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ABSTRACT

A wide range of diseases course with an unbalance
between the consumption of oxygen by tissues and
its supply. This situation triggers a transcriptional
response, mediated by the hypoxia inducible factors
(HIFs), that aims to restore oxygen homeostasis. Lit-
tle is known about the inter-individual variation in this
response and its role in the progression of disease.
Herein, we sought to identify common genetic vari-
ants mapping to hypoxia response elements (HREs)
and characterize their effect on transcription. To
this end, we constructed a list of genome-wide HIF-
binding regions from publicly available experimen-
tal datasets and studied the genetic variability in
these regions by targeted re-sequencing of genomic
samples from 96 chronic obstructive pulmonary dis-
ease and 144 obstructive sleep apnea patients. This
study identified 14 frequent variants disrupting po-
tential HREs. The analysis of the genomic regions
containing these variants by means of reporter as-
says revealed that variants rs1009329, rs6593210 and
rs150921338 impaired the transcriptional response
to hypoxia. Finally, using genome editing we con-

firmed the functional role of rs6593210 in the tran-
scriptional regulation of EGFR. In summary, we found
that inter-individual variability in non-coding regions
affect the response to hypoxia and could potentially
impact on the progression of pulmonary diseases.

INTRODUCTION

Hypoxia, defined as the imbalance between cellular oxygen
demand and its supply, is a common and central feature in
highly prevalent pathological conditions including respira-
tory, cardiovascular and inflammatory diseases as well as
neoplasias (1). In response to a decrease in oxygen avail-
ability, cells activate a specific gene expression pattern, un-
der the control of the hypoxia inducible factors (HIFs),
that mediates a set of stereotypical adaptations including
an extensive metabolic reprogramming and the induction of
mechanisms to increase oxygen delivery. Given the impact
of these responses on the maintenance of tissue homeosta-
sis, it stands to reason that the activation of the HIF path-
way and downstream targets could contribute to the clinical
progression of those diseases that course with hypoxia.
HIF is a heterodimer composed of an oxygen-regulated
alpha subunit (HIFalpha) and a constitutively expressed
beta subunit (Aryl Receptor Nuclear Translocator, ARNT,
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also known as HIFbeta) (2,3) that partners with a num-
ber of basic helix-loop-helix transcription factors. There
are three separate genes encoding for HIFalpha subunits,
HIFIA, EPASI and HIF3A. Although these genes differ in
their expression pattern and biological activities, they are
subjected to similar regulation by oxygen. Under normoxia,
HIFalpha is efficiently hydroxylated at two proline residues
(4,5) by a family of dioxygenases (EGL Nine homologs,
EGLNSs, also known as Prolyl hydroxylases, PHDs) that re-
quire oxygen as co-substrate (6,7). This post-translational
modification is recognized by an E3-ubiquitin ligase com-
plex, containing the von Hippel-Lindau protein (pVHL)
(8), which targets HIFalpha for protecosomal degradation.
Thus, under normal oxygen tension, HIFalpha half-life is
extremely short and, consequently, normoxic protein levels
are very low. In addition, another dioxygenase (Factor In-
hibiting HIF, FIH) catalyses the oxygen-dependent hydrox-
ylation of an asparagine residue, located in the C-terminal
transactivation domain, preventing its interaction with the
p300 coactivator and blunting HIFalpha transcriptional ac-
tivity (9). Under hypoxia, all these hydroxylation reactions
become compromised, due to the reduced availability of
oxygen and the high Km of these enzymes for oxygen (10).
As a consequence, HIFalpha becomes stabilized and free
to interact with transcriptional co-activators such as p300.
HIFalpha accumulation allows its interaction with ARNT
subunit and binding of the heterodimer to the RCGTG mo-
tif, known as hypoxia response element (HRE), present in
the regulatory regions of HIF target genes.

Genetic alteration of almost all the components of the
HIF pathway have been described and linked to different
pathological conditions (11,12). Specifically, loss of func-
tion mutations in the VVHL tumor suppressor gene are asso-
ciated with the von Hippel-Lindau disease, a hereditary can-
cer syndrome, (13) and a rare form of familial erythrocytosis
known as Chuvash disease (14). Similarly, mutations alter-
ing EGLNs, in particular EGLNI (PHD2) and EPASI have
been linked to some familial cases of erythrocytosis (11,15—
17) and to neuroendocrine tumors such as paragangliomas
and pheochromocytomas (15,18). In addition to these links
to human disease, polymorphisms in several of these genes,
most notably in EGLNI and EPAS1, are responsible for the
adaptation to the chronic hypoxia of high-altitude of some
human populations (12,19,20). In spite of this wealth of in-
formation regarding the genetics of the components of the
HIF signaling pathway and its contribution to human dis-
ease and evolution, little attention has been paid to the ef-
fect of variants in regulatory regions bound by HIF. Single
nucleotide polymorphisms (SNPs) that disrupt the RCGTG
motif prevent the transcriptional response to hypoxia as we
demonstrated for the SNP rs17004038, mapping to a func-
tional HRE in the promoter of the macrophage migration
inhibitory factor gene (21). Moreover, the genetic variabil-
ity of non-coding regions could have a strong impact on dis-
ease progression as demonstrated by Schodel ez al. who de-
scribed a polymorphism that modulates the binding of HIF
to an enhancer that controls the transcription of the gene
encoding for cyclin D1 in renal cell carcinoma (22).

Chronic obstructive pulmonary disease (COPD) and ob-
structive sleep apnea syndrome (OSAS) are two highly
prevalent respiratory disorders (23,24) which are associated

with a sustained or intermittent reduction in blood oxygen
saturation and tissue hypoxia (25,26). HIF is induced in cel-
lular and animal models of both COPD (27) and OSAS
(28,29) and mediates the development of pulmonary (30—
32) and arterial hypertension (33), which are two comor-
bidities associated to COPD and OSAS respectively that
complicate their clinical management. In keeping with these
studies in animal models, specific mutations in EPASI have
been associated to pulmonary hypertension (34,35) and a
recent genome-wide analysis of DNA methylation and gene
expression profiles of COPD lung samples identified EPAS1
as a key regulator of COPD (36). Altogether these evidences
strongly suggest a role for the HIF pathway in the progres-
sion of COPD and OSAS.

Herein we sought to identify genetic variants affecting
RCGTG motifs within HIF binding regions (HBR) in ge-
nomic samples from COPD and OSAS patients and de-
termine their functional impact on the transcriptional re-
sponse to hypoxia.

