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Computational methods are needed to more efficiently leverage data from in vitro cell-based 

models to predict what occurs within whole body systems after chemical insults. This study set out 

to test the hypothesis that in vitro high-throughput screening (HTS) data can more effectively 

predict in vivo biological responses when chemical disposition and toxicokinetic (TK) modeling 

are employed. In vitro HTS data from the Tox21 consortium were analyzed in concert with 

chemical disposition modeling to derive nominal, aqueous, and intracellular estimates of 

concentrations eliciting 50% maximal activity. In vivo biological responses were captured using 

rat liver transcriptomic data from the DrugMatrix and TG-Gates databases and evaluated for 

pathway enrichment. In vivo dosing data were translated to equivalent body concentrations using 

HTTK modeling. Random forest models were then trained and tested to predict in vivo pathway-

level activity across 221 chemicals using in vitro bioactivity data and physicochemical properties 

as predictor variables, incorporating methods to address imbalanced training data resulting from 

high instances of inactivity. Model performance was quantified using the area under the receiver 

operator characteristic curve (AUC-ROC) and compared across pathways for different 

combinations of predictor variables. All models that included toxicokinetics were found to 

outperform those that excluded toxicokinetics. Biological interpretation of the model features 

revealed that rather than a direct mapping of in vitro assays to in vivo pathways, unexpected 

combinations of multiple in vitro assays predicted in vivo pathway-level activities. To demonstrate 

the utility of these findings, the highest-performing model was leveraged to make new predictions 

of in vivo biological responses across all biological pathways for remaining chemicals tested in 

Tox21 with adequate data coverage (n = 6617). These results demonstrate that, when chemical 

disposition and toxicokinetics are carefully considered, in vitro HT screening data can be used to 

effectively predict in vivo biological responses to chemicals.
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1. Introduction

Computational approaches are currently being developed to more effectively interpret and 

translate biological activity measured in vitro using cell-based models to predict in vivo 
biological responses and ultimately inform health outcomes in humans. These approaches 

are needed throughout many areas of science, including molecular biology, medicine, 

toxicology, and environmental science. As an example, there is a need to accelerate the 

identification and testing of chemicals for efficacy and safety during the development of 

pharmaceuticals [1,2].

Within the chemical industry and regulatory agencies, there is a parallel push to decrease the 

time required to identify deleterious chemicals and reduce reliance upon animals in chemical 

safety testing [3–6]. Key to this movement’s success is the effective incorporation of in vitro 
testing, in which there is a current drive to advance computational methods that can be used 

to more confidently translate in vitro findings into the context of in vivo biology.

Ring et al. Page 2

Comput Toxicol. Author manuscript; available in PMC 2021 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The field of computational biology and toxicology is rapidly expanding to address this issue 

by developing methods that use in vitro data, in combination with in silico approaches, to 

predict in vivo toxicity responses [7–12]. Computational methods aimed at predicting in 
vivo toxicity outcomes continue to integrate recent advancements in machine learning 

algorithms alongside increasing amounts of information that can be used to build and test 

predictive models [7]. In terms of in vitro data, predictive models commonly incorporate 

data from high-throughput screening (HTS) efforts to maximize chemical coverage, with 

one of the most recognized HTS examples being the ToxCast/Tox21 consortium [13]. Other 

data that have been used to aid in overall predictions include chemical structure descriptors, 

physiochemical properties, and assay descriptors, among others [7,14,15]. Variables that are 

often used as the outcomes include toxicological changes observed at the pathology and/or 

disease-level [15–17]. These outcomes can also be gathered from databases to cover wider 

chemical domains, such as the ToxRefDB [18]. With these data, predictive models are 

trained and tested with the goal of deriving computational models that can be used to 

provide a prediction of whether a chemical will elicit a certain toxicological outcome based 

on in vitro findings.

Predictive modeling efforts based on HTS data from the ToxCast/Tox21 program have 

shown variable results, to date. Previous studies have integrated ToxCast/Tox21 bioactivity 

profiles into predictive models by using general in vitro activity calls (i.e., active vs. 

inactive) and/or concentrations identified to elicit in vitro activity (e.g., concentrations 

eliciting 50% maximal activity) as the primary predictor variables [14–17,19,20]. Though 

serving as important starting points, these studies have shown mixed results, with many 

demonstrating limited success [15,16,19,20]. In an effort to improve model predictivity, we 

implement a novel approach to build models that predict mechanisms of in vivo toxicity, 

rather than higher level outcomes at the pathology/disease-level. Our approach further 

benefits from the testing of more precise chemical disposition and toxicokinetic parameters 

to more accurately translate in vitro bioactivity concentrations into the context of in vivo 
biology.

