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Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can
efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability.
Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the
dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on
adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic
agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of
upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial
prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with
sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas
bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, com-
putational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic func-
tion is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments.
Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness.
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Introduction
Optimal decision-makers choose options associated with the best
outcomes. A powerful strategy for learning the value of different
options is to update values in response to prediction errors (PEs),
that is, the mismatch between predicted and actual outcomes (Sut-

ton and Barto, 1998). Although larger PEs might suggest a greater
need to update values, the size of the PE is meaningless without an
estimate of its precision (i.e., its inverse variance) (Preuschoff and
Bossaerts, 2007). Repeatedly modifying predictions in an attempt to
minimize markedly fluctuating PEs would be suboptimal (Nassar et
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Significance Statement

To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward
outcome, and two brain regions that are modulated by the brain chemical dopamine are sensitive to reward variability. Here, we
aimed to directly relate dopamine to learning about variable rewards, and the neural encoding of associated teaching signals.
We perturbed dopamine in healthy individuals using dopaminergic medication and asked them to predict variable rewards while
we made brain scans. Dopamine perturbations impaired learning and the neural encoding of reward variability, thus establishing
a direct link between dopamine and adaptation to reward variability. These results aid our understanding of clinical conditions
associated with dopaminergic dysfunction, such as psychosis.
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al., 2010). To avoid unstable learning, it is thus essential to compare
PEs to the expected fluctuation in reward value (Preuschoff and
Bossaerts, 2007), and update values more when PEs with higher
precision are encountered. The brain is thought to implement this by
adaptively coding PEs relative to reward variability.

PEs are coded by midbrain dopamine neurons (Schultz et al.,
1997), and adaptive PE coding has been demonstrated in monkey
midbrain dopamine neurons (Tobler et al., 2005). Such neural
adaptation sensitizes the detection of smaller PEs when the out-
come variability (i.e., its SD) is smaller (Kobayashi et al., 2010).
We have recently shown that humans weight PEs relative to re-
ward variability to guide learning. This is reflected in higher
learning rates when reward variability is lower (Diederen and
Schultz, 2015). The activity in the midbrain and ventral striatum,
areas that are part of the mesolimbic dopaminergic pathway, is
sensitive to this reward PE adaptation and the degree of neural
adaptation correlates with behavioral adaptation, thus establish-
ing a direct relationship between neural and behavioral measures
of adaptation (Diederen et al., 2016).

Although the above observations strongly suggest a critical
role for dopamine in adaptive coding in humans similar to mon-
keys, thus far there is no direct evidence to support this. We
therefore sought to more directly investigate the role of dopa-
mine in adaptive PE coding in humans, using fMRI in conjunc-
tion with a dopamine D2 antagonist (sulpiride) and D2 agonist
(bromocriptine), to produce perturbations of dopaminergic
function in healthy volunteers engaged in a task requiring PE
adaptation. We administered dopaminergic agents with high af-
finity for D2 receptors as these receptors are densely distributed
in the mesolimbic dopaminergic pathway, which is implicated in
PE coding (Grace, 2002; Pizzagalli et al., 2008). D2 receptor den-
sity is highest in the basal ganglia, but these receptors are also
expressed in the midbrain (Aghajanian and Bunney, 1977; Lacey
et al., 1987; Mercuri et al., 1992). We used a previously validated
task (Diederen and Schultz, 2015; Diederen et al., 2016) that
required participants to predict the magnitude of rewards drawn
from distributions with different SDs. On each trial, an explicit
prediction and outcome are available, from which trial-by-trial
PEs can be obtained. In addition to examining learning perfor-
mance, we can obtain a measure of behavioral adaptation by
fitting a computational model to the observed predictions, and
neural adaptation, which is reflected in decreased PE coding
slopes as SD increases. The study design therefore permitted the
examination of dopamine agonism and antagonism on learning
performance and behavioral and neural adaptation of PEs.

We found that the dopamine antagonist sulpiride reduced adap-
tive PE coding in the midbrain and ventral striatum, suggesting that
normal dopaminergic function is critical for this process. Whereas
this effect was apparent across positive and negative PEs in the mid-
brain, sulpiride selectively impaired adaptive coding of positive PEs
in the ventral striatum. Sulpiride also impaired learning perfor-
mance in parallel with adaptive coding, supporting the hy-
pothesis that PE adaptation benefits performance.

Materials and Methods
Participants. Sixty-three healthy individuals were recruited into this
pharmacological fMRI study through local advertisements. Participants
consisted of university students and academics (N � 38) as well individ-
uals from the local community (N � 21). The majority of individuals
from the local community (17 of 21) had obtained an undergraduate
university degree or higher. All participants were fluent English
speakers, had no history of neurological or psychiatric illness or drug
abuse, and were not using any psychoactive medication. The study

was approved by the Local Research Ethics Committee of the Cam-
bridgeshire Health Authority. Written informed consent was ob-
tained from all participants.

Pharmacological perturbation. In a double-blind placebo-controlled
design, participants received a single oral dose of bromocriptine 2.5 mg
(dopamine D2 agonist; N � 20), sulpiride 600 mg (D2 antagonist; N �
22), or placebo (N � 21). We used a between-subjects design as learning
during initial sessions can interact with learning during later sessions in a
within-subjects design. Because adaptive coding effects tend to be subtle,
we used higher doses of bromocriptine and sulpiride compared with
previous studies (Cools et al., 2009; Dodds et al., 2009; Morcom et al.,
2010; Medic et al., 2014). Although a higher incidence of side effects
might be expected with high doses of sulpiride, doses of 800 mg have been
used in healthy controls without significant side effects (Takano et al.,
2006; Eisenegger et al., 2014).

Study procedure. Participants attended the Clinical Research Facility at
Cambridge Biomedical Campus for a single study session. They arrived at
the Clinical Research Facility between 0800 and 0900, except for one
participant who arrived at 1100. Participants were informed that they
would receive breakfast at the Clinical Research Facility and to abstain
from food on the morning of the study, unless fasting would make them
feel unwell. Upon arrival and provision of consent, participants gave a
urine sample to test for recent drug use, and for pregnancy in the
female participants. Weight, height, blood pressure, body temperature,
and pulse rate were measured. Participants completed visual analog
scales to indicate their mood and alertness at the start of the study (Bond
and Lader, 1974), and a trained psychiatrist obtained a baseline measure-
ment for the rating of extrapyramidal side effects (Simpson and Angus,
1970). The participants then completed the National Adult Reading Test
(Nelson and Willison, 1991) and digit span backwards (Wechsler, 1958)
to measure verbal IQ and working memory.

Thirty minutes after arrival, participants received either an experimental
drug or placebo, along with 10 mg of the peripheral dopamine antagonist
domperidone to prevent nausea, in line with reported procedures (Morcom
et al., 2010; Medic et al., 2014). This was critical to the double blinding as
nausea would be indicative of the administration of an active drug.

After drug administration, participants received a standardized
breakfast to minimize variability of drug absorption. Following this,
participants filled out a number of personality questionnaires (not re-
ported here) and completed training on the experimental task. The visual
analog scales for mood and alertness, examination for extrapyramidal
side effects, measurement of blood pressure, temperature and pulse rate,
and blood sampling were repeated 2 h after dosing. We collected blood
samples to allow for quantification of drug plasma levels to be able to
check the effectiveness of our drug manipulations.

fMRI scans were acquired �2.5 h after dosing to capture the window
of maximal drug effect. Bromocriptine reaches peak plasma levels 1–3 h
after dose, with a half-life of �15 h, whereas sulpiride reaches its maximal
plasma concentration �3 h after dose and has a plasma half-life of �12 h
(Wiesel et al., 1980; Caley and Weber, 1995; Kvernmo et al., 2006; Medic
et al., 2014). Participants received a flat fee of £50 for their participation
plus up to £15 in prize money, depending in part on their performance
on the task (see below).