MATERIALS AND METHODS
Study subjects

Patients between 35 and 80 years of age admitted to the
Respiratory Services of Hospital Universitario La Paz or
Hospital Universitario de la Princesa (Madrid, Spain) with
a diagnosis of moderate-very severe COPD or OSAS were
considered for this study. The diagnosis of COPD was
based on clinical history and spirometry criteria accord-
ing to the Global initiative for chronic Obstructive Lung
Disease (GOLD) guidelines. The inclusion criteria were a
post-bronchodilator FEV1/FVC ratio of less than 0.7 and
a post-bronchodilator FEV1 < 80% predicted. Patients suf-
fering from bronchial asthma, diffuse interstitial lung dis-
ease, neuromuscular or chest wall diseases or lung neoplasia
were excluded. A total of 96 COPD patients were recruited
and classified according to the severity, clinical phenotype
(37) and and/or presence of comorbidities. Regarding dis-
ease severity, patients were classified according to: degree
of airflow limitation according to GOLD criteria; the an-
nual number of exacerbations of the disease, defined as an
acute worsening of the patient’s baseline dyspnea, cough
and/or sputum production and the multifactorial BODE
(Body-mass index, airflow Obstruction, Dyspnea, and Ex-
ercise) index (38). As for the comorbidities, patients were
classified based on previous diagnosis or by the following
criteria: pulmonary hypertension, defined as an estimated
pulmonary arterial systolic pressure >35 mm Hg; Arterial
hypertension, as resting blood pressure is persistently at or
above 140/90 mmHg in three consecutive determinations or
24-h ambulatory blood pressure above 135/85 mmHg; car-
diovascular disease risk was defined by the co-occurrence of
arterial hypertension, diabetes mellitus (current treatment
with oral anti-diabetic drugs and/or insulin; a fasting glu-
cose value above 126 mg/dl on at least two occasions; blood
glucose level at 2 h after an oral glucose tolerance test is
equal to or more than 200 mg/dl; or a glycated hemoglobin
(HbAlc) level > 6.5%), dyslipidemia (total cholesterol >
200 mg/dl, triglycerides > 180 mg/dl, HDL-cholesterol <
40 mg/dl or LDL-cholesterol > 150 mg/dl), or metabolic
syndrome (as defined by National Cholesterol Education



Program Expert Panel on Detection, Evaluation and Treat-
ment of High Blood Cholesterol in Adults) (39); ischemic
heart disease, was diagnosed following the European Soci-
ety of Cardiology/American College of Cardiology guide-
lines (40); neoplasia, patients with a clinical diagnosis of any
kind of neoplasm confirmed by histology. In addition, co-
morbidities were assessed globally according to the Copd
cO-morbidity TEst (COTE index) (41).

The diagnosis of OSAS was based on evidence of exces-
sive daytime sleepiness (Epworth Sleepiness Scale score >
10) and an Apnea-Hypopnea Index (AHI) > 5/h, deter-
mined by respiratory polygraphy or polysomnography, with
at least 80% of the apneas being obstructive. The exclusion
criteria were previous or current diagnosis of secondary hy-
pertension, bronchial asthma, diffuse interstitial lung dis-
ease, neuromuscular or chest wall diseases, lung neoplasia,
restrictive lung disease, bronchiectasis, alterations of thy-
roid function and morbid obesity (BMI > 40 Kg/m2). A
total of 144 OSAS patients were recruited and classified ac-
cording to the presence of comorbidities as described before
for COPD and including the following additional classes:
pulmonary embolism, diagnosed by angio-computed to-
mography; depression and anxiety, according to Beck de-
pression inventory or State-Trait Anxiety Inventory; and
heart failure, with echocardiographic confirmation of left
ventricular systolic or diastolic dysfunction.

The study was approved by the La Paz Hospital Medical
Ethics Committee (PI-795) and informed written consent
was provided by all subjects.

High-throughput sequencing and analysis

DNA was isolated from whole blood using Gentra Pure-
gene Blood Kit (Qiagen, 158467) and regions of inter-
est were polymerase chain reaction (PCR)-amplified us-
ing a 48.48 Fluidigm Access Array (Fluidigm Corporation,
South San Francisco, USA). The resulting bar-coded am-
plicons were sequenced in a MiSeq apparatus (Illumina) un-
der a 2 x 250 pair-ended format (Genomics Units, Science
Park, Madrid). Reads were quality filtered according to the
standard Illumina pipeline, de-multiplexed and fastq files
were generated.

Raw sequences generated by MiSeq (FASTQ format)
were aligned to the February 2009 (GRCh37/hg19) assem-
bly of the human genome with Bowtie2 (version 2.1.0)
(42,43). Alignments were processed using Samtools (ver-
sion 0.1.18) (44) and variants were called with bcftools fil-
tering out those with mapping quality <30 or DP < 16.
File manipulation and analysis were performed with cus-
tom scripts written in python (Python Software Founda-
tion. Python Language Reference, version 3.4.3. Available
at http://www.python.org) and R (R Core Team (2014).
R: a language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Aus-
tria. URL http://www.R-project.org/.) languages. We used
Python version 3.4.3 and R version 3.2.2. For the visual-
ization of aligned reads (BAM files) we used the Integrative
Genomics Viewer, Integrated Genomic Viewer (IGV) (45).
For the treatment of genomic intervals we used the [IRanges
and Granges (406) libraries from Bioconductor version 3.2
(https://www.bioconductor.org/). The regions selected for

Nucleic Acids Research, 2016, Vol. 44, No. 19 9317

binding along with the supporting experimental evidence
can be interactively accessed at the UCSC genome browser:
http://genome.ucsc.edu/cgi-bin/hgTracks?
hgS_doOtherUser=submit&hgS_otherUserName=
Lab252&hgS_otherUserSessionName=Roche_et_al 2016.

Cell culture

Human Embryo Kidney 293T (HEK293T) and HeLa cells
were grown using standard culture conditions in Dulbecos’s
Modified Eagle medium supplemented with 10% Fetal Calf
Serum (FCS). For hypoxia treatments, cells were placed in a
1% O3, 5% CO,, 94% N, gas mixture in a Whitley hypoxys-
tation (don Whitley Scientific, UK).

RNA extraction and quantitative RT-PCR

Total RNA was extracted and purified with the RNeasy
Mini Kit (Qiagen) and treated with RNase free Dnase set
(Qiagen, 79254). One microgram of total RNA of each sam-
ple was reverse-transcribed to cDNA (Transcriptor First
Strand cDNA Synthesis kit, Roche) and 2 .l of a 1:20 dilu-
tion of this reaction was used as template for amplification
reactions using Power SYBR green PCR Master Mix (Ap-
plied Biosystems, 4367659) or Tagman Universal Master
Mix II (Applied Biosystems, 4440040), following the manu-
facturer’s instructions and the primers/probes indicated in
Supplementary Table SV. PCR amplifications were carried
out in a StepOne Real-time PCR System (Applied Biosys-
tems) and data were analyzed with StepOne software. Each
sample was tested in duplicate, and expression levels calcu-
lated using AACt method using B-actin as a reference.