Predictive toxicology efforts have only recently started incorporating improved estimates of 

chemical disposition and toxicokinetics. A notable study recently demonstrated that 

applying physiologically based toxicokinetic modeling improved the ability to associate in 
vitro ToxCast bioactivity to rat toxicity endpoints gathered from ToxRefDB and animal 

testing data aggregated in the U.S. EPA’s computational toxicology dashboard [21]. Another 

recent study implemented in vitro to in vivo extrapolation methods incorporating 

toxicokinetics to relate points of departure obtained using in vitro bioactivity against those 

derived using traditional in vivo hazard information [22]. We also recently demonstrated that 

concordance between in vitro and in vivo biological responses significantly improves after 

toxicokinetics are accounted for [23]. The current study builds on these data and serves as 

the first to leverage recent advancements in chemical disposition and toxicokinetic modeling 

to better extract biologically meaningful in vitro chemical-response activity profiles and use 

these to predict in vivo biological responses, focusing on pathway alterations within the rat 

liver.
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2. Materials and methods

2.1. Study overview

This study set out to evaluate whether including chemical disposition and toxicokinetic 

modeling improves the ability to use in vitro HTS data to predict in vivo biological 

responses to chemical exposures (Fig. 1). Machine-learning models were trained to infer 

relationships between in vitro activity concentrations and whether in vivo pathway-level 

responses were elicited at a particular dose. These relationships may be modified by 

considering chemical disposition in vitro, which links the nominal chemical concentration 

placed into an in vitro well to the concentrations that occur as the chemical partitions into 

various parts of the assay system (Fig. 1A). These relationships may also be modified by 

considering toxicokinetics, which links external in vivo doses to internal body 

concentrations by describing the body’s absorption, distribution, metabolism, and excretion 

of a chemical (Fig. 1B).

Depending on the mechanism of in vitro bioactivity, various chemical-disposition metrics 

may be relevant (Fig. 1A). In vitro activity may be associated with the intracellular 

concentration in the assay system, or it may be associated with the concentration in the 

aqueous phase of the assay system. Similarly, depending on the mechanism of in vivo 
activity, various TK-predicted metrics of internal body concentration may be relevant. First, 

in vivo activity may be associated with concentration in a particular target tissue (e.g. liver), 

or concentration in circulating plasma (Fig. 1B, left). Second, in vivo activity may be 

influenced by time-varying concentrations in different ways: Activity may occur when a 

tissue concentration reaches a particular maximum level (even if that level is not sustained 

for long), or it may occur only when a tissue concentration achieves a certain average level 

over time (Fig. 1B, right).

Predictive performance was therefore compared for machine-learning models including 

eight different combinations of TK metrics and chemical-disposition metrics as predictor 

variables: maximum and mean liver concentration, each combined with nominal and 

intracellular AC50 values; maximum and mean plasma concentration, each combined with 

nominal and aqueous-phase AC50 values. The performance of these models was also 

compared to machine-learning models that excluded TK metrics (only in vivo external dose 

combined with nominal, intracellular, or aqueous-phase AC50) and models that included 

neither TK nor chemical-disposition metrics. In order to directly evaluate whether TK 

metrics of internal dose improved model performance above in vivo external dose alone, in 
vivo external dose was included in all models. Table 1 details the twelve machine-learning 

models that were built for each pathway and compared. As a result of these model 

comparisons, this study evaluated whether TK improves model performance at predicting in 
vivo pathway-level activity compared to external dose alone, and if so, which TK-predicted 

metric yields the best performance.

The following steps were carried out in this study, which are further detailed below. First, in 
vitro HTS data were first organized from the ToxCast/Tox21 program, including hit-calls 

and activity concentrations, focusing on Tox21 assays to maximize chemical coverage (Fig. 

2, step A). Activity concentrations (AC50s) were converted into equivalent aqueous or 

Ring et al. Page 4

Comput Toxicol. Author manuscript; available in PMC 2021 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intracellular concentration estimates using a model of chemical disposition within a cell-

based in vitro assay system (Fig. 2, step B). In vivo biological responses were obtained 

through the evaluation of liver transcriptomic data from rats exposed to the same chemicals 

that were tested in Tox21 assays, organized in the DrugMatrix and TG-Gates databases (Fig. 