Experimental task design. During fMRI data acquisition, participants
guessed the magnitude of upcoming rewards drawn from one of six
pseudo-Gaussian distributions with a SD of £5, £10, or £15 and an ex-
pected value (EV) of £35 or £65 (31 trials per reward distribution) (Die-
deren and Schultz, 2015; Diederen et al., 2016). After each prediction,
participants received a reward, yielding trial-by-trial PEs (Fig. 1A). Par-
ticipants completed three task sessions, and every session used two re-
ward distributions drawn pseudo-randomly from the six distributions.
Importantly, we ensured that the two distributions in a session never had
the same EV and/or SD.

Distributions were presented in short blocks of 4 – 6 trials. Explicit
cues (i.e., Fig. 1A, gray vertical rectangles intersected by 2 horizontal
green bars) signaled whether rewards would be drawn from a distribu-
tion with a small, medium, or large SD. Importantly, the cues only indi-
cated the relative degree of variability and not the actual SD of the reward
distributions, and they contained no information about the EV of the
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rewards. After cue presentation, the participants had 3500 ms to indicate
their prediction of reward with a trackball mouse. The blue mouse cursor
could be moved across a vertical scale that indicated the range of possible
predictions (£0-£100). The starting position of the cursor varied ran-
domly across trials so as to decorrelate prediction magnitude from scroll-
ing distance. The vertical scale disappeared once the participants had
indicated their prediction with a mouse click. After a variable delay of
2100 –5250 ms (sampled from a uniform distribution), which was in-

cluded to allow BOLD responses for prediction and reward to be differ-
entiated, the received reward was displayed as a green line on the vertical
scale, along with the participant’s predicted reward on that trial. Further-
more, the PE was represented as a yellow bar spanning the distance
between the predicted and received rewards. Failure to make a timely
prediction led to omission of the reward. Inspection revealed that PEs
increased as SD increased, indicating that the experimental manipulation
was successful (F(2,174) � 83.39, p � 0.001; Fig. 1B).

Figure 1. A, Participants predicted the magnitude of upcoming rewards as closely as possible from the past reward history. Vertical bar cues signaled whether rewards would be drawn from a
distribution with small, medium, or large variability. After stating their prediction, participants received a reward, displayed in green. Yellow bar, spanning the distance between the predicted and
the received reward, represents the reward PE. B, The average (�SEM) PEs increased as SD increased, thus indicating that the experimental manipulation was successful. C, The average (�SEM)
magnitude of PE coding slopes increased for negative compared with positive PEs in the midbrain (left) and ventral striatum (right). D, Midbrain and ventral striatal ROIs. To construct these ROIs, we
drew spheres centered at MNI coordinates in the SN/VTA (�8, �18, �10 and 8, �18, �10) and ventral striatum (18, 1, �10 and 18, 1, �10) and their contralateral homologs that corresponded
to areas displaying significant adaptive coding in an independent set of data (Diederen et al., 2016). The radii (6/8 mm for the midbrain/ventral striatum) were chosen to ensure that the spheres fell
within the anatomical boundaries of the midbrain SN/VTA complex and the ventral striatum. a.u., arbitrary units; MB, Midbrain; Neg., Negative; Param. est., Parameter estimates; PE, prediction
error; Pos., Positive; RT, reaction time; SD, standard deviation; Vstr, Ventral striatum.
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Task instructions. We used a standardized tutorial, presented using
MATLAB (The MathWorks), to instruct participants that the goal of the
experiment was to predict the next reward as closely as possible from the
past reward history. The tutorial informed the participants that rewards
were drawn from “pots” (i.e., distributions) with small, medium, or large
variability as indicated by the cues and that each task session would
require them to alternatingly predict from one of two “pots.” Finally, we
indicated that all changes in condition would be signaled using the bar
cues so that participants were only unaware of the exact parameter values
of the task (i.e., the frequency of alternation between the two distribu-
tions within a session as well as the SDs and EVs used).

Practice sessions. Before the start of the fMRI scans, all participants
completed a short motor task to familiarize themselves with the trackball
mouse (Diederen and Schultz, 2015; Diederen et al., 2016). In addition,
the participants completed two training sessions of the experimental task
to ensure that they understood the task. The training sessions used re-
ward distributions with an SD and EV that differed from those used in the
fMRI task (i.e., SD, £7/£14 and EV, £30/£60).

Incentive compatibility. To ensure that participants would indicate
their true prediction of reward, 20% of the trials were control trials,
which were pseudorandomly interspersed across the session. In these
control trials, the pay-off depended on participants’ performance (i.e.,
how close they were to the EV of the distribution; �prediction � EV�).
Predictions within 1 and 2 SDs of the EV resulted in a pay-off of £7.50 and
£5.00, respectively, whereas all other predictions led to a pay-off of £2.50.
In the test trials (80%), the pay-off was a fraction (10%) of the reward
drawn by the computer. While participants were informed beforehand of
the presence of control trials in the task, critically the type of trial was only
revealed at the outcome phase, when on the control trials the reward was
indicated in red instead of green, thus encouraging participants to optimize
their performance on all trials. Participants were told that, at the end of the
experiment, one control and one test trial would be selected randomly and
they would receive the money gained on these 2 trials as an additional pay-
ment. This design motivated the participants to consider rewards drawn by
the computer as actual rewards. All analyses included the main test (80%)
and the control trials (20%) as previous work has shown that participants use
the reward history from all available trials to predict upcoming rewards and
favor higher outcome trials (Diederen et al., 2016).

fMRI acquisition and preprocessing. fMRI data were obtained at the
Wolfson Brain Imaging Center, Cambridge, using a Siemens Trio 3T
MRI scanner. We acquired 360 multiecho gradient-echo EPI T2

*-weighted
images depicting BOLD contrast for each session of the behavioral task
(Poser et al., 2006). We used the following parameters for obtaining
BOLD images: 30 axial slices (3.78 mm slice thickness), TR 2100 ms, TEs:
12/27.91/43.82/59.73 ms, flip angle 82°, FOV 14.4 � 14.4 cm, matrix
64 � 64, in-plane resolution 3.75 � 3.75 mm. Importantly, imaging at
multiple echo times has the potential to increase sensitivity in brain regions
that are typically subject to strong image distortions, including the inferior
prefrontal cortex and temporal lobe (Poser et al., 2006). Each participant
completed three sessions of the task, resulting in 1080 volumes per partici-
pant. After scanning, we combined images acquired with different TEs into a
single image with optimal sensitivity by applying voxelwise weighted echo
summation based on local T2

* To improve localization of the functional data,
a high-resolution anatomical scan was acquired during the same scan session
(T1: MPRAGE; TR/TE 2.98/2300 ms, 1 � 1 voxels, slice thickness 1 mm, flip
angle 9°, FOV 24 � 25.6 mm, 176 slices).