Metabolic labeling with 4-thiouridine and purification of
newly synthesized mRINA

We used the protocol described by Dolken et al., and
Schawnhausser et al. (47,48). Briefly, exponentially grow-
ing HeLa cells were exposed to 21 or 1% oxygen for
8 h and pulse-labeled with 4-thiouridine (400 wM, 4sU,
Sigma, T4509) during the last two hours of treatment. Af-
ter treatment, total RNA was isolated from cells using TRI
reagent (Ambion, AM9738) and subjected to a biotinyla-
tion reaction to label the newly transcribed RNA contain-
ing the 4sU moiety. Next, RNA was extracted using Ultra-
pure TM Phenol:Chloroform:Isoamylalcohol (Invitrogen,
15593-031) and labeled RNA was isolated from the total
RNA by affinity chromatography using streptavidin coated
magnetic beads (nMacs Streptavidin Kit; Miltenyi, 130-
074-101).

Gene knock-down

Cells were transfected with the indicated siRNAs at 100
nM concentration using Lipofectamine RNAiMax (Invit-
rogen), following the manufacturer’s instructions and the
knockdown efficiency was determined by real time quan-
titative PCR and western blot analyses. We used commer-
cial siRNAs, HIFI1 A siRNA (Santa Cruz, sc-44225), EPASI
siRNA (Santa Cruz sc-35316) and siRNA-B (Santa Cruz
sc-44230) as a negative control.
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Plasmid constructs

Human genomic DNA, extracted from peripheral blood
from individuals heterozygous for the variants of inter-
est, was used as template for PCR amplification using
the primers described in Supplementary Table SIII. Tar-
get regions were delimited based on the information about
Dnase sensitivity, clustering of transcription factor bind-
ing sites and histone modifications associated to tran-
scriptionally active regions (H3K27Ac, H3K4Mel and
H3K4Me3) generated by the ENCODE project (49). Re-
porter constructs were generated by cloning the PCR prod-
ucts into the pGL4.20 or pGL4.23[luc2/minP] reporter
vectors (Promega). Both, reference and alternate, alleles
were cloned and the identity of all constructs was verified
by Sanger sequencing. The constructs containing the mu-
tated regulatory region of EGFR and PGKI were generated
by site-directed mutagenesis, employing PCR QuikChange
IIXL Site-direct mutagenesis kit (Agilent) and the primers
described in Supplementary Table SV.

Reporter assays

HelLa cells were plated in six-well plates 24 h prior trans-
fection (200 000 cells/well, six-well plates). Each well was
transfected with a DNA mixture containing 1 pg of the in-
dicated reporter plasmid, 0.033 wg of a plasmid encoding
the Renilla firefly luciferase under the control of a CMV
promoter and 7.967 pg of pCDNA3. Twenty-four hours af-
ter transfection, cells were split into 24-well plates and then
transferred to hypoxic conditions (1% oxygen) or left under
normoxic conditions for 16 h. Subsequently, firefly and re-
nilla luciferase activities were determined using a Dual Lu-
ciferase Reporter System (Promega, Madison, WI, USA). In
order to correct for transfection efficiency, the luciferase ac-
tivity was normalized to the Renilla luciferase activity. Each
experimental condition was assayed in triplicate.

Genome editing

HEK 293T cells were edited by CRISPR-Cas9 to dis-
rupt the HRE elements within the EGFR and EGLN3
loci. Single-guide RNAs (sgRNAs) were designed using
CRISPR Design Tool from Feng Zhang’s Lab. (http://tools.
genome-engineering.org) and four top scoring sequences
per loci were cloned into PX459 (Addgene, Cambridge,
MA, USA). Efficiency of sgRNAs was checked by SUR-
VEYOR assay (IDT, Coralville, lowa, USA), and the best
sequence used in subsequent experiments (Supplementary
Table SVI). For editing, HEK 293T cells were transfected
with 2.5 wg of PX459 and 0.6 pg of single-stranded DNA
oligonucleotides as repair template containing the intended
nucleotide substitutions (Supplementary Table SVI) using
Lipofectamine® 2000 (Thermo Fisher Scientific). Bulk cul-
tures were plated clonally at limiting dilution in 96-well
plates. Clones were expanded and genotyped by Sanger se-
quencing.