2, step C). Pathway enrichment analyses, using gene ontologies available through four 

different databases, were carried out on the gene sets identified as differentially expressed in 

response to each exposure condition. High-throughput toxicokinetic (HTTK) modeling was 

carried out to convert in vivo dosing parameters into tissue-level concentration estimates 

(Fig. 2, step D). These data were then combined with physicochemical properties to develop 

predictive models of in vivo pathway-level alterations in the rat liver (Fig. 2, step E). These 

models predicted in vivo activity in 735 pathways for 221 chemicals, using in vitro 
bioactivity information from 144 Tox21 assays. Model performance was compared across 

different combinations of predictor/outcome variables, in order to compare and contrast the 

influence of including vs. excluding chemical disposition and toxicokinetic modeling (Table 

1), as further detailed below.

2.2. Organization of in vitro Tox21 bioactivity data

HTS data were obtained through the ToxCast/Tox21 consortium using the database released 

in May 2019 (noted as ‘invitroDB_v3.2’) through the U.S. EPA web portal [13]. Tox21 

assay bioactivity results were characterized using the following summary-level values for 

each chemical/assay pair: the winning (best-fit) concentration–response model as 

determined by the ToxCast pipeline (constant, Hill, or gain/loss); fitted AC50 value 

(concentration at which the activity reaches 50% of its maximal values for a chemical/assay 

pair); fitted Top value (maximum possible response predicted by the winning concentration–

response model); maximum median response value (max_med); and activity hit-call. Hit-

calls represent overall assay endpoint activity [24–26]. Briefly, if a chemical was tested in 

multiple-concentration format in an assay, with sufficient concentration–response data to fit 

a model, then hit-call is 1 (active) if the winning concentration–response model was not 

constant and if both Top and max_med exceed an assay-specific activity cutoff value; 

otherwise, hit-call is 0 (inactive) [25,26]. Note that at this stage, fitted AC50 values were 

retained for all chemical/assay pairs with non-constant concentration–response model, even 

if they had hit-call 0. This differs from the usual ToxCast convention to substitute a 

placeholder value of 1e6 μM for AC50 whenever hit-call is 0. (In terms of variables defined 

in the invitroDB v3.2 README, we used “modl_ga”, not “ac50”.) For chemical-assay pairs 

where the winning concentration–response model was constant, invitroDB_v3.2 reports NA 

for fitted AC50 and Top values. In these cases, the following placeholder values were 

substituted: AC50 = 1000 μM (the highest concentration tested), and Top value = 0 (because 

a constant concentration–response model represents a constant response level of 0). Potential 

in vitro assay interference from cytotoxicity and cell stress was also considered [25]. At 

cytotoxic concentrations, a “burst” of activity is seen across a characteristic set of assays, 

classified as “cytotoxicity-burst assays” [25,27].

Cytotoxicity-burst assays were identified and retained for calculation of cytotoxicity points, 

described in a later section.
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2.3. Modeling chemical disposition within the in vitro Tox21 assay systems

In vitro activity concentrations (AC50) for each chemical/assay pair were converted into 

estimates of equivalent aqueous and intracellular concentrations using the Armitage model, 

an in vitro chemical disposition model implemented in the “httk” R package, version 2.0.1 

[21,28]. The Armitage model, uses physicochemical properties and assay-specific 

information including plate and well geometry, cell yield (number of cells in each well), and 

the fraction of fetal bovine serum in the reagent (if any). Assay-specific information was 

gathered from Tox21 assay documentation [29], and included the plate type (clear flat 

bottom or solid flat bottom 1536-well plates) and fraction of fetal bovine serum in the 

reagent. All 144 included Tox21 assays were confirmed to be cell-based assays (not cell-free 

assays). Default cell yield assumptions were used, originally based upon Corning technical 

documentation [30]. Well geometry for each plate type was used as built into the “httk” 

package implementation. The relevant assay-specific information is included in 

supplementary material (S1 File).