Behavioral analyses. To determine whether dopamine modulated be-
havior on the task, we first investigated the effect of dopamine on task
performance, the number of missed task trials, response time, and the
distance between the initial appearance of the prediction bar and
participants’ final bid. Performance (error) was defined as the abso-
lute difference between the mean of reward distributions and partic-
ipants’ predictions across all trials for each SD condition as the mean of
the reward distribution would be the most accurate prediction on this
task. All tests were conducted using parametric statistics (i.e.,
ANOVA’s and Pearson correlations) because these variables were
normally distributed.

Computational modeling of task behavior. Detailed computational
modeling of two independent datasets conducted previously showed that

participants’ behavior on this task can be successfully predicted using a
variant of the Pearce-Hall (PH) reinforcement learning model (Pearce
and Hall, 1980; Li et al., 2011) that scales PEs relative to reward variability
(Diederen and Schultz, 2015; Diederen et al., 2016). This model performs
particularly well as the PH dynamic learning rate enables participants to
establish stable predictions in the face of continuing PEs, and the PE
scaling relative to SD allows participants to restrain learning when PEs
fluctuate more. We first sought to confirm whether the adaptive PH
model (model 4, see below) also successfully predicted participants’ be-
havior in the current study. With this aim, we used formal model com-
parisons (see below) to compare this model with a set of related
reinforcement learning models (Diederen and Schultz, 2015; Diederen et
al., 2016).

For each model, we consider the case in which participants’ predic-
tions (y) are assumed to result from a recursive generative process as
follows:

yn � yn�1 � kn�n (1)

Here, kn denotes the learning rate and �n denotes the PE on trial n. The
different reinforcement learning models varied in the calculation of the
learning rate, which indicates the degree to which the PE on trial n is used
to update the prediction on trial n � 1.

1. Rescorla-Wagner 1 (RW#1). We first consider the most basic
reinforcement-learning rule: an RW model, in which participants update
their predictions as a constant fraction, termed the learning rate, of the
PE (Rescorla and Wagner, 1972):

kn � � (2)

2. RW#2. As a number of studies have reported a selective effect of do-
paminergic agents on learning from positive outcomes (Pessiglione et al.,
2006; van der Schaaf et al., 2014), we subsequently implemented an RW
model (Rescorla and Wagner, 1972) with separate learning rates for pos-
itive and negative PEs to participants’ prediction sequences, in keeping
with previous work (Diederen et al., 2016) as follows:

kn � � k�, �n � 0
k	, �n � 0 (3)

where k� and k	 are the asymmetric RW learning rates.
3. PH#1. We subsequently compared this model with a PH model with a

decreasing learning rate, which enables participants to achieve stable predic-
tions in the phase of continuing PEs. A dynamic learning rate is essential
when rewards are drawn from a Gaussian process as a constant (RW) learn-
ing rates interfere with the acquisition of stable predictions as follows:

kn � �C � �n�1 � � (1 	 �)kn�1 (4)

Here, ��� denotes the absolute PE, and C is an arbitrary scaling coefficient.
The recursive process is initialized with the initial learning rate k0 � �.
The learning rate depends on the absolute PE and learning rate on pre-
vious trials and on the decay constant �.

4. PH#2. Finally, to account for the potential effect of SD in the PH
model, we scaled the PE relative to log(SD) of the reward distributions, in
line with previously documented procedures (Diederen and Schultz,
2015; Diederen et al., 2016) as follows:

kn � �C � �n�1 � /
 � (1 	 �)kn�1


 � 
1 	 �� � �log(SD)/D (5)

Here, kn denotes the learning rate on trial n, and C and D are arbitrary
scaling coefficients. As previously, we estimated the extent of PE scaling
(0 � � � 1) for each participant across all SDs (Diederen and Schultz,
2015; Diederen et al., 2016). v � 0 indicates an absence of PE scaling,
whereas v � 0 indicates the presence of PE scaling. k1 and � are free param-
eters that are fitted to participants’ prediction sequences. Importantly, pre-
vious work showed that this model outperformed other models as the PH
dynamic learning rate enables participants to establish stable predictions in
the face of continuing PEs, and the PE scaling relative to SD allows partici-
pants to restrain learning when PEs fluctuate more.
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We fitted the free parameters 
 to the subjective predictions Y by maxi-
mizing the likelihood p(Y�
) � �

m
M p(ym�
), where p(ym�
) � N(
m, �̂2),

and Y � [y1 y2 . . yM] are the subjective predictions. We used a combina-
tion of nonlinear optimization algorithms implemented in MATLAB to
estimate the free parameters to each participant’s full dataset over the
trials of all conditions. The parameters from the winning model were
subsequently extracted and analyzed for drug effects.

To determine which learning parameters, derived from the best per-
forming reinforcement learning model, might have affected learning
performance, we performed a linear regression analysis with overall per-
formance error (i.e., averaged across all conditions) as the dependent
variable, estimated learning parameters as independent variables, and
treatment group as a covariate.

fMRI preprocessing. Statistical parametric mapping (SPM8; Wellcome
Department of Cognitive Neurology, London) and MATLAB were used
to analyze fMRI data. Preprocessing included within-subject image re-
alignment, voxelwise weighted echo combination (summation based on
local T2

* measurements) (Poser et al., 2006), coregistration of functional
images with the T1-weighted anatomical scan, spatial normalization to
the MNI template in SPM8 (Ashburner and Friston, 2005), and spatial
smoothing using an 8 mm FWHM Gaussian kernel for the ventral striatal
region of interest (ROI; see below) and a 4 mm FWHM for the midbrain
ROI (in keeping with the small size of this region). The time-series in
each session were high-pass filtered (1/145 Hz), and serial autocorrela-
tions were estimated using an AR(1) model.

fMRI first-level data analyses. To examine adaptive coding, at the first
level, a single regression model was created for each participant (Die-
deren et al., 2016). Cue onset, prediction onset, and reward onset were
modeled as events of zero duration, separately for each SD condition.
Reward onset events were modeled separately for trials with positive and
negative PEs as BOLD responses in the human midbrain and striatum
tend to be more pronounced for negative compared with positive PEs
(D’Ardenne et al., 2008; Liu et al., 2011; Diederen et al., 2016). Reward
onsets were parametrically modulated with trialwise reward outcome
value and PE. The PE parametric modulator was orthogonalized with
respect to the outcome value regressor to ensure that this parametric
modulator captured BOLD responses that varied with PEs, indepen-
dently of reward magnitude. Initial inspection of PE slopes confirmed an
increase in the magnitude of PE slopes for positive compared with neg-
ative PEs in the midbrain (T(56) � �2.19, p � 0.017) and ventral striatum
(T(56) � �1.77, p � 0.041) ROI (for a description of the ROIs, see below;
Fig. 1C). Additional covariates were included for error trials (no response
within 3500 ms) and the prediction time (response time from cue onset
to prediction) in nonerror trials. All events of interest and covariates were
convolved with the standard hemodynamic response in SPM8. Finally,
the realignment parameters were included as regressors of no interest to
model movement related artifacts. All regressors were fitted to the data
using GLM estimation.

fMRI second-level data analyses. A two-step approach was taken for the
second-level analyses. In the first step, we determined whether the pre-
viously reported adaptive coding effect was replicated (Diederen et al.,
2016) by examining the placebo group. In line with previous work (Die-
deren et al., 2016), adaptive PE coding was defined as an increase in PE
regression slopes for smaller compared with larger SDs (SD5 � SD10 �
SD15), reflecting a greater sensitivity to small changes in PEs in distribu-
tions with lower SDs (Kobayashi et al., 2010). As we have previously
shown, this relationship (SD5 � SD10 � SD15) is nonlinear, and each
level was therefore weighted by the inverse of the SD (Diederen et al.,
2016). We then sought to examine the effect of dopaminergic manipula-
tion on this adaptive coding effect. All analyses were restricted to the a
priori ROIs of the midbrain and the ventral striatum. Additional explor-
atory whole-brain analyses were also performed.

