female: 3016)
residents who participated in the Tohoku Medical Mega-
bank Project Cohort Study. By using some of these data,
Koshiba et al detected five interesting associations between
the genome and plasma metabolome (TCN000004 for-
mate, TCN000017 asparagine, TCN000019 phenylalanine,
TCN000031 proline and TCN000033 glycine) (7). To share
the data and promote the development of personalized
healthcare, we created a new database known as jMorp for
metabolome and proteome data in plasma obtained from
5,093 healthy volunteers in a Japanese population from the
Tohoku Medical Megabank Cohort Study.
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Several databases contain metabolome data, such as
HMDB (Human Metabolome Database, (8)), MMCD
(Madison Metabolomics Consortium Database; a resource
for metabolomics research based on nuclear magnetic reso-
nance (NMR) and mass spectrometry (MS), (9)), Metabo-
Lights (a database for metabolomics experiments and the
associated metadata, (10)). These databases are important
as repositories of raw data, but jMorp has some advantages
compared to existing databases: (a) metabolome data were
obtained using a single protocol in a single institute, ensur-
ing that measurement biases were significantly minimized;
(b) jMorp is built using large-scale cohort data for healthy
volunteers with various health records and genome data,
and it provides significant GWAS results and (c) correla-
tions between metabolites could be easily observed with the
graphical viewer.

Overview of available data and functionalities

Metabolome data were measured by proton NMR and liq-
uid chromatography (LC)–MS, and proteome data were ob-
tained by nanoLC–MS as described in the Methods sec-
tion. In the current version of jMorp, we have released the
concentration distributions of 37 metabolites identified by
NMR, peak intensity distributions of 257 metabolites by
LC–MS, and observed frequencies of 256 abundant pro-
teins. All distributions of metabolites were prepared for
male, female, and all samples and divided by age categories;
those of the protein detection rate are shown separately
for male, female, and all samples. In addition to the dis-
tributions, correlation networks of the metabolites are pro-
vided using an interactive network viewer. Concentration
data, genotypes, and biological specimens for each partic-
ipant are provided by Tohoku Medical Megabank under
controlled access after carefully checking the data and ob-
taining approval from the sample access committee because
of ethical reasons (Table 1).

Overview of jMorp database (Figure 1)

jMorp mainly consists of three types of pages: search page,
metabolite page, and protein page. The search page is the
central page that has a search window with toggle buttons
for platform categories, ‘metabolites [NMR]’, ‘metabolites
[MS]’, and ‘proteins’ (Figures 1A and 2A), and a compound
table of compound IDs, compound names, platform cate-
gories and basic statistics. Initially, the first 20 entries sorted
by compound ID are shown; this section is replaced with
the search results after users carry out a search (Figures 1B
and 2B). Text search can be entered in the text box at the
top of the table, where we have implemented incremental
search functionality for a better user experience. In Figure
1B, the search results for ‘Phenyl’ are shown, while the re-
sults for ‘Apolipoprotein’ are presented in Figure 2B. Com-
pound IDs and names in the search results are linked to each
compound page. Compound pages are prepared indepen-
dently for metabolites and proteins. Notably, MS data can
be searched for a range of m/z values. For example, a search
with ‘100 < mz < 200’ will show a compound list with m/z
values ranging from 100 to 200. All search results can be
downloaded from the download icon at the right top cor-
ner of the table.