2.4. Determination of pathway-level activities within the rat liver using transcriptomic 
data from DrugMatrix and TG-Gates

Biological responses in the rat were evaluated using transcriptomic data obtained from two 

publicly available resources: DrugMatrix and TG-Gates. Array data across both databases 

were organized and analyzed using similar methods to maximize consistency. Data from the 

DrugMatrix database were collected as previously described [31]. The majority of data 

represented profiles collected 24-h post-exposure, though when unavailable, data collected 

proceeding daily doses lasting 3- or 5-d were used. Dosing regimens for the included 

experiments largely consisted of oral gavage administrations, with some intraperitoneal, 

intravenous, and subcutaneous dosings. Chemicals were administered daily at 1–3 doses in 

addition to the vehicle control. Vehicle controls consisted of either 0.5% carboxymethyl 

cellulose, corn oil, saline, or water. Transcriptomic data from the DrugMatrix database were 

generated using liver RNA samples hybridized to the Affymetrix GeneChip Rat Genome 

230 2.0 array. Data were processed and analyzed by the NTP using established methods for 

normalization, QA/QC, and statistical assessment, as previously summarized [23,31]. 

Statistical significance was evaluated using the t-statistic with an Empirical Bayes method of 

estimating variance, as previously detailed [32].

Data from the TG-Gates database were collected as previously described [33]. For the 

current project, transcriptomic data included Affymetrix GeneChip Rat Genome 230 2.0 

array data collected from rats exposed via single dose to a chemical, with liver samples 

collected 24 h post-exposure. Similar to the DrugMatrix experiments, dosings largely 

consisted of oral gavage administrations, with some intraperitoneal, intravenous, and 

subcutaneous dosings. Chemicals were administered daily at 1–3 doses in addition to the 

vehicle control. Vehicle controls consisted of either 0.5% carboxymethyl cellulose, corn oil, 

saline, or water. Transcriptomic data from TG-Gates were evaluated for QA/QC metrics, as 

previously described [33]. In the current analysis, array data were downloaded from the 

online TG-Gates database [34] and processed and analyzed using the Linear Models for 

Microarray Data (LIMMA) package [35] in R Software, v3.5.2. Data were normalized using 

robust multi-chip average and evaluated for differential expression comparing gene 
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expression levels from tissues of treatment groups vs. control groups (three animals per 

group). Significance was established using the t-statistic with an Empirical Bayes method of 

estimating variance, paralleling the DrugMatrix data analysis.

Probesets were identified as significantly differentially expressed when meeting a fold 

change ≥ ±1.5 (average exposed/average control) and p < 0.01 (exposed vs. control), 

paralleling our previous investigation evaluating in vitro-to-in vivo response concordance 

with the DrugMatrix database [23]. This represents a relatively relaxed filter to maximize the 

detection of potential gene expression changes leading to pathway-level activities. Probeset 

annotation information was updated to reflect the most recent rat genome annotation release 

through Affymetrix (v36). Probesets meeting statistical significance criteria were referred to 

as differentially expressed probes (DEPs) and were used to filter for unique lists of 

differentially expressed genes (DEGs).

Biological pathway-level activities associated with each chemical exposure were determined 

through enrichment analyses of the DEGs. Pathway annotations were organized from several 

databases to evaluate whether pathway-level predictions varied across knowledgebase. 

Specifically, six different pathway databases were used, four of which represented gene sets 

extracted from the Molecular Signatures Database (v7.0): BIOCARTA, KEGG, PID, and 

REACTOME [36,37]. Canonical pathways were also analyzed from Ingenuity Pathway 

Analysis (IPA), derived from the Ingenuity Systems® Knowledgebase. One gene set was 

also included from the Molecular Signatures Database, namely the HALLMARK gene set, 

and is referred to under the umbrella term of pathway database in this study to allow for 

concise descriptions. Pathways were filtered for those that included a minimum of 10 rat 

genes. Pathways were analyzed for significant enrichment amongst lists of DEGs for each 

chemical exposure using the R package, Platform for integrative analysis of omics data 

(PIANO) (v3.4.1) [38], with pathways identified as significant using the Fisher’s Exact test 

p-value < 0.05. This filter was implemented as it parallels previous pathway-level 

investigations evaluating chemical-induced toxicity [39–46] and was shown to result in 

greater in vitro-in vivo concordance in our previous analysis in comparison to using a 

multiple test corrected p-value filter [23]. Pathways that were identified as significant were 

considered ‘active’, and pathways that were not identified as significant were considered 

‘inactive’.