ROIs: PE adaptation. We have previously shown in an independent
dataset that PEs are adaptively coded in the human midbrain (SN/VTA
complex) and ventral striatum (Diederen et al., 2016). We therefore
focused our main comparisons on these ROIs, and this is in line with
previous studies investigating dopaminergic perturbations (Pessiglione
et al., 2006; Chowdhury et al., 2013). ROI masks were created as spheres
centered on the peak coordinates of clusters that previously showed ro-

bust PE adaptation in the midbrain (�8, �18, �10; 8, �18, �10 and
ventral striatum (�18, 1, �10; 18, 1, �10) in an independent sample of
healthy individuals who performed the same task (Diederen et al., 2016)
(Fig. 1D). For the ROI spheres, the radii (6/8 mm for the midbrain/
ventral striatum) were chosen to ensure that the spheres fell within the
anatomical boundaries of the midbrain SN/VTA complex and the ventral
striatum. We focused our main comparisons on these functional, rather
than anatomical, ROIs because anatomical areas might contain multiple
functional loci. However, to determine the robustness of any observed
significant effects, we repeated ROI analyses using anatomical masks for
the midbrain SN/VTA complex and the ventral striatum. The SN/VTA
complex was drawn on a normalized high resolution magnetic transfer
image acquired using the same MRI scanner as the functional MR images
(Gruber et al., 2014). For the anatomical definition of the ventral stria-
tum, we used a mask of the nucleus accumbens as included in the
IBASPM toolbox (Aleman-Gomez et al., 2006).

ROIs: instructional cues signaling reward variability. As we had no
strong a priori hypotheses about brain areas encoding the instructional
cues that predicted reward variability, we explored the effect of dopami-
nergic modulation on the neural responses to the cues using a leave-one-
subject-out approach (Esterman et al., 2010). We restricted the analysis
to a set of anatomical regions that have been implicated in the signaling of
instructional cues including cues on reward variability (Preuschoff et al.,
2006; Atlas et al., 2016), namely, the insula, anterior cingulate cortex
(ACC) and middle frontal gyrus (MFG). In the leave-one-out approach,
a single subject is iteratively left out of the first-stage group analysis. The
resulting group analyses return ROIs that serve as an independent func-
tional localizer for the subject left out. The peak coordinates in the insula,
ACC and MFG, for each (left-out) subject were used to define spherical
ROIs of 8 mm diameter for that subject.

Examination of adaptive coding in the placebo group. Linear contrasts
on regression coefficients of interest from the first level were entered into
a second-level, random effects, repeated-measures ANOVA. The key
contrast of interest was the main effect of PE adaptation (SD5 � SD10 �
SD15) as a nonlinear contrast weighted by SD �1 (Diederen et al., 2016).
This contrast revealed regions where BOLD responses to positive and
negative PEs varied more strongly with PEs when the SD was smaller,
independent of outcome value. For these analyses, we applied small-
volume corrections (SVCs) in SPM8 with the midbrain and ventral stria-
tum combined into one ROI, even though we used different smoothing
kernels for these regions, to ensure that corrections for multiple compar-
isons were conducted across all voxels in both areas. For the SVCs, we
considered activations significant at p � 0.05 family-wise error (FWE)
corrected. For completeness, we also explored whole brain effects of
adaptive PE coding in the placebo group, and these results are reported at
p � 0.05, FWE corrected at both the cluster and voxel level.

Examination of dopaminergic modulation of adaptive coding. For the
between-group ROI analyses, the adaptive coding contrast (SD5 �
SD10 � SD15, nonlinear contrast weighted by SD �1) was generated at
the first level for each participant across both positive and negative PEs.
Parameter values for this contrast were extracted and averaged across all
voxels in the ROIs using MATLAB scripts. The extracted parameter esti-
mates were entered into subsequent statistical analyses in MATLAB. As
these measures were not normally distributed, the between-group com-
parisons were conducted using nonparametric tests. To limit the number
of multiple comparisons, we only used post hoc tests between the placebo
group and each of the experimental groups. Thus, the Bonferroni-
corrected threshold for significance was p � 0.025 for all post hoc tests.

To examine whether there was a selective modulation of positive predic-
tion error coding in the ventral striatum by dopaminergic agents, we exam-
ined this using an adaptive contrast as above, but restricted to the positive
PEs.

To investigate whether increases in adaptive PE coding in the midbrain
or ventral striatum were associated with improvements in task perfor-
mance, we calculated Spearman correlations between adaptive PE coding
and overall performance error.

Working memory and dopaminergic modulation. As previous studies
have shown that baseline working memory performance can mediate the
influence of dopaminergic medication on the neural correlates of cogni-
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tive tasks (Kimberg et al., 1997; van der Schaaf et al., 2014), we examined
whether working memory capacity (estimated using the digit span back-
wards) mediated behavioral and neural adaptation to reward variability.
For the behavioral adaptation, we conducted an additional analysis that
included working memory as a covariate. For the neural data, we calcu-
lated simple nonparametric (i.e., Spearman) correlations between work-
ing memory and adaptive coding in the midbrain and ventral striatum as
the neural data did not meet assumptions for normality.

Results
Fifty-eight participants were included in the behavioral analyses
and 57 in the fMRI analyses (19 per group). Complete data were
unavailable for 5 participants due to �30% missed task trials
(N � 1; bromocriptine group), nausea (N � 1; sulpiride group),
back pain (N � 1, sulpiride group), anxiety (N � 1; sulpiride
group), and neck pain and MRI reconstruction problems (N � 1;
placebo group). These 5 participants were excluded from all anal-
yses, and an additional participant was excluded from the fMRI
analyses because of left-handedness (N � 1; placebo group). The
included participants in each group were matched for age, sex,
years of education, working memory capacity as assessed with the
Wechsler reverse Digit Span task (Wechsler, 1958), verbal IQ
assessed using the National Adult Reading Test (Nelson and Wil-
lison, 1991), and BMI (Table 1). In addition, in each group par-
ticipants experienced similar changes in mood between dosing
and MRI data acquisition (Bond and Lader, 1974) (Table 1).
None of the participants experienced significant extrapyramidal
side effects as assessed by a trained psychiatrist using the Simpson
Angus scale (Simpson and Angus, 1970). However, due to fMRI
acquisition issues, the time between dosing and the start of the
fMRI scans differed on trend level (p � 0.099) between the three
groups (Table 1). When only the two active drug groups were
compared, this difference was significant (� 2

(36) � 4.08, p �
0.0434). To control for the timing of dosing, we quantified and
removed the variance explained by this variable using simple
regressions. Specifically, the time between dosing and the start of
the fMRI scans was the predictor, and the outcome variable of
interest was the dependent variable in these regressions. Subse-
quent group comparisons were conducted on the residuals of
these regressions. We used this procedure for all behavioral and
fMRI outcome variables, except for tests comparing percentages.