RESULTS

Selection and characterization of genome-wide HIF binding
regions

In order to identify genetic variants that could affect the
transcriptional response to hypoxia, we limited our search
to HIF binding regions (HBR) across the genome. To de-
fine a comprehensive list of these regions, we borrowed
data from studies describing the genome-wide pattern of
binding of HIF1A and EPASI, determined by means of
chromatin immunoprecipitation followed by massive paral-
lel sequencing (ChIP-Seq) or hybridization to high-density
oligonucleotide tiling microarrays (ChIP-Chip) (22,50-53).
The comparison of these data sets revealed a very limited
overlap between the HIF binding regions identified in these
studies, with <20% of regions being common to any pair of
assays (Figure 1A). This result is probably a consequence
of a combination of biological factors, including variabil-
ity in cell-type and HIF-isoform specific targets, and also
of technical differences across these studies. Regardless the
explanation, the reduced overlap implied that we could not
derive a comprehensive list of HBR from the intersection
of these data sets. On the other hand, the number of non-
redundant regions increased linearly with the number of
studies up to circa 1700 binding regions (Figure 1B), so that
cost-efficiency considerations precluded us from analyzing
the complete set of all unique regions. In addition, some
of the sites identified in a single dataset could be false pos-
itives as spurious binding sites are not expected to be re-
produced across studies. Thus, to reduce the chances of in-
cluding false positives, we took into account the effect of
hypoxia on gene expression as an additional source of in-
formation to guide us discriminate bona fide HBR. To this
end, we ascribed each of the regions from the ChIP stud-
ies to the nearest flanking gene and their response to hy-
poxia was assessed based on a published meta-analysis of
expression profiles of cells exposed to hypoxia (21). Con-
versely, to preserve sensitivity, we complemented the set
of unbiased studies with a list of experimentally validated
HREs derived from a manual inspection of bibliography
(see Supplementary Table SI). Finally, we derived the list
of regions to be sequenced by the application of a set of
rules to the compiled collection of HIF-binding datasets
(Figure 1C and Supplementary Table SI). Specifically, to
increase specificity we only selected those regions that were
bound by HIF in at least three independent datasets. On the
other hand, aiming to generate a list as exhaustive as possi-
ble, we also selected those regions that, while being bound
by HIF only in one or two of the datasets, were associated
to a gene significantly induced by hypoxia according to the
gene expression profiles meta-analysis. Finally, we also in-
cluded a few regions derived from individual gene studies
that, probably due to their cell-type specific pattern of ex-
pression (e.g. EPO), were neither found in ChIP datasets
nor labeled as hypoxia-responsive in the meta-analysis (see
Supplementary Table SI). The application of this strategy
(Figure 1C) resulted in a total of 238 HBR regions (Sup-
plementary Table SI). The majority of these regions were
bound by HIF in two or more independent unbiased (i.c.
those derived from ChIP studies) datasets (Figure 1D). Fi-
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Figure 1. Identification and characterization of HIF binding regions (HBR). (A and B) HIF binding sites from references (22,50-53) were compared to
determine their degree of overlap (A) and redundancy (B). The indicated number of datasets (x axis) were selected at random from a total of six tables
of HIF binding sites and the number of regions overlapping across all selected tables (A) or number of independent non-overlapping regions (B) were
recorded. The graph represent the results from 10 independent samplings, the number above the points is the median value of the 10 samplings and the
line joins these median values. The the top horizontal line in (B) indicates the value of the sum of the number of HIF binding regions in all the datasets.
(C) Schematic representation of data sources and rules followed to select the set of HBR. (D) The histogram represents the distribution of the number of
HIF binding sites identified in ChIP experiments overlapping each of the HBR selected for sequencing. We considered the HIF binding sites described in
the references indicated in (A) plus those in reference (62). (E) The distribution of the HBR across the functional regions of the genome was studied in
the indicated cell lines and compared to that expected by chance using a chi-squared goodness of fit test (P < 0.001 for all cell lines). The graph represents
the Pearson residuals resulting from the test in each cell line. The functional regions (chromatin states as defined by the ENCODE consortium, (49))
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region. (F) Distribution of distances of the HBRs to the nearest transcription start site. The vertical line marks the TSS position. (G and H) Enrichment
of Gene Ontology (GO) terms (G) and KEGG pathways (H) was investigated for the genes nearest to the HBRs using the R package ‘clusterProfiler’ (71).
The figure shows the categories found enriched with an FDR-adjusted P-value < 0.001. Bar length represent the number of genes bound by HIF in each
category and the shade of color the raw P-value for the enrichment.
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nally, in order to meet the restrictions of the library and
sequencing platforms, these HBR were trimmed to 250-bp
long regions. Trimming was made based on Dnase hyper-
sensitive regions determined by the ENCODE project (49)
and, when necessary HBRs were split into two 250-bp long
regions.

Next, we sought to characterize the selected HBRs. First,
we investigated the distribution of these regions across dif-
ferent functional elements defined by the genome-wide seg-
mentation in six different cell lines (GM 12878, K562, H1-
hESC, HeLa-S3, HepG2 and HUVEC) as defined by the
ENCODE project (49). As shown in Figure 1E, the selected
HBRs clustered in promoter regions (TSS) and, to a lesser
extent, enhancer regions (E), while being excluded from re-
pressed (R) and CTCF-enriched regions (CTCF); a distri-
bution that was significantly different to that expected by
chance (Chi-squares > 10°, P < 0.0001). In agreement with
this preference for promoter-like regions, the distribution of
distances of the HBRs to the nearest transcription start site,
peaked at circa 500 bp (Figure 1F). These results are con-
gruent with the distribution of HIF binding sites described
for individual cell lines (51-53). Lastly, we studied the on-
tology terms of the genes adjacent to the selected HBRs
and found that they were significantly enriched in terms
distinctive of biological process regulated by hypoxia such
as carbohydrate metabolism, oxidation-reduction and iron
metabolism (Figure 1G and H). Taken together, these evi-
dences support the biological relevance of the selected set
of HBR.

Identification of genomic variants affecting RCGTG motifs
within HBRs

To identify genetic variants that could affect HIF-mediated
transcription and contribute to chronic respiratory disease
progression, we obtained genomic DNA samples from of
96 COPD and 144 OSAS patients and sequenced the 238
HBRs defined above in these samples by parallel massive se-
quencing. The resulting reads were aligned to the February
2009 assembly of the human genome (hgl19, GRCh37) and
genetic variants called using standard software. This anal-
ysis revealed a total of 458 and 569 variant loci in COPD
and OSAS patients respectively as compared to the refer-
ence genome. Most of the observed changes (83 and 96% re-
spectively) comprised single nucleotide variants (SNV), but
we also observed small insertions-deletions (INDELS). Vi-
sual inspection of the aligned reads using the IGV revealed
that, while SNV calls were robust, the annotation of IN-
DELs was not always reliable. Accordingly, we disregarded
INDELSs and for the remaining of our analysis we focused
on the 379 and 548 SNVs found in COPD and OSAS pa-
tients respectively (Figure 2A). Taken together, all the vari-
ants found in the 240 sequenced samples, added up to a to-
tal of 715 unique SNVs (Figure 2A). However, only 176 of
these (25% of total) were frequent variants, defined here as
those whose minor allele was present in more than 2% of
the sequenced samples (Figure 2A, ‘Frequent variants’). As
expected, the vast majority of these frequent variants cor-
responded to SNPs previously described and present in the
built 142 of the dbSNP database (Figure 2B). To increase
the chances of identifying variants with functional impact

on the transcriptional response to hypoxia, we further nar-
rowed our analysis to those SNV that altered the sequence
of ACGTG or GCGTG motifs located within the HBRs. As
shown in Figure 2C, of the unique 715 SNV identified across
the 238 HBR in the 240 sequenced individuals, only 57 af-
fected the sequence of RCGTG motifs and, of these, only
13 were present in more than 2% of all the samples (fre-
quent variants). All these 13 SNV correspond to variants
present in dbSNP142 (Figure 2D). The complete list of vari-
ants that result in the alteration or disruption of RCGTG
motifs within HBRs is shown in Supplementary Table SII.

Next, we studied whether the presence of these variants
correlated with the clinical features observed in patients. In
the case of COPD patients we studied the association be-
tween the 12 frequent SN'Vs that disrupted the HREs (Sup-
plementary Table SII) and their clinical phenotype (non-
exacerbator, mixed COPD-asthma, exacerbator with em-
physema and exacerbator with chronic bronchitis), comor-
bidities (cancer, cardiovascular risk, arterial hypertension,
ischemic heart disease, pulmonary artery hypertension/cor
pulmonale) and the stage of the disease according to dif-
ferent grading systems (severity of airflow limitation and
BODE and COTE indices). As shown in Figure 3A, we
found some weak associations with marginally significant
statistics (P-values slightly below 0.05). However, upon
correction for multiple-testing, none of the associations
reached significance (Supplementary Figure SIA). Simi-
larly, the analysis of the association between the 14 frequent
SNVs found in OSAS patients that disrupt the RCGTG mo-
tif and the incidence of comorbidities (cancer, systemic hy-
pertension, ischemic heart disease, heart failure, pulmonary
artery hypertension, pulmonary embolism, diabetes mel-
litus, dyslipidemia, metabolic syndrome and depression-
anxiety) revealed some weak correlations (Figure 3B) that
were not significant (Supplementary Figure S1B) after cor-
rection.