2.5. Toxicokinetic modeling to estimate tissue-level concentrations resulting from in vivo 
dosings

The doses administered to rats in DrugMatrix or TG-Gates experiments were converted to 

estimates of tissue concentrations using toxicokinetic modeling. A generic physiologically-

based toxicokinetic (PBTK) model was used, as implemented in the U.S. EPA’s “httk” R 

package (version 2.0.1, model “pbtk”) [12,47]. This model was used to predict the time 

course of liver and plasma concentrations (μM) in the rat during each in vivo experiment, 

based on information surrounding the chemical, daily dose, duration of dosing, and route of 

administration in each experiment. The PBTK model also required chemical-specific data 

regarding intrinsic hepatic clearance rate and the fraction of the chemical unbound in plasma 

protein, as well as physical–chemical properties used to predict tissue partitioning. The 

Ring et al. Page 7

Comput Toxicol. Author manuscript; available in PMC 2021 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model can predict time-dependent concentrations in many compartments, though liver and 

plasma were selected as the most relevant tissues here. To summarize the time-dependent 

concentrations, maximum and mean concentrations (μM) over the duration of each 

experiment were computed, for both rat liver and rat plasma. Together, four different TK-

predicted in vivo body concentrations (Cvivo) were calculated for each experiment: liver 

maximum, liver mean, plasma maximum, and plasma mean.

2.6. Organization of physicochemical descriptors

Physicochemical descriptors were included as predictor variables, as we recently 

demonstrated that including physicochemical properties improves the overall concordance 

between in vitro and in vivo responses [23]. Physicochemical data were obtained through the 

U.S. EPA’s Computational Toxicology Dashboard [48]. In instances when more than one 

experimental value was presented, the average across the available values was used. When 

experimentally derived data were not available, predicted values were used. The following 

set of physico-chemical descriptors was used: boiling point, log10 Henry’s Law constant, 

melting point, log10 molecular weight, log10 octanol–air partition coefficient (logKoa), log10 

octanol–water partition coefficient (logP), log10 vapor pressure, and log10 water solubility. 

After the final selection of included chemicals (see following section), each physicochemical 

descriptor was centered and scaled to have mean 0 and standard deviation 1 across the 

included chemicals. The center and scale values for each physicochemical descriptor are 

included in supplementary material (S2 File).

2.7. Selection of included chemicals and Tox21 assays

First, chemicals were filtered to include only those that satisfied the following data 

requirements: Chemicals were required to have liver transcriptomic data within the 

DrugMatrix and/or TG-Gates databases from rats acutely exposed (1–5 daily dosings). 

Additionally, chemicals were required to have sufficient TK information to perform TK 

modeling, where TK data were collected based on in vitro or in vivo measured TK data, or 

were predicted in silico based on values previously reported [49]. Lastly, chemicals were 

required to have sufficient physicochemical data available to run the chemical disposition 

model. After these selection criteria were applied to the list of chemicals, a further selection 

of the remaining chemicals and Tox21 assays was performed, to ensure that all retained 

chemicals were tested in multiple-concentration format in all retained Tox21 assays (i.e., all 

chemicals had Top, max_med, AC50, and winning-model information reported for all 

assays).

Finally, the remaining Tox21 assays were filtered to retain only those that satisfied the 

following requirements: Assays were required to demonstrate activity (hit-call of 1) 

associated with at least one of the included chemicals. Additionally, assays were removed 

from consideration if they were labeled as “artifact detection” assays in ToxCast invitroDB 

v3.2 to remove redundant and inherently highly-correlated measures. A table of assays with 

the reason for inclusion or removal is included in supplementary material (S3 File). After 

this final selection step, 221 chemicals and 144 Tox21 assays were retained.
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2.8. Constructing training and test sets and mitigating data imbalance in predictive 
models

To assess whether model performance is generalizable (i.e., not a result of overfitting), three-

fold cross validation was performed. Data were randomly divided into three equal-sized 

folds. In each round of cross-validation, one fold (1/3 of the data) was selected as the test 

set, and the other two folds (2/3 of the data) were combined and used as the training set. 

Machine-learning models were trained using the training set, and then their performance was 

evaluated using the test set.