On a compound page for a metabolite (Figure 1C), users
will find four or five sections. First, we provide the distribu-
tions of the compound concentration (�M unit) for NMR
data or abundance (or corrected peak intensities) for MS
data. The distributions are shown for all (grey bars in Fig-
ure 1C), male (blue bars), and female (red bars) samples.
To the left of the distributions, we show changes in metabo-
lite abundance across age groups, where data are separated
by sex. It should be noted that distribution changes with
age are important when analyzing omics data, as described
below (Figure 3). Third, links to other public compound
databases (DB) are provided below the distributions. Links
to HMDB (8), KEGG Compound (11) and LIPID MAPS
(12) are shown if the focused compound is available in
these DBs. In addition, some notes regarding measurements
such as m/z, retention time, measurement ion mode, and
column mode are shown if the metabolite is observed by
‘metabolites [MS]’. In addition to this basic information,
five metabolite pages containing reported genome-wide as-
sociation study (GWAS) results (7) by using a Manhattan
plot with variations in the compound across genotypes at
the most significant variant. GWAS results will be added
to the future release, when we have obtained GWAS results
with new jMorp data and corresponding genomics data. Fi-
nally, a table of correlation between the focused metabolite
and other metabolites among the population is shown. In
the table, the Spearman’s rank correlation coefficient (|rs| >
0.2) and P-value between two metabolites are shown. An in-
teractive correlation network view is also available through
the link ‘view as network’ above the correlation table (Fig-
ure 1D). The correlation information is one of the main con-
tents of jMorp. As far as we know, this is the first database of
metabolite correlations among a healthy population. Some
interesting biological and biomedical findings from the cor-
relation data will be described elsewhere.

On a compound page for a protein, there are three or
four sections: (i) detection rate of the protein for population,
all/male/female (Figure 2C), (ii) links to UniProt and (iii)
peptide sequences containing reference or alternative alleles
resulting from non-synonymous genomic variants shown in
a table format. Measurement information, m/z, charge, and
modifications for each peptide are also shown. If there is a
peptide sequence for the genomic variant, the variant ID
and change in amino acid is annotated in the table. Users
can obtain more information about the genomic variant us-
ing the link from the mutation to the Integrative Japanese
Genome Variation Database (13).

Note that each compound page has its own URL,
in the form of https://jmorp.megabank.tohoku.ac.
jp/[year]/compounds/[compound ID]; therefore, links
from the external server can be easily implemented. The
naming rule of the compound ID in jMorp is described in
the Methods section.

Age and BMI distributions

In omics analyses, age and body mass index (BMI) are im-
portant factors affecting the results, and thus it is important
to achieve flat distributions for age and normal distributions
for BMI. Figure 3 shows a change in the age and BMI dis-
tributions of the analyzed participants for each year. For

https://jmorp.megabank.tohoku.ac.jp/
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Table 1. Basic statistics of the data in jMorp

Data Types # of Items # of Samples

Year 2015 2016–2017 2015 2016 2017

Basic Info. 3 (sex, age, BMI) 501 1008 5093
Metabolome [NMR] 37 501 1008 5093
Metabolome [MS] 201 257 501 1008 1312
Proteome [MS] 256 501

Figure 1. An example of metabolites search in jMorp. Thin red circles in (A), (B) and (C) indicate the link to the next step specified by gray arrows.
(A) Search page. (B) Keyword search result. (C) Metabolite page for phenylalanine. The distribution plot of phenylalanine concentration and variation
in concentration across age groups are shown. For this metabolite, variations among sex or age groups can be observed. Users can obtain information
regarding this metabolite from HMDB or KEGG Compound. GWAS Manhattan plot and variation of concentration among genotypes at the most
significant genomic variant relationship to the metabolites are shown. At the bottom of the compound page, correlations with other metabolites are listed.
(D) A network viewer of correlation network among metabolites.

example, for phenylalanine, the concentration distribution
monotonically increases across age groups, particularly in
females (Figure 1C), while glucose concentrations tend to
increase according to age (https://jmorp.megabank.tohoku.
ac.jp/2017/compounds/TCN000037).