In summary, our analysis identified a set of 14 frequent
SNVs that disrupt the consensus HIF binding motif in
COPD and OSAS samples (Supplementary Table SII). Al-
though none of them showed a significant association with
comorbidities or clinical phenotypes, we cannot rule out
that a larger sample size, in particular for low-frequency
phenotypes, could yield sufficient evidence to support an
association. On the other hand, these variants map to
RCGTG motifs within HBR and thus, at least some of
them, are likely to result in an altered transcriptional re-
sponse that might contribute to phenotypes not included
in our analysis.

Characterization of the functional impact of genomic variants
on HIF-mediated transcription

In view of these results, we next studied the effect of these
SNVs on the transcriptional response to hypoxia. Based on
the information on chromatin accessibility, histone modi-
fications and clusters of transcription factor binding sites
generated by the ENCODE project (49), we defined reg-
ulatory regions that contained each one of the 14 com-
mon SNVs that disrupt RCGTG motifs. Since variants
chr10:3089315G>A (rs7078831) and chr10:3089424G>A
(rs6602019) were very close to each other, we defined
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Figure 3. Association between genomic variants and clinical features of disease progression. We constructed a contingency table for each combination of
frequent SNV and clinical features and applied a Fisher’s exact test to each table. Each cell in the matrix represents the resulting P-value (—logl0 of values)
for the comparison of the genotype on the y-axis and the phenotype on the x-axis. (A) Analysis of the 12 frequent SNV disrupting RCGTG motifs found
in COPD patients against their clinical phenotype (Phe), disease stage (according to the GOLD, BODE and COTE classifications) and comorbidities. For
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and COTE > 4). (B) Analysis of the 14 frequent SNV disrupting RCGTG motifs found in OSAS patients against their comorbidities. CA: Cancer at any
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a single genomic interval containing both variable posi-
tions. Similarly, the pair chr11:71010448C>G (rs35853657)
and chr11:71010489G>C (rs181486845) also belong to the
same enhancer region and were included in a single ge-
nomic interval for their analysis. Thus, we identified a total
of 12 independent regulatory regions containing polymor-
phic RCGTG motifs (Supplementary Table SIIT and Fig-
ure S3). The gene loci nearest to each of these regions were
ATP9A, BCKDHA, CTDPI, DNAJB6, EGFR, INSIGI,
PFKP, PGKI, PPMEI, RNMT, SHANK2 and SLC2A3
(Supplementary Table SIII). Next, we selected DNA sam-
ples from patients heterozygous for each of these variants
and cloned the regulatory segments from both alleles into
reporter vectors. We were able to clone 10 out of the 12
regions and found that most of them (8 out of 10), were
significantly regulated (single sample student’s ¢-test, P <
0.05) by hypoxia to some extent (Figure 4). HIF bind-
ing has been associated to upregulation of gene expres-
sion rather than repression (21,51,53); accordingly, hypoxia
led to an induction of transcription in all the cases except
for the region containing variant rs118151281 (ATP9A)
whose activity was downregulated by hypoxia (Figure 4).
Comparison of the luciferase activity in samples trans-
fected with constructs containing the reference and alter-
nate alleles revealed that two of the variants, rs1009329
(DNAIJB6) and rs6593210 (EGFR) completely abrogated
the response to hypoxia (Figure 4), whereas an additional
variant, rs150921338 (PGK1) had a partial, yet significant
(paired student’s ¢-test, P < 0.05), effect on the induction of
the reporter gene by hypoxia (Figure 4).

To gain further insight into the effect these variants, we
selected two of them rs150921338 and rs6593210, located
within the PGKI and EGFR loci respectively, for further
analysis. PGK1, encoding for the isoform 1 of the glycolytic
enzyme phosphoglycerate kinase 1, was one of the first HIF
target genes to be described (54). Reassuringly, this variant
results in a change T>A that destroys an ACGTG motif in
the proximal promoter of the PGKI that was implicated in
the induction of this gene by hypoxia (54). However, this
variant affects one of three RCGTG motifs that have been
reported to be functional in the PGKI promoter region (54)
(Figure 5A), which could explain its partial effect on the
induction of this gene (Figure 4). In agreement with this
possibility, mutation of each individual HRE in the PGK/
promoter revealed that the HRE affected by rs150921338
(‘HRE2’ in Figure 5B) has only a partial contribution to
the induction of the construct by hypoxia and a second
RCGTG in the promoter (‘HREI’ in Figure 5B) had a
larger effect on the transcriptional response (Figure 5B).

On the other hand, wvariant cchr7:55254186G>A
(rs6593210) lies in an intron of the Epidermal Growth
Factor Receptor gene, in a region containing functional
features typical of enhancer regions (Figure 6A). Al-
though the regulation of the expression of this receptor
by oxygen levels has been previously described, it has
been regarded as a post-translational effect of hypoxia
on the translation rate of the mRNA encoding for it
(55). For these reasons, we first decided to investigate
the effect of hypoxia on the transcription of this gene.
As shown in Figure 6B, hypoxia led to an increase of
EGFR mRNA in the total mRNA fraction of similar