Because most experiments were associated with inactivity across most biological pathways, 

the training set for each pathway was usually imbalanced, with higher incidence of inactivity 

vs. activity. Highly imbalanced data can present difficulties for machine-learning 

classification approaches. To mitigate these difficulties, for each training set that had fewer 

than 30% of experiments active in the specified pathway, we improved balance by applying 

the Synthetic Minority Over-Sampling Technique (SMOTE) [50]. Briefly, SMOTE 

randomly synthesizes additional data items (rows) in the minority class using k-nearest-

neighbors (KNN) interpolation, and randomly downsamples data items in the majority class, 

to yield a more-balanced training set.

Here, SMOTE was performed using the following set of features: scaled physical–chemical 

properties; the four TK-predicted log10 Cvivo descriptors; in vivo log10 dose; and continuous 

Tox21 chemical-assay response metrics: max_med responses, Top values, and nominal log10 

AC50 values. These continuous Tox21 chemical-assay response metrics were used for KNN 

interpolation, rather than using binary hit-calls, because hit-calls are a dichotomized 

summary of the continuous metrics. Interpolating based on the underlying continuous 

metrics, then dichotomizing (hit-calling), yields a better representation of the distribution of 

assay responses compared to interpolating based on the pre-dichotomized metrics (hit-calls).

Note that only nominal log10 AC50 values were used for SMOTE, rather than also including 

the Armitage-model-predicted intracellular and aqueous-phase log10 AC50 values. This 

choice was made because intracellular and aqueous-phase log10 AC50 values are simply 

functions of nominal log10 AC50 values and physicochemical properties, and these variables 

would therefore be highly correlated, which might skew the identification of nearest-

neighbors for KNN interpolation. Therefore, SMOTE was performed using only nominal 

log10 AC50 values, and then the Armitage model was applied after SMOTE.

SMOTE was applied to the training set for each pathway. The number of synthesized 

minority-class items and sampled majority-class items varied, depending on the degree of 

imbalance for each pathway. Therefore, after SMOTE was applied, each pathway had a 

slightly different training set. Synthesized data items are interpolated, so they do not 

correspond to any actual chemical or in vivo experiment; instead, they represent hypothetical 

“chemicals” and “experiments”. SMOTE was not applied to the test sets. Training sets 

before applying SMOTE; training sets after applying SMOTE; and test sets are all available 

in supplementary material (S4 File).
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2.9. Hit-calling for synthesized data items in SMOTED training sets

For each data item (row representing a real or hypothetical chemical) in each training and 

test set, assay hit-calls were made based on the following criteria: If both Top and maximum 

median response exceed an assay-specific activity cutoff level (as reported in the 

invitroDB_v3.2 database), then hit-call is 1 (active). Otherwise, hit-call is 0 (inactive). Note 

that the default hit calling within invitroDB_v3.2 also requires that the winning model not be 

constant. Here, that criterion is effectively enforced by the criterion that Top > assay-specific 

activity cutoff, because for all cases where the winning model was constant, Top was fixed at 

zero, and is therefore below the assay-specific activity cutoff. For all data items that were not 

synthesized by SMOTE, these hit-calls were identical to the existing Tox21 hit-calls. (Data 

items synthesized by SMOTE did not have existing Tox21 hit-calls.) After hit-calling was 

performed, for each data item, log10 AC50 values for all assays with hit-call 0 were replaced 

with a placeholder log10 AC50 value of 99. In this way, log10 AC50 = 99 in a given assay 

serves as a flag for inactivity in that assay.

3. Applying chemical-disposition models to synthesized data items in 

SMOTED training sets

For each data item in each training and test set, the Armitage chemical-disposition model 

was applied to the nominal log10 AC50 values for each assay, using the physical–chemical 

properties for the data item, and the assay-specific properties (e.g. well geometry, fraction of 

fetal bovine serum, cell yield) for each assay. The result was a corresponding intracellular 

log10 AC50 value and aqueous log10 AC50 values for each assay and each data item. If hit-

call was 0 and therefore nominal log10 AC50 had been assigned a placeholder value of 99, 

then both intracellular and aqueous log10 AC50 values were also assigned a placeholder 

value of 99.