Task performance
To determine whether the dopaminergic manipulations affected
task performance, we first inspected participants’ performance
error, quantified as the absolute difference between each partici-
pant’s predictions and the mean of the reward distributions
across all three SD conditions. Importantly, performance error

was significantly modulated by dopaminergic perturbation (F(2,165) �
5.41, p � 0.005; Fig. 2A), and post hoc testing revealed that per-
formance was significantly reduced in the sulpiride group com-
pared with placebo (p � 0.003), whereas bromocriptine
decreased performance on trend level (p � 0.072). When the SD
conditions were considered separately, performance error mono-
tonically increased with SD in the placebo and bromocriptine
groups, but this distinction was less clear in the sulpiride group
(Fig. 2B). However, this effect was not statistically significant (i.e.,
the SD � treatment group interaction was not significant; F(4,165) �
0.28, p � 0.89). However, it is important to note that performance
error reflects the influence of multiple learning parameters and not
PE scaling alone (see below).

The total number of missed task trials did not differ signifi-
cantly between the experimental groups (F(2,55) � 0.56 p �
0.576). It is therefore unlikely that differences in the number of
missed trials account for the difference in task performance be-
tween the groups. To determine whether the dopaminergic effect
on task performance could be related to subtle drug-induced
motor symptoms, we inspected response times. As expected, re-
sponse times varied with the distance between the initial point of
the prediction bar on the scale (which was randomized) and par-
ticipants’ predictions (i.e., the scroll distance; r � 0.43, p �
0.001). After accounting for the effect of scroll distance, response
times did not significantly vary with treatment group (F(2,54) �
2.03, p � 0.141). In addition, scroll distance was similar for the
three groups, thus suggesting that the dopaminergic agents did
not influence participants’ motivation to reveal their true predic-
tion of reward (F(2,55) � 2.37, p � 0.103).

Computational modeling
Formal model comparisons using Akaike and Bayesian informa-
tion criteria confirmed that participants’ behavior was best fit by
the adaptive PH model that includes a decay in learning rate
across trials and scaling of PEs relative to the variability in reward
(for model comparisons, see Table 2). Based on the superior fit of
this model, we used the above parameters in subsequent behav-
ioral analyses.

Simple regressions were then performed to determine how
closely predictions generated under the adaptive PH model
tracked participants’ prediction sequences in each group. A direct
comparison of the groups revealed that under dopaminergic per-
turbation, the adaptive PH model (PH#2) did not predict partic-
ipants’ behavior as well as under placebo F(2,54) � 3.28, p � 0.045.
This effect was driven by a lower R 2 (averaged over all task con-
ditions) in the sulpiride group compared with placebo (post hoc
tests: placebo vs sulpiride, p � 0.022; placebo vs bromocriptine,
p � 0.136; Fig. 2C). Working memory capacity did not modulate
the effect of dopaminergic perturbation on behavioral adaptation
(F(1,53) � 0.24, p � 0.624).

Under this model, the differences in the sulpiride group could
relate to the SD scaling parameter, learning rate or decay (of
learning rate) parameter, or a combination of these. The linear
regression showed that the presence/absence of PE scaling (p �
0.014), initial learning rate (p � 0.004), and decay in learning rate
(p � 0.042) all significantly impacted on performance error. Per-
formance error decreased with the presence of PE scaling, higher
initial learning rates, and lower decay in learning rate (Fig. 2D). A
larger proportion of participants in the sulpiride group (8 of 19)
did not scale PEs relative to SD, as indicated by the estimated
scaling parameter (�) of 0, compared with the placebo group
(2/20 (� 2

(1) � 5.27, p � 0.0217; Fig. 2E). The learning rate
differed on trend level between the sulpiride and the placebo

Table 1. Demographic information of the participant groupsa

Bromocriptine
(N � 19)

Placebo
(N � 19)

Sulpiride
(N � 19)

Mean SEM Mean SEM Mean SEM F(�2) p value

Age 24.00 0.91 23.9 1.1 24.9 1.0 0.27 0.77
Time dosing fMRI 168.5 2.1 166.9 2.1 160.8 3.5 2.35 0.10
Gender 10 M 9 F 9 M 10 F 11 M 8 F 0.42 0.81
BMI 24.5 1.0 22.4 1.0 22.7 0.6 1.65 0.20
Education (years) 14.8 0.5 15.1 0.5 14.7 0.6 0.17 0.84
NART 18.9 1.8 16.1 1.4 18.7 2.1 0.73 0.48
Digit span 6.8 0.9 6.1 0.3 5.8 0.3 0.71 0.50
BL alertness �1.7 1.0 �1.2 0.7 �1.7 1.3 0.10 0.90
BL calmness 0.1 0.4 �0.4 0.9 0.5 0.5 0.43 0.65
BL contentedness 0.7 0.3 �0.4 0.5 0.3 0.6 1.52 0.23
aNART, National Adult Reading Test; BL, Bond and Lager. SEM, Standard error of the mean.
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group (T(37) �1.78, p�0.084; Fig. 2F), andtherewerenodifferences
in the decay parameter (T(37) � 0.36, p � 0.718). This suggests that
decreases in performance, as observed in the sulpiride group, are at least
partially related to a failure to scale PEs to the variability in rewards.

Finally, we examined whether there was a selective effect of
dopaminergic perturbation on learning from positive PEs. To
this end, we first used the RW reinforcement-learning model
with separate learning rates for positive and negative PEs to par-

ticipants’ prediction sequences (Pessiglione et al., 2006; Diederen
et al., 2016). There was no significant interaction between group
and the sign of the PE (F(2,110) � 0.10, p � 0.905), and the learn-
ing rates for positive PEs did not differ between the treatment
groups (F(2,55) � 0.16, p � 0.855).

We then examined the decrease in learning rate across the SD
conditions, which provides an alternative measure of behavioral
adaptation (Diederen et al., 2016), separately for positive and
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negative PEs. Behavioral adaptation did not vary with the sign of
the PE (i.e., the decrease in learning rate � PE sign F(2,110) � 0.67,
p � 0.512). Thus, the behavioral effect of dopamine on partici-
pants’ behavior was not selective for positive PEs.

Neural adaptation to reward variability
We first sought to replicate our previous findings on adaptive PE
coding in the placebo group. Ventral striatal and midbrain activ-
ity increased with increases in PE magnitude in the SD5 condi-
tions compared with SD10 and SD15 conditions, in line with the
notion of adaptive coding (16, 0, �6, Z � 3.17, p � 0.05 FWE,
SVC and �3, �22, �10, Z � 3.13, p � 0.05 FWE SVC for the
ventral striatum and midbrain, respectively; Fig. 3A,B). Whole-
brain analyses (p � 0.05 cluster level) revealed additional adap-
tive coding in three clusters, including the superior temporal
gyrus, the claustrum and insula, the lentiform nucleus, the thal-
amus, the cingulate gyrus, and the MFG (Fig. 3A; Table 3). These
findings are highly comparable with those previously reported in
an independent dataset (Diederen et al., 2016), suggesting that
the adaptive effect is replicable and robust. When we repeated
these analyses across all of the groups, no significant effect of
adaptation could be observed in either the a priori defined ROIs
or on whole brain (all p values � 0.1).