Versioning policy

jMorp was first released in July 2015 and gradually up-
dated by increasing the number of samples and implement-

ing various functionalities. All historical data are avail-
able at https://jmorp.megabank.tohoku.ac.jp/[year], where
[year] can be 2015, 2016, or 2017. The default version is
now 2017, as metabolite data obtained by NMR were man-
ually quantified by an expert. We are currently attempting
to improve the automated quantification method described
in the Methods section. After improvement, we will replace
the default version to 2017, but will retain all versions for
backward compatibility.

https://jmorp.megabank.tohoku.ac.jp/2017/compounds/TCN000037
https://jmorp.megabank.tohoku.ac.jp/
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Figure 2. An example of protein search in jMorp. The thin red circles in (A), (B) and (C) indicate the link to the next step indicated by gray arrows.
(A) Search page. (B) Keyword search result. (C) Protein page for apolipoprotein E. The detection rate of apolipoprotein E is shown. User can obtain
information regarding this metabolite from the UniProt database. Detected peptide information for this protein is shown at the bottom of this page.

METHODS

NMR measurements

Blood samples from cohort participants were collected us-
ing vacutainer tubes containing EDTA-2Na (Venoject II,
Terumo Corporation, Tokyo, Japan). Plasma was prepared
and stored at −80◦C using a MATRIX® 2D screw tube
(Thermo Scientific, Waltham, MA, USA). Metabolites were
extracted using a standard methanol extraction procedure
with 200 �l of plasma. Extracted metabolites were sus-
pended in 200 �l of 100 mM sodium phosphate buffer
(pH 7.4) in 100% D2O containing 200 �M d6-DSS. All
NMR experiments were performed at 298 K on a Bruker
600 MHz spectrometer (Bruker BioSpin, Germany). Stan-
dard 1D nuclear Overhauser effect spectroscopy (NOESY)
and Carr-Purcell-Meiboom-Gill (CPMG) spectra were ob-
tained for each plasma sample. All data were processed
using the Chenomx NMR Suite (Chenomx, Edmonton,
Canada). Metabolites were identified and quantified using
the target profiling approach implemented in the Chenomx
Profiler module.

The quality control of the cohort sample is important
to secure the validity of the clinical result and to create an
omics reference. In our analyses, the influences of common
pre-analytical variation on the human plasma metabolites
were evaluated by the abundance of specific compounds by
GC–MS assay as reported in Kamlage et al. (14). In addi-
tion, glucose and lactate concentration changes were most
pronounced in plasma metabolites after the exposure of
EDTA blood to 25◦C, and thus we also checked the con-
centrations of glucose and lactate to exclude the low-quality
samples.

Metabolite concentrations were manually estimated un-
til the 2016 release, and then automatically estimated from
NMR spectra by using several regression models beginning
in 2017. More than 1,000 concentration data manually cal-
culated by experts by 2016 were used for training data for
later automated quantification. Both linear regression and
neural network models were used. A suitable model for each
metabolite was selected from the best R-squared (R2) values
as an evaluation index. We provide a reliability score of the
estimated concentration on a four-tiered scale: ‘Triple Stars
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Figure 3. Change in the distributions of age and BMI of analyzed participants for each year. Distributions are shown for all (grey bars), male (blue bars)
and female (red bars) samples, respectively.

(���)’, ‘Double Stars (��✩)’, ‘Single Star (�✩✩)’ and ‘Zero
Star (✩✩✩)’. Each category corresponds to an R2 value of
≥0.9, ≥0.7, ≥0.6 and <0.6, respectively.

MS measurements

Fifty microliters of each plasma sample were transferred
into a single well of a 96-well sample collection plate, and
total of 1312 plasma samples were added to 19-well plates
with a reference quality control used for normalization
between batches. ultra-high-performance LC-quadrupole
time-of-flight (QTOF)/MS analysis was performed on an
Acquity Ultra Performance LC I-class system equipped
with a binary solvent manager, sample manager, and col-
umn heater (Waters Corp., Milford, MA, USA). This sys-
tem interfaced with a Waters Synapt G2-Si QTOF MS
with electrospray ionization (ESI) system operated in pos-
itive ion mode. LC separation was performed using a
C18 column (Acquity HSS T3; 150 × 2.1 mm i.d., 1.8
�m particle size; Waters) with a gradient elution of sol-
vent A (water containing 0.01% formic acid) and solvent
B (acetonitrile containing 0.01% formic acid) at 400 �l
min–1. The data were collected using MassLynx, v4.1 soft-