magnitude to the one observed for PGKI. In contrast, we
did find any effect on RUVBL2 mRNA, a transcript whose
expression level does not respond to changes in oxygen
tension (56). An increase of total mRNA could be due to
either, augmented transcription of the gene encoding for
it or reduced decay rate. To differentiate between these
possibilities, we pulse-labeled cells with a 4-thiouridine
(4sU) to label nascent RNA and determined the levels of
EGFR by quantitative PCR in the 4sU-enriched mRNA
fraction (57). This experiment revealed that hypoxia led
to an increase of newly transcribed mRNA, supporting a
transcriptional effect of hypoxia on EGFR expression. As
expected, hypoxia also induced the transcription of PGKI
while it had no effect on RUVBL?2 (Figure 6B right panel).
In addition, we found that the increased transcription
of the EGFR gene was mediated by HIF as the interfer-
ence of HIFIA and, in particular, EPASI, prevented the
accumulation of EGFR mRNA during hypoxia (Figure
6C). In agreement with this result, EGFR mRNA was
significantly increased in clear cell renal cell carcinomas
(ccRCC), a tumor type where VHL is frequently lost and,
as a consequence, contain a constitutively active HIF
pathway (Supplementary Figure S2). Altogether these
results suggest that hypoxia induces the transcriptional
upregulation of the EGFR gene through the direct binding
of HIF to an intronic enhancer region (Figure 6A) and
that variant rs6593210 prevents this regulation. To further
test this hypothesis, we edited the genome of HEK293T, by
means of the CRISPR-cas9 technology (58), to introduce a
nucleotide change mimicking variant chr7:55254186G>A
(rs6593210) and studied the effect of this modification on
the transcriptional response to hypoxia. As a control for
this experiment, we also introduced a disrupting mutation
in the HRE motif that was shown to be responsible for the
hypoxic induction of EGLN3 and which is located within
an intron more than 20 kb downstream of the transcription
start site of this gene (59). Following transfection with
the constructs targeting each loci, single cell clones were
isolated, expanded and genotyped by Sanger sequencing.
We screened 148 clones derived from the pool of cells
engineered to contain the variant chr7:55254186G>A
(rs6593210) in the EGFR locus (EGFR cell clones) and 90
clones from the transfection targeting the EGLN3 HRE
(EGLN3 cell clones). HEK293T is a hypotriploid cell
line that contains three copies of the EGFR and EGLN3
loci (60). Thus after discarding clones with ambiguous
genotypes, we selected four EGFR cell clones in which at
least one of the HRE copies was disrupted by either the
introduction of the intended variant (genotype “WT/SNP’)
or a small insertion-deletion (genotype ‘WT/INDEL’)
created by non-homologous repair (Supplementary Table
SIV). We also found two additional EGFR cell clones
with all three HRE copies edited (genotypes ‘SNP/SNP’
and ‘SNP/INDEL’). In the case of EGLN3 locus we
identified three cell clones in which at least one of the
HRE copies was disrupted by either the intended mutation
(‘WT/MUT’) or an INDEL (‘“WT/INDEL’), but none in
which all alleles were simultaneously edited. In addition,
since we expected inter-clonal variability in the response
to hypoxia, we also isolated a total of nine additional
clones that showed no alteration of the targeted loci to be
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Figure 4. Effect of SNVs on the transcriptional response to hypoxia. HEK293T cells were transfected with reporter constructs containing the indicated
variants or their corresponding reference alleles. After transfection, cells were exposed to normoxia or hypoxia for 16 h and processed to determine
luciferase and renilla activities. Each panel represents the results for a regulatory region and the gene nearest to the cloned region is shown as a text inset.
The graphs represent renilla-corrected luciferase activity in hypoxic samples expressed as log2-fold over the activity obtained in normoxic conditions. Each
dot represent the results obtained in a single experiment and segments join the values corresponding to the construct containing the reference (‘Ref’) and
alternate (‘Alt’) variants in the same experiment. The horizontal line marks the value of zero (no induction). The transcription mediated by regulatory
regions containing the reference allele of the SNVs rs546170887 (INSIG1), 156593210 (EGFR), rs72984898 (PPMETI), rs7307261 (SLC2A43), rs1009329
(DNAJBG6), 1s118151281 (ATP9A), rs150921338 (PGKI) and rs45500792 (BCKDH A) were significantly modulated by hypoxia (single sample #-test, P <
0.05). The response to hypoxia of the reference and alternate variants was significantly different (paired ¢-test, P < 0.05) in the case of rs6593210 (EGFR),

151009329 (DNAJBG) and rs150921338 (PGK1).

used as reference controls (Supplementary Table SIV). We
then exposed wild-type (containing reference alleles) and
edited cell clones to normoxia or hypoxia and determined
EGFR and EGLN3 mRNA levels by quantitative PCR to
evaluate the impact of CRISPR-mediated alterations on
the transcription of these genes.

To validate this approach, we first analyzed the conse-
quences of editing the HRE on the induction of EGLN3
mRNA by hypoxia (Figure 6D, left graph) and found that,
in spite of inter-clonal variation, all wild-type clones showed
a robust induction of EGLN3 mRNA in response to hy-
poxia (mean induction of 4.2 times over normoxia). Impor-
tantly, all three EGLN3 cell clones with defective HRE alle-

les showed a reduced EGLN3 response to hypoxia and the
mean induction of EGLN3 in this group was significantly
different to that of the wild-type clones (Student’s z-test
t(4.7) = 5.88, P < 0.01). Moreover, as expected for clones
containing some remaining functional copy of the HRE,
the fold induction of EGLN3 in the heterozygous cells was
circa 0.5 times that observed in the wild-type clones (Figure
6D, left graph), suggesting that the targeted HRE is the only
RCGTG motif that significantly contributes to the regula-
tion of this gene by hypoxia.

Next, we investigated the effect of introducing vari-
ant chr7:55254186G>A (rs6593210) on the induction of
EGFR mRNA by hypoxia. The wild-type EGFR cell
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Figure 5. Transcriptional regulation of the PGK/ gene. (A) Diagram depicting the promoter region of the PGKI locus and showing the RefSeq genes along
with accessible chromatin regions (‘DNase clusters’ track), clusters of transcription factor binding sites (‘Txn Fac ChIP’ track), histone marks associated
to regulatory elements (‘Layered H3K4Mel’ track), histone marks associated to promoters (‘Layered H3K4Me3’ track) and active regulatory elements
(‘Layered H3K27Ac Track’). The different histograms in the histone tracks correspond to the signal obtained in different cell lines (see UCSC for details).
The figure was generated by the UCSC genome browser (72) upon loading custom tracks to indicate the location of HIF binding regions from the references
indicated in Figure 1 (‘Xia-GenBiol’, ‘Xia_.PNAS’, ‘Mole_JBC’) and single gene studies (‘SingleGene’), the genome wide RCGTG motifs (RCGTG’ track)
and the region cloned to assay its transcriptional activity (‘PGK1’ track on top of the diagram). (B) The effect of hypoxia on the transcriptional activity
of the PGKI promoter region was assessed upon transfection of HeLa cells with constructs in which the luciferase was under the control of the wild-type
sequence (‘PGK1 WT’), a sequence containing variant chrX:77359566T>A (rs150921338) (‘PGK1 MUT’) or a mutant sequence with truncated HREs
(‘HRE1*""HRE2*, ‘HRE3*’, numbered from the ATG; HRE2 corresponds to the polymorphic RCGTG motif). The effect of hypoxia on the transcription
of the empty reporter plasmid is also shown (‘PGL4’). The graph represents the normalized luciferase activity in hypoxic samples expressed as fold over
the activity obtained in normoxic conditions. Each symbol represent the results obtained in an independent experiment. The differences between groups
were statistically significant (ANOVA F3 1} = 55.1, P < 0.001) and the mean induction of the WT group was significantly different to that of SNP and
MUT (adjusted P < 0.001) in a posteriori Tukey test.
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Figure 6. Transcriptional regulation of the EGFR gene. (A) Diagram depicting intron 22 of the EGFR locus and the region cloned to assay its transcrip-
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purify 4sU-labeled (‘Newly synthesized’) fraction. Then the expression levels of EGFR, PGKI and RUVBL2 were determined by quantitative PCR in each
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experiments. The induction of EGFR and PGKI by hypoxia was statistically significant in both total (single sample 7-test: 1, = 18, P = 0.003 and #, = 5.7,
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to disrupt the HRE elements within the EGFR and the EGLN3 loci and the genotype of RCGTG motif in each clone was determined by Sanger sequenc-
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clones showed a modest, yet consistent, induction of EGFR
mRNA by hypoxia (mean value of 2.5 times over nor-
moxia). Importantly, the induction of EGFR, in all but
one of the edited cell clones, was reduced and their re-
sponse to hypoxia was outside the 95% confidence inter-
val of the mean induction observed for the wild-type clones
(Figure 6D, right graph). In fact, the mean fold induction
of EGFR in clones with all HREs disrupted was signifi-
cantly lower than that observed for clones with functional
alleles (ANOVA F; 14 =4.987, P < 0.05, pos-hoc Tukey test
P < 0.05). These results indicate that the HRE affected by
variant chr7:55254186G>A (rs6593210) significantly con-
tributes to the transcriptional upregulation of EGFR. Nev-
ertheless, although attenuated, the response of edited clones
is still higher than expected (above 0.5 times of the wild-
type response). Thus, it is likely that other HRE collaborate
with the polymorphic HRE affected by rs6593210 to regu-
late EGFR in response to hypoxia. These ancillary uniden-
tified elements must be located in a regulatory region dis-
tinct from the one cloned in our reporter constructs, be-
cause the response to hypoxia observed for the wild-type
enhancer is completely abolished by the introduction of
the single nucleotide change G to A mimicking the variant
chr7:55254186G> A (rs6593210) (Figure 6E).