3.1. Calculating in vitro cytotoxicity concentrations

Potential in vitro assay interference from cytotoxicity and cell stress was considered (Judson 

et al. 2016). At cytotoxic concentrations, a “burst” of activity is seen across many assays, 

classified as “cytotoxicity-burst assays” (EPA 2019e; Judson et al. 2016). A summary 

“cytotoxicity point” for each chemical is commonly computed as the median log10 AC50 

value across cytotoxicity-burst assays. Although invitroDB3.2 includes pre-calculated 

cytotoxicity points for each chemical, we re-calculated these values in order to develop 

cytotoxicity points based on the cytotoxicity-burst assays included in the retained set of 144 

Tox21 assays, and to develop cytotoxicity points based on intracellular and aqueous-phase 

log10 AC50 estimates predicted using the Armitage chemical-disposition model. Specifically, 

cytotoxicity points were calculated as the median of AC50s across the cytotoxicity-burst 

Tox21 assays, using either nominal AC50s or estimated intracellular or aqueous-phase 

equivalent AC50s. If any chemical did not have a hit-call of 1 in at least two cytotoxicity-

burst assays (so that a median could not be calculated), it was assigned the following default 

cytotoxicity point (in units of log10 μM): 3 for nominal concentrations; 3 for aqueous-phase 

concentration estimates; and 5 for intracellular concentration estimates. These default 

cytotoxicity points reflected the highest-observed or estimated AC50 among active assays.
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3.2. Random forest modeling to evaluate predictivity of Tox21 bioactivity against in vivo 
biological responses

Random forest modeling was used to evaluate the potential impact of toxicokinetic modeling 

on the overall accuracy of using Tox21 bioactivity to predict in vivo pathway-level activity 

in the rat liver. Briefly, random forest modeling builds an ensemble of decision-tree models 

[51]. Each tree is trained on a bootstrap resampling of the training set (“in-bag” samples); 

approximately one-third of data items are left out for each tree (“out-of-bag” samples). 

Within each tree, each split is chosen from a randomly-selected subset of the predictor 

variables (a different random selection is made for each split). Each tree in the ensemble 

then “votes” on the ultimate classification of each item. The final result is the fraction of 

trees voting for each category. Here, random forest modeling was implemented using the 

“randomForest” R package [52]. Five thousand trees were included in each random forest. 

For each pathway that was evaluated, 12 separate random forest classifier models were 

trained and tested (Table 1). Models were built using various sets of predictor variables that 

either included or excluded TK-predicted Cvivo. This design allowed for the direct 

comparison of the predictive ability of models with and without TK. Note that, unlike our 

previous analysis [23], TK information was not used as a dose-applicability filter for 

DrugMatrix/TG-Gates experiments. Instead, the TK-predicted Cvivo values were used 

directly as predictor variables.

To evaluate whether the predictive ability of these 12 models could have occurred by chance, 

12 additional random-forest classifier models were also trained using randomly-permuted 

versions of each set of predictor variables from the training set, and tested using the original 

test set, yielding a total of 24 models in this study. The performance of each model could 

then be compared to the performance of its permuted version. The predictions of each of the 

24 random forest models for each pathway are included in the supplementary material (S5 
File).

3.3. Predictive model performance evaluation and results ranking

The performance of each model for each test set (in three-fold cross-validation) was 

assessed by calculating the area under the receiver-operator characteristic curve (AUC-

ROC). Briefly, for a range of thresholds on the fraction of “active” votes needed for the 

“active” classification to win, the ROC is the curve traced out by plotting the true positive 

rate vs. the false positive rate for each threshold. The area under the ROC is a metric of 

model performance: AUC above 0.5 indicates performance better than chance, and AUC 

below 0.5 indicates performance worse than chance. For each pathway and each fold of 

cross-validation, AUC-ROCs were computed for each of the 24 models using R package 

“pROC” [53]. Additionally, the performance of two models can be evaluated by comparing 

their AUC-ROCs, yielding a p-value measuring whether one model performs significantly 

better than another. For each pathway and for each fold of cross-validation, the AUC-ROC 

of each model was compared to the AUC-ROC of the corresponding permuted version of 

that model, to determine whether each model outperformed random noise at a statistically-

significant level. The AUC-ROC comparisons were performed using the method of Delong 

et al. (1988) as implemented in R package “pROC” [53]. The AUC-ROC comparisons and 

their p-values are included in supplementary material (S6 File).
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For each fold of cross-validation and for each pathway, models were ranked from highest to 

lowest AUC-ROC. The model with the highest AUC was considered the “winning“ model 

for that pathway and that fold. Then, within each fold of cross-validation, the number of 

“wins” for each model was counted (i.e., the number of pathways where each model had the 

highest AUC-ROC). Models were then ranked from highest to lowest total number of 

“wins”. To assess how model performance varied across pathway databases, model ranking 

was also repeated separately for the six different pathway databases (i.e., BIOCARTA, 

KEGG, IPA, PID, and REACTOME).