ware (Waters Corp.). The LC-FTMS system consisted of
a NANOSPACE SI-II HPLC equipped with a dual pump
system, auto sampler, and column oven (Shiseido, Tokyo,
Japan) as well as a Q Exactive Orbitrap MS (Thermo Fisher
Scientific) equipped with a heated-ESI-II source for neg-
ative ion mode. LC separation was performed using an
HILIC column (ZIC-pHILIC; 100 × 2.1 mm i.d., 5 �m
particle size; Sequant, Darmstadt, Germany) with a gra-
dient elution of solvent A (10 mM ammonium bicarbon-
ate in water, pH 9.2) and solvent B (acetonitrile) at 300 �l
min−1. The data were collected using Xcalibur v4.1 software
(Thermo Fisher Scientific). The ultra-high-performance
LC-QTOF/MS and LC-FTMS operating conditions have
been described previously (15).

Proteome analysis

Plasma samples were heat-treated and then reacted with
lysyl-endopeptidase. Plasma proteins were subsequently di-
gested by trypsin and desalinated. These plasma samples
were analyzed in triplicate by LC-tandem MS. Three mass
spectrometers were used to process 501 plasma samples
from 501 individuals; 233 samples by Thermo Scientific
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Orbitrap Fusion, 156 samples by Thermo Scientific Elite,
and 112 samples by Thermo Scientific Q Exactive. Pep-
tide identification from mass spectra was obtained using the
SequestHT and Mascot search engines with the UniProt
human proteome data set from April 2014 as reference
protein sequences. These peptide identification results were
integrated using Proteome Discoverer1.4. The abundance
of a specific protein in the 501 samples was calculated as
the fraction of samples in which the protein was success-
fully identified. To identify peptides resulting from non-
synonymous genomic variations, we created a data set of
protein sequences containing alternative alleles found in at
least 5% of the ToMMo 1KJPN cohort. This database was
also searched for peptide sequences harboring alternative
alleles (amino acids). All reference and alternative peptide
sequences observed in our plasma proteome analysis are
listed on the peptide table page.

Network viewer

The web-based network viewer on each metabolite page for
correlation networks was implemented using Cytoscape.js
(16). The network representation of a correlation table of
a metabolite gives users an overview of correlation relation-
ships among metabolites. When a metabolite is selected as a
seed for network construction, the viewer searches metabo-
lites with strong correlations with the seed and draws a
network in which a node corresponds to a metabolite and
edge corresponds to the correlation relationship between
two metabolites. Users can interactively navigate the gener-
ated networks and perform basic analysis, such as filtering
edges by setting a cutoff threshold for correlation strength.
Networks generated by the network viewer can be saved as
PNG images or GraphML format files for further analysis.

GWAS view

GWAS with metabolites results are shown as a Manhattan
plot and violin plots of the metabolite across genotypes. The
Manhattan plot shows the -log10P values for each single-
nucleotide polymorphism along the genomic coordinates
from the previous GWAS study (7), while the violin plot dis-
plays differences in metabolite concentrations among geno-
types for the reported single-nucleotide polymorphism with
the highest association P-value.

ToMMo compound ID

In jMorp, compound IDs are shown in the form
TCx123456; the first two letters, TC, indicate that the
ID is ToMMo compound ID (TC-ID). The following one
letter indicates the data source. In the current version,
we provide four types of data, each of which has its own
one-letter code for the data source: (P) proteome by MS,
(N) NMR, (Z) MS metabolome in HILIC mode and (O)
MS metabolome in C18 mode. The last six digits are unique
numbers for each compound in each data source. In the
MS metabolome, data sources can be further divided into
positive mode and negative mode. If the six digits are less
than 500 000, the compound was identified by negative
mode. Otherwise, the compound was found by positive
mode.

AVAILABILITY

jMorp is freely available at https://jmorp.megabank.
tohoku.ac.jp.
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