Altogether these results indicate that EGFR gene con-
tains an enhancer in its 22nd intron that, probably in com-
bination with other unidentified regulatory modules, con-
tributes to the transcriptional induction of EGFR gene in
response to hypoxia. Furthermore, the transcriptional acti-
vation of this enhancer by hypoxia is mediated by a single
HRE whose activity is completely abrogated by the variant
chr7:55254186G>A (rs6593210).

Frequent polymorphisms are excluded from functional HREs

The analysis presented above resulted in the identifica-
tion of three variants rs1009329 (DNAJB6), rs150921338
(PGK1) and rs6593210 (EGFR) that affect the response
to hypoxia. However, only two of them (rs1009329,
rs6593210) completely prevented the reporter activity. On
the other hand, we also found four variants (rs546170887,
rs45500792, rs72984898 and rs7307261) that did not have
a significant effect on hypoxia-driven transcription, imply-
ing that additional non-variant RCGTG motifs within the
cloned regulatory regions mediate the induction of tran-

scription. Altogether, these results suggest that most poly-
morphic RCGTG motifs are either non-functional or re-
dundant in the induction of transcription in response to hy-
poxia, hinting that frequent polymorphisms might be ex-
cluded from functional HREs. To test this possibility we in-
vestigated whether the proportion of polymorphic RCGTG
motifs varied between motifs mapping inside and outside
HBRs. As shown in Figure 7A, the proportion of RGCGT
motifs affected by SN'Vs was significantly lower in regions
bound by HIF (chi-square = 16.178, P-value = 0.0004998).
In contrast, the distribution of SN'Vs in a scrambled version
of the RCGTG motif (RGCGT) was similar regardless the
location of the motif in HBR (Figure 7B). Altogether these
results suggest that variants affecting functional RCGTG
motifs are under negative selection, which decreases the fre-
quency of polymorphisms at these loci.

DISCUSSION

Genome-wide association studies indicate that a large frac-
tion of the SNVs linked to specific phenotypic traits, in-
cluding increased risk of particular diseases, map to the
non-coding portion of the genome. Moreover, disease-
associated variants are not randomly distributed through-
out the genome but tend to cluster in regulatory regions
such as promoters and enhancers (61). However, even with
the aid of the functional list of elements provided by the EN-
CODE project (49), the interpretation of the significance of
variants in non-coding regions remains challenging. Hence,
it is of great interest to identify variants that have a func-
tional effect and the molecular mechanism behind them.

Herein, we report a curated list of genome-wide HIF
binding regions and characterize the variability of the
RCGTG motifs within them. Although this study is far
from being a comprehensive description of the genetic vari-
ability of all functional HREs in the human genome, to our
knowledge, this is the first attempt to systematically ana-
lyze the inter-individual variability in the transcriptional re-
sponse to hypoxia.

One limitation of our study is that, due to cost-efficiency
and practical reasons, we restricted our study to a subset
of all potential HBR and to frequent variants disrupting
RCGTG motifs within them. These restrictions narrowed
the focus of our analysis to 14 variants. However, we found
many other polymorphisms that could potentially affect the

ing (Supplementary Table SIV). The induction of EGLN3 (right graph) and EGFR (left graph) genes by hypoxia (1% oxygen for 16 h) was determined by
quantitative PCR in each cell clone and represented as the median induction of the gene in several (between 2 and 4) independent experiments, normalized
to the median induction of the wild-type clones. Each dot represents an independent clone and shape represents their genotype. Clones that contain the
reference sequence in the three alleles of the HRE present in HEK293T cells are shown as circles, clones with at least a single functional copy are shown
as squares and clones with non-functional copies are shown as triangles. The specific genotype is represented using different shapes as indicated in the
figure legend. Note that genotypes in the right graph refer to the HRE in the EGLN3 locus and those in the right graph to the HRE in EGFR. The solid
gray line represent the mean of the normalized induction of wild-type clones and the dotted lined the 95% confidence interval of the mean. The line at 0.5
marks a normalized induction half of the expected for the wild-type clones. The difference between the mean induction of EGLN3 in wild-type clones and
those with an impaired copy of the EGLN3 HRE was significant (student’s ¢-test: #4.7 = 5.9, P = 0.0025). the mean induction of EGFR in EGFR in clones
with all HREs copies disrupted was significantly lower than that observed for clones with all functional alleles (ANOVA F; 14 = 4.987, P < 0.05, pos-hoc
Tukey test P < 0.05). (E) The effect of hypoxia on the transcriptional activity of the EGFR enhancer region was assessed upon transfection of HeLa cells
with constructs in which the luciferase was under the control of the wild-type sequence (‘“WT’), a sequence containing variant chr7:55254186:A (‘SNP’) or
a mutant sequence with a truncated HRE (‘MUT’). The graph represents the normalized luciferase activity in hypoxic samples expressed as fold over the
activity obtained in normoxic conditions. Each symbol represent the results obtained in an independent experiment. The differences between groups were
statistically significant (ANOVA F3 11 = 55.1, P < 0.001) and the mean induction of the WT group was significantly different to that of SNP and MUT
(adjusted P < 0.001) in a posteriori Tukey test.
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Figure 7. Association between presence of variants and HIF binding. The
whole set of RCGTG (HRE, panel A) or RGCGT (scrambled version of
the HRE, panel B) motifs found in the human genome were classified ac-
cording to their location in HBR (‘YES’/*NO’ in the categorical variable
‘Maps to HBR’) and the number of motifs in each location harboring SNV
recorded. The figure represents the number of motifs in each combination
of categories (presence/absence of variants and location inside/outside
HBRs). Since the actual number of motifs outside HBRs is very large, to
facilitate visualization, we represent a random sample of 1000 of these mo-
tifs. The colors represent the divergence of the actual numbers from the
expected counts under the null hypothesis of independence between both
variables measured as the Pearson residuals.