Dopaminergic perturbation modulates adaptive coding. Here
we examined the adaptive coding contrast (SD5 � SD10 � SD15;
nonlinear contrast weighted by SD�1) from all participants. In-
creases in this contrast indicate increases in the differential effect
of SD on PE coding and suggest a greater sensitivity to changes in
SD. An ROI analysis on the adaptive coding parameter estimates
confirmed the presence of significant adaptive coding in the pla-
cebo group in both the midbrain (z � 1.73, p � 0.04) and the
ventral striatum (z � 2.33, p � 0.01; Fig. 4). Direct comparisons
of the adaptive coding contrasts across the three groups showed
that dopaminergic perturbation significantly altered adaptive PE
coding in the midbrain (� 2

(2,54) � 8.26, p � 0.016; Fig. 4A), but
only on trend level in the ventral striatum (� 2

(2,54) � 4.62, p �
0.099; Fig. 4B). Post hoc tests revealed that the effect in the mid-
brain was driven by sulpiride and that bromocriptine did not
alter adaptive coding (p � 0.005/p � 0.55 for sulpiride/bro-
mocriptine vs placebo). Additional analysis using an anatomical
definition of the SN/VTA complex (see Materials and Methods)
confirmed reduced midbrain adaptive PE coding in the sulpiride
compared with the placebo group (� 2

(1,36)� 4.6, p � 0.032).
As the effect of dopaminergic modulation in the ventral stria-

tum has been shown to be more selective for positive PEs, we
examined the adaptive coding of positive PEs alone. These anal-
yses revealed significant alteration in ventral striatal adaptation
for positive PEs (� 2

(2,54) � 6.07, p � 0.048; Fig. 4C), whereas

adaptation for negative PEs was unaltered by dopamine (�2
(2,54) �

0.65, p � 0.724). This effect on positive PEs was driven by a
decrease in adaptive coding of positive PEs in the sulpiride group
(p � 0.026), whereas bromocriptine did not affect adaptive cod-
ing of PEs in the ventral striatum (p � 0.75). Parameters ex-
tracted from an anatomical definition of the substantia nigra
confirmed this result (� 2

(1,36)� 4.24, p � 0.040). Thus, these re-
sults suggest that sulpiride perturbed adaptive prediction coding
across positive and negative PEs in the midbrain and for positive
PEs alone in the ventral striatum.

Midbrain adaptive coding did not vary with working memory
performance in either the bromocriptine (� � �0.09, p � 0.71)
or the sulpiride group (� � �0.11, p � 0.67). Similarly, we ob-
served no significant correlations between working memory and
adaptive coding of positive PEs in the ventral striatum for the
bromocriptine group (� � �0.08, p � 0.74) or the sulpiride
group (� � �0.07, p � 0.78), suggesting that baseline working
memory capacity does not mediate adaptive coding. In addition,
we observed no significant relationship between performance er-
ror and adaptive PE coding in the midbrain (� � �0.1348, p �
0.150) and ventral striatum (� � �0.1117, p � 0.199).

For completeness, we subsequently explored the effect of do-
paminergic medication on whole-brain adaptive coding; no such
effects could be observed (all p values � 0.1). In addition, dopa-
mine did not significantly impact on overall PE coding (averaged
across the SD conditions) on whole-brain level (all p values �
0.1). Similarly, ROI analyses revealed no significant effect of do-
paminergic medication on overall PE coding in the midbrain
(� 2

(2,54) � 4.43, p � 0.11) or ventral striatum (� 2
(2,54) � 0.65, p �

0.724) across positive and negative PEs. However, there was a trend-
level effect of dopaminergic treatment on overall positive PE coding
in the ventral striatum (�2

(2,54) � 5.05, p � 0.08). This effect was
driven by decreased overall positive PE coding in the supiride group
compared with placebo (p � 0.03), whereas bromocriptine did not
affect nonscaled positive PE coding in the ventral striatum (p �
0.75). These results suggest that dopaminergic perturbation selec-
tively affected adaptation of PEs in this task.

BOLD responses to cues signaling reward variability
Across the three groups, cue onset averaged across SD conditions
was associated with widespread activation in a network of re-
gions, including the bilateral insula, the ACC/medial frontal
gyrus, the MFG, and the cerebellum extending into the occipital
lobe (for an overview of all significant loci, see Table 4; Fig. 5A).
Using a nonlinear contrast analogous to the adaptive PE coding
contrast (i.e., (SD5 � SD10 � SD15; weighted by SD�1), we
found that in most of these regions the BOLD responses to the
instructional cues increased as reward variability decreased (for
all significant loci, see Table 4; Fig. 5B), These results suggest that
participants attentively processed the cues before predicting the
expected magnitude of upcoming rewards.

Effect of dopaminergic modulation on BOLD responses
to cues
ROI analyses using a leave-one-out approach (see Materials and
Methods) revealed a trend-level effect (required p value after
Bonferroni correction for the 3 ROIs � 0.0167) in the insula
(� 2

(2,54) � 7.9, p � 0.019; Fig. 6), but not in the ACC (� 2
(2,54) �

1.14, p � 0.57) and the MFG (� 2
(2,54) � 0.41, p � 0.57). Post hoc

tests indicated that the trend-level effect in the insula was driven
by increased responses in the bromocriptine and sulpiride groups
compared with the placebo group (p � 0.017/p � 0.031 for bro-
mocriptine/ sulpiride vs placebo). However, the difference be-

Table 2. Quality of the generative models fitted to behavioral data given as the
mean difference (d) in criterion values (AIC and BIC) across participantsa

Model Criterion RW#1 RW#2 PH#1

RW#2 dAIC �6.5
dBIC �3.3

PH#1 dAIC �11.7 �5.1
dBIC �8.4 �5.1

PH#2 dAIC �15.4 �8.9 �3.8
dBIC �9.0 �5.7 �0.6

aRW#1, Rescorla-Wagner model with one learning rate fitted across positive and negative PEs; RW#2, Rescorla-
Wagner model with separate learning rates for positive and negative PEs; PH#1, Pearce-Hall model with a fitted
initial learning rate and a parameter guiding the trialwise decay in learning rate; PH#2, Adaptive Pearce-Hall model
with a fitted initial learning rate and a parameter guiding the trialwise decay in learning rate; AIC, Akaike informa-
tion criteria; BIC, Bayesian information criteria. Here, PEs are scaled relative to reward variability. Models are fitted
across all trials, conditions, and participants.
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tween the sulpiride and placebo groups did not survive the
multiple comparisons Bonferroni correction threshold of 0.025.
No significant effect of dopamine was seen on the relationship
between the response to the cue and SD in the insula (� 2

(2,54) �
4.27, p � 0.12), the ACC (� 2

(2,54) � 0.42, p � 0.81), and the MFG
(� 2

(2,54) � 0.94, p � 0.62), suggesting that all groups were equally
sensitive to cued differences in reward variability.

Discussion
We sought to examine the effect of dopaminergic perturbation
on PE adaptation to reward variability. We used a validated par-
adigm that requires participants to code PEs relative to SD, in
conjunction with pharmacological perturbations of dopaminer-
gic transmission. The dopamine antagonist sulpiride reduced
adaptive PE coding in the midbrain, and for positive PEs alone in

the ventral striatum. Sulpiride also perturbed overall perfor-
mance, and computational modeling suggested that this was
partially driven by a decrease in PE scaling, although we did not
observe a differential effect of SD on raw performance data. These
findings suggest that normal dopaminergic function is critical for
adaptive PE coding, in line with previous work that demonstrated
that monkey midbrain dopamine neurons code PEs relative to
the distribution of predicted reward (Tobler et al., 2005). Al-
though previous observations of adaptive coding in the human
midbrain and striatum strongly suggested a role for dopamine in
the adaptive process (Bunzeck et al., 2010; Park et al., 2012; Die-
deren et al., 2016), to our knowledge this is the first demonstra-
tion of this role of dopamine in humans.

These findings extend our understanding of the role of dopa-
mine in PE signaling and error-driven learning to include its
adaptive coding function. The former roles have been well dem-
onstrated in studies of individuals treated with the dopamine
precursor L-DOPA, which showed that enhancing dopamine
transmission can increase learning rates, task performance and
striatal PE activity (Pessiglione et al., 2006; Chowdhury et al.,
2013; Rutledge et al., 2009). We observed no significant effect of
the dopaminergic perturbation on unscaled PE coding, which
might seem at odds with previous work (Pessiglione et al., 2006;
Chowdhury et al., 2013). It is, however, conceivable that the
seeming discrepancy in findings relates to the nature of the used
tasks. Previous studies used experimental paradigms in which the
unscaled PEs served as the learning signal, whereas the scaled PE
is the (crucial) learning signal in our task. As dopamine is in-
volved in efficient PE coding, we contend that, in this paradigm,
dopaminergic manipulation would affect adaptively coded,
rather than unscaled, PEs (Tobler et al., 2005).

In real-world situations where outcomes can be variable, it is
critical to code PEs relative to variability. Such adaptive coding
would be beneficial for learning as supported by the observation
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Table 3. Whole-brain adaptive coding in the placebo groupa

Brain area
Cluster
size

Maximum
T value

Cluster
p value

MNI coordinates

x y z

Right inferior temporal gyrus 104 4.37 0.01 65 �15 �26
Right middle temporal gyrus 65 �22 �18
Right claustrum 42 4 �6
Right insula 46 �15 �10
Right lentiform nucleus 31 �18 �2
Left subgyral 117 4.09 0.05 �44 �11 �14
Left superior temporal gyrus �37 �3 �18
Left thalamus �26 �30 2
Left claustrum �33 �26 2
Left superior temporal gyrus �44 �41 6
Right paracentral lobule 62 4.13 0.05 5 �18 50
Left cingulate gyrus �3 �7 46
Left paracentral lobule �3 �7 46
Right medial frontal gyrus 16 �7 50
aCluster sizes, p values, t values, and locations of local maxima for brain regions, other than the midbrain (SN/VTA
complex) and ventral striatum, showing adaptive coding of PEs to reward variability. MNI, Montreal Neurological
Institute; PE, prediction error; SN, Substantia nigra; VTA, Ventral tegmental area.
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that increases in adaptive coding correlate with performance
improvements (Diederen et al., 2016). Adaptive coding is a ubiq-
uitous property of the brain and has been observed across per-
ceptual systems (Carandini and Heeger, 2011) and to reward
responses (Nieuwenhuis et al., 2005; Elliott et al., 2008; Padoa-
Schioppa, 2009; Kobayashi et al., 2010; Cox and Kable, 2014).
Adaptive coding makes optimal use of neurons’ limited dynamic
firing range and thus facilitates optimal sensitivity to fluctuations
in outcomes (Kobayashi et al., 2010).

The effect of dopaminergic perturbation on PE coding in the
human midbrain has not been previously reported, presumably
because most studies restricted their comparisons to the stria-
tum. Although D2 receptor density is highest in the basal ganglia,
the midbrain contains D2 (auto)receptors, which exert inhibi-
tory control on midbrain dopamine neurons (Aghajanian and
Bunney, 1977; Lacey et al., 1987; Mercuri et al., 1992). It is un-
clear, however, how antagonism of midbrain autoreceptors may
result in attenuation of adaptive PE coding. A speculative possi-

*

Group

BRO PCB SUL

Group Group

Ventral striatum Ventral striatum

S
ta

nd
ar

di
ze

d 
ad

ap
tiv

e
 P

E
 c

od
in

g 
(a

.u
.)

A B C 

S
ta

nd
ar

di
ze

d 
ad

ap
tiv

e
 P

E
 c

od
in

g 
(a

.u
.)

S
ta

nd
ar

di
ze

d 
ad

ap
tiv

e
 P

E
 c

od
in

g 
(a

.u
.)

-0.5

0

0.5

-0.5

0

0.5

1

-2

-1

0

1

Midbrain

*

BRO PCB SUL BRO PCB SUL

Figure 4. A, Median and range of adaptive PE coding in midbrain ROI. Sulpiride significantly perturbed adaptive coding in the midbrain ROI. B, Median and range of adaptive PE coding in the
ventral striatal ROI. C, Medium and range of adaptive coding of positive PEs in the ventral striatal ROI. Whereas dopamine did not perturb PE coding across positive and negative PEs in the ventral
striatum, there was a selective effect of dopamine on positive PEs in this ROI. Each boxplot represents standardized (i.e., z-scored) residual adaptive coding values after correction for the time
between dosing and the start of the fMRI scan as this time differed between the treatment groups (for details, see Results). Thus, higher values on the y-axis indicate an increase in adaptive coding
after adjusting the data for the effect of the time between dosing and the start of the fMRI scan. * indicates significance. a.u., arbitrary units; BRO, bromocriptine; PCB, placebo; PE, prediction error;
SUL, sulpiride.

Table 4. BOLD responses to cues signaling reward variability and reward variability as a function of SDa

Brain area
Cluster
size

Maximum
T value

Cluster
p value

MNI coordinates

x y z

BOLD responses to cues signaling reward variability
Left declive (cerebellum) 3816 18.9 �0.001 �37 �74 �22
Right declive (cerebellum) 16.41 �0.001 38 �67 �22
Left precentral gyrus 137 12.1 �0.001 �44 4 34
Left MFG 9.79 �0.001 �52 30 34
Right MFG 421 11.47 �0.001 34 12 50
Right MFG 10.85 �0.001 50 42 22
Right precentral gyrus 10.43 �0.001 50 12 34
ACC/medial frontal gyrus 36 9.69 �0.001 4 23 46
Left thalamus 13 8.6 �0.001 �22 �33 �2
Right insula 26 8.5 �0.001 38 19 �6
Left MFG 6 8.04 �0.001 �29 49 6
Left insula/claustrum 5 7.94 �0.001 �33 19 �2

BOLD responses to cues signaling reward variability as a function of SD
Left declive (cerebellum) 3081 17.95 �0.001 �37 �74 �22
Right declive (cerebellum) 15.21 �0.001 38 �67 �22
Left precentral gyrus 71 11.18 �0.001 �44 4 34
Right MFG 278 10.41 �0.001 50 46 18
Right precentral gyrus 9.89 �0.001 50 12 34
Right inferior semilunar lobule (cerebellum) 50 10.03 �0.001 8 �74 �42
Left inferior semilunar lobule (cerebellum) 9.99 �0.001 �14 �74 �46
Left thalamus 16 9.08 �0.001 �22 �33 �2
Left supramarginal gyrus 16 8.92 �0.001 �48 �44 38
Right thalamus 27 8.92 �0.001 20 �33 �2
ACC/medial frontal gyrus 16 8.75 �0.001 4 23 42
Left insula/claustrum 11 8.63 �0.001 �33 19 �2
Right insula 23 8.11 �0.001 38 19 �6
Left MFG 5 8.09 �0.001 �52 30 34

aCluster sizes, p values, z values, and locations of local maxima for brain regions showing increases in BOLD responses to the instructional cues as a function of decreases in SD We used a stringent initial threshold of p � 1e �11 combined
with a minimal cluster size of 5 adjacent voxels as the cue event was associated with very strong signal changes. The cluster threshold was p � 0.05 FWE corrected for multiple comparisons. MNI, Montreal Neurological Institute.
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bility is that partial autoreceptor blockade
produces an initial increase in dopamine
firing that leads to greater activation of the
inhibitory autoceptors via collaterals that
feedback into the soma or other nearby
cells, producing a net decrease in dopami-
nergic firing (Deutch et al., 1988; Bayer
and Pickel, 1990). However, blockade of
autoreceptors could also lead to increases
in dopamine (Frank and O’Reilly, 2006).
Whereas the latter might be expected to
result in improved adaptive coding, in-
creased dopamine could also lead to im-
paired adaptive coding as an optimum
level of dopamine is required for suc-
cessful cognitive functioning (Cools
and D’Esposito, 2011).