response to hypoxia. In this regard, genomic variants in
HBR could alter HIF binding without disrupting the se-
quence of RCGTG motifs, as was described for the regula-
tion of cyclin D by EPASI in renal cancer (22). These poly-
morphisms could exert their effect by, for example, altering
the binding of additional transcription factors in the prox-
imity of an HRE that cooperate with HIF in the transcrip-
tional regulation (62). In addition, we also found some vari-
ants that result in the generation of novel RCGTG motifs
within the HBR. These variants might increase the strength
of the response to hypoxia, as was demonstrated for a poly-
morphism in the chicken PGK1 locus (63). Finally, we also
found polymorphisms that, while keeping a functional mo-
tif, might alter the affinity for HIF such as the change of
ACGTG for GCGTG. All these alterations and their effect
on hypoxia-induced transcription will be addressed in fu-
ture works.

Limitations aside, we attempted the functional character-
ization of all the common variants found in our sequence
analysis that disrupted RCGTGs motifs (Figure 4). These
experiments revealed that 8 out of 10 analyzed regions were
responsive to hypoxia (log ratio hypoxia to normoxia of
the reference allele was significantly different of zero, single
sample z-test, P < 0.05,). The lack of response of in some
of the constructs (regions associated to PFKP, PPMEI
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and RNMT) is puzzling because we defined the regulatory
regions based on multiple independent experimental evi-
dences of HIF binding (see Supplementary Table SI). A
possible explanation for this result is that some of the re-
gions in our list of HBRs could represent chromatin indi-
rectly recruited during ChIP by tethering rather than being
directly bound by HIF, as it has been reported for many
other transcription factors (64). Alternatively, technical is-
sues might explain these results; for example, the selected
region might lack some cis-regulatory elements required for
a proper transcriptional response to hypoxia or the cells
used for the reporter assays might lack a necessary trans-
acting factor. Another interesting case is the region associ-
ated to ATPYA as it represent a HIF-bound regulatory re-
gion whose transcriptional activity is repressed by hypoxia.
Global analysis (21,51,53) have failed to demonstrate a sig-
nificant association between HIF binding and gene down-
regulation. However, it is possible that, in unusual cases, di-
rect HIF binding could lead to transcriptional repression
as suggested for the regulation of CAD and AFP genes by
hypoxia (65,66). Nevertheless, most of the cloned regions
responded to hypoxia albeit with different strengths.

Remarkably, the comparison of the activity of re-
porter constructs carrying the reference and alternate
variants showed that variants rs6593210, rs1009329 and
rs150921338 significantly affected the transcriptional re-
sponse to hypoxia, supporting that genetic variability re-
sults in inter-individual differences in the hypoxia-induced
gene expression profile. It is also noteworthy that, accord-
ing to our data, a single nucleotide change regardless the
position affected in the RCGTG motif results in a complete
lost of function. This result might be of help for the inter-
pretation of the effect of variants found within functional
HREs.

In spite of these positive results, we found that, in most
of the cases, the variants altering RCGTG motifs had no ef-
fect or only a partial effect on the response to hypoxia as in
the case of PGKI. Moreover, detailed analysis of the variant
chr7:55254186G> A (rs6593210) within the EGFR locus re-
vealed that, although the alternate allele resulted in a com-
plete inhibition of the transcriptional activity of the isolated
enhancer, when assayed in the native genomic context, the
variant showed a partial effect. These results are in agree-
ment with our observation of decreased frequencies of poly-
morphisms altering the (wild-type) sequence of HREs in
comparison to non-functional RCGTG motifs and provide
further support to the notion of evolutionary constraint of
functional HREs due to negative selection. This conclusion
is in agreement with the reduced variability observed for
other transcription factors binding sites (49,67).

In view of these results, it is not surprising the lack of evi-
dence for association between the studied variants and phe-
notypes in COPD and OSAS patients (Figure 3), as most
of them do not affect functional HREs (Figure 4). In the
case of the variants that affect the response to hypoxia, we
cannot rule out that the reduced sample size in our study
and/or a small effect size prevented us from finding some
underlying association. In this regard, rs6593210 affects a
functional HRE (Figures 4 and 6E), albeit redundant, and
the alternate allele reduces de induction of EGFR in re-
sponse to hypoxia (Figure 6D). Since activation of the epi-
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dermal growth factor receptor has been implicated in the
overproduction of mucus, one of the hallmarks of COPD
(68-70), the lack of evidence of association between vari-
ant rs6593210 and COPD progression markers should be
taken with caution and future studies should address this
particular question. In addition, the EGFR pathway is crit-
ical for the progression of multiple neoplasias and, intrigu-
ingly, COPD patients have increased risk of developing lung
cancer. Thus, given the results presented herein, it would be
interesting to study the effect of rs6593210 variant in the
progression of cancer in situations where HIF is constitu-
tively active such as ccRCC and lung cancer in COPD pa-
tients.

On the other hand, as indicated above, further work is re-
quired to assess whether variants outside the RCGTG mo-
tifs could alter the response to hypoxia and contribute to
the progression of these diseases. Finally, our study revealed
a large number of low-frequency variants that alter the se-
quence of RCGTG motifs. It would be interesting to inves-
tigate whether these variants affect functional HREs and,
if so, study their potential impact on the phenotype of the
patients.

In summary, in this work we defined a list of HIF-bound
regions supported by several robust experimental evidences
and studied the genetic variability affecting the RCGTG
motifs within them. Although our analysis suggests that
functional HREs tend to be invariant, we found three SNPs
(rs1009329, rs6593210 and rs150921338) that significantly
attenuate the transcriptional response to hypoxia. Thus,
although disfavored by selection, there exists some subtle
variability in the inter-individual response to hypoxia whose
effect on disease awaits further work.
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