In the ventral striatum, the dopami-
nergic effect was selective for positive PEs,
in keeping with the finding that L-DOPA
affected striatal PE coding for reward but
not losses (Pessiglione et al., 2006). Fur-
thermore, some studies showed that
patients with Parkinson’s disease learn
better to avoid negative outcomes than to
obtain positive outcomes (Frank et al.,
2004; Cools et al., 2006), which is remedi-
ated by dopamine enhancing medication
that selectively improves learning from
positive outcomes (Frank et al., 2004;
Bódi et al., 2009; Rutledge et al., 2009). Conversely, sulpiride can
affect reversal learning and choice performance for positive
outcomes in healthy participants (Eisenegger et al., 2014; van der
Schaaf et al., 2014). In contrast to these studies, we did not ob-
serve a behavioral effect of learning from positive versus negative
PEs. Differences between behavioral and neural adaptation may
reflect increased sensitivity of fMRI analyses (Wilkinson and Hal-
ligan, 2004). Alternatively, the effects of dopamine on behavior
may be more closely related to midbrain instead of striatal re-
sponses. Differences in PE coding between the midbrain and ven-
tral striatum have been reported previously (O’Doherty et al.,
2006; D’Ardenne et al., 2008; Klein-Flügge et al., 2011) and are
typically interpreted to result from the fact that striatal PE repre-
sentations are not exclusively mediated by an afferent dopami-
nergic signal (Daw et al., 2006; Haber, 2011). It is less clear,
however, why these differences became apparent under dopami-
nergic modulation. It should also be noted that the selective effect
of sulpiride on the adaptation of positive PEs in the ventral stria-
tum was identified using direct, a priori planned, comparisons,
rather than from a significant interaction. This result should
therefore be interpreted with caution.

We did not see an effect of dopaminergic perturbation on the
instructional cues, which might suggest that dopamine did not
affect the estimation of reward variability, but rather impaired
scaling of PEs relative to variability. Targeted studies are needed
to account more precisely for the lack in PE scaling. In addition,
we observed no significant correlations between performance
and adaptive PE coding in contrast to previous work (Diederen et
al., 2016). This difference in findings may relate to additional
noise induced by the pharmacological manipulation in the be-
havioral and neural measures, which may have obscured the
presence of a significant correlation.

There are limitations of the pharmacological dopaminergic
approach. There is debate regarding the directionality of pertur-
bation as some studies showed improved, rather than impaired,
task performance following administration of D2 antagonists
(Jocham et al., 2011; van der Schaaf et al., 2014). Such seem-
ingly incongruent results are thought to result from interindi-
viduality in baseline dopamine levels and a preponderance
of presynaptic over postsynaptic D2 blockade (Cools and
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Figure 5. A, Bold response to cues signaling reward variability across the three groups. B, Increased BOLD responses to cues
signaling smaller reward variability (SD5 � SD10 � SD15; nonlinear contrast weighted by SD �1). We used a stringent initial
threshold of p � 1e �11 combined with a minimal cluster size of 5 adjacent voxels as the cue event was associated with very
strong signal changes. The cluster threshold was p � 0.05 FWE corrected for multiple comparisons. SD, standard deviation.
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Figure 6. Median and range of average BOLD responses to the cues predicting reward vari-
ability. The dopaminergic modulation perturbed responses to the reward variability predicting
cues on trend level. This effect was driven by a difference between the bromocriptine and the
placebo group. Boxplot represents standardized (i.e., z-scored) residual adaptive coding values
after correction for the time between dosing and the start of the fMRI scan as this time differed
between the treatment groups (for details, see Results). Thus, higher values on the y-axis
indicate an increase in BOLD responses to the reward predicting cues after adjusting the data for
the effect of the time between dosing and the start of the fMRI scan. * indicates significance.
a.u., arbitrary units; BRO, bromocriptine; PCB, placebo; PE, prediction error; SUL, sulpiride.
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D’Esposito, 2011). The effects vary with drug dose, drug serum
levels, baseline dopamine capacity, and the genetically deter-
mined density of D2 receptors (Cools et al., 2009; Eisenegger
et al., 2014).

Whereas sulpiride significantly altered adaptive PE coding,
and task performance, bromocriptine did not impact these mea-
sures. It is possible that large interindividual variability in base-
line dopamine levels obscured the effect of bromocriptine (Cools
et al., 2009). Bromocriptine can improve learning in individuals
with low baseline dopamine synthesis capacity while impairing it
in subjects with high baseline dopamine synthesis capacity (Cools
et al., 2009). Although we observed considerable variability in the
bromocriptine group, our sample was of insufficient size to dis-
tinguish responders from nonresponders. One approach to deal
with interindividual variability is stratification of drug effects by
working memory (Kimberg et al., 1997; van der Schaaf et al.,
2014). However, we did not find such a relationship. Another
possibility for the absence of a bromocriptine effect is the high
dose used. Studies that observed a significant effect of bromocrip-
tine typically used lower doses (Mehta et al., 2001; Morcom et al.,
2010; Medic et al., 2014). Indeed, Luciana and Collins (1997)
observed significant improvements in performance on spatial
working memory when participants were administered 1.25 mg
of bromocriptine, but not when they received 2.5 mg. Finally, the
absence of a significant effect of bromocriptine has been observed
across different tasks, including reversal learning (van der Schaaf
et al., 2014), perceptual decision-making (Winkel et al., 2012),
and working memory (Luciana and Collins, 1997).

The observed role of dopamine in adaptive PE coding further-
more suggests that a breakdown of adaptation could result in
inefficient learning in conditions associated with dopaminergic
disturbance, such as psychosis (Fletcher and Frith, 2009). Al-
though psychotic patients show aberrant PE signaling (Murray et
al., 2008), future studies are required to determine whether adap-
tive PE coding is aberrant in individuals with delusional beliefs.

Another important avenue for future research would be to
compare the role of dopamine in variable versus volatile environ-
ments. Whereas individuals’ expectations should be robust in
variable environments once learning has been completed, partic-
ipants should flexibly update their predictions when outcomes
originate from a volatile environment (Nassar et al., 2010).

Finally, it should be noted that recent work suggests that do-
pamine might encode the precision of information used to guide
actions (Galea et al., 2012; Zokaei et al., 2012; Friston et al., 2014).
This differs somewhat from our findings as we observed a role for
dopamine in precision-weighted PE coding, not the encoding of
precision itself.
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