A final version of the highest-ranked random forest model (Model 10 in Table 1) was then 

trained using all of the data, rather than the 2/3 training set previously employed. The 

SMOTED training sets for this final version of the model are included in supplementary 

material (S7 File); the resulting random forest model objects themselves are also included in 

supplementary material (S8 File). This final version of the model was used for the rest of the 

analyses.

3.4. Interpreting models through variable importance measures and feature contribution 
plots

Visualizations were generated with the goal of gaining insight into potential relationships 

between predictor variables and response variables included in the most highly-ranked 

model: (1) predictor-variable importance rankings from the final version of the winning 

random forest model; and (2) feature contribution plots from the final version of the winning 

random forest model. For the variable-importance plots, importance was calculated as the 

mean decrease in accuracy in predicting out-of-bag samples when each predictor variable 

was permuted. This metric assesses the total importance of each predictor, both on its own 

and interacting with other predictors. To summarize variable importance across pathways, 

the mean decrease in accuracy for each variable was averaged across all pathways; this 

“grand mean” decrease in accuracy was then used to rank the average importance of each 

variable across pathways. For the feature contribution plots, the overall contribution of each 

predictor variable towards the probability of “active” classification for each pathway was 

calculated, and resulting feature contribution plots were produced for the most important 

variables using R package “forestFloor” [54].

3.5. Leveraging parameterized models to predict in vivo activity across all chemicals in 
Tox21

As an example of the utility of the resulting models, we applied the winning random forest 

model to predict in vitro pathway-level activity for 6617 chemicals tested in Tox21 that had 

sufficient data coverage. These chemicals represented those that were remaining within the 

database that had been tested in multiple-concentration format across the 144 included 

assays and had complete physico-chemical property data available (6711 chemicals) and had 

available TK parameters (6970 chemicals); the intersection of these two sets of chemicals 

comprised 6617 chemicals. Armitage-converted Tox21 assay AC50s, physicochemical 

properties, and TK predictions for in vivo concentrations were gathered using the previously 

detailed methods. Doses tested for this exercise included the 5th, 50th, and 95th percentiles 

on the log scale of the doses tested in DrugMatrix and TG-Gates via oral gavage (reflecting 
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the most commonly evaluated exposure route). TK predicted in vivo concentrations for each 

of the 6617 chemicals at each of the three doses are included in supplementary material (S9 
File); Tox21 assay AC50s, physicochemical descriptors, and ExpoCast predicted exposures 

are included separately in the supplementary material (S10 and S11 Files). Results from this 

modeling effort presented predictions of whether or not pathways would be altered upon 

exposure to chemicals in Tox21. The resulting predictions are included in the supplementary 

material (S12, S13, and S14 Files).

4. Results

4.1. Overview of data organization

Several data requirements were used to first filter chemicals and Tox21 assays, as detailed in 

the Methods. After these filters, data were retained for 221 chemicals and 144 Tox21 assays. 

These 221 chemicals were evaluated across a total of 519 DrugMatrix and TG-Gates 

experiments. In vivo pathway activity was originally assessed in 2538 pathways across six 

different pathway databases. Because most of these pathways were inactive in most or all of 

the 519 in vivo experiments, pathways were further filtered to include only those that were 

active in at least 10% of experiments, leaving 735 pathways for analysis. This requirement 

ensured that for each pathway, at least a few experiments were active in each training and 

test set.

These filtered data were then prepared for model building. Specifically, data were merged to 

produce a wide-format table whose rows represented the in vivo experiments (identified by 

dataset [DrugMatrix or TG-Gates], chemical, dose, duration, route, and vehicle of 

administration) and whose columns were the following predictor variables that were tested 

in various combinations: physical–chemical properties (centered and scaled to standardize 

each physical–chemical property to have a mean of 0 and a standard deviation of 1 across 

the chemicals); Tox21 assay max_med values; Tox21 assay Top values; Tox21 assay log10 

AC50s; and the TK-predicted body concentrations: maximum liver concentration, maximum 

plasma concentration, mean liver concentration, and mean plasma concentration. These 

predictor variables are fully provided as supplementary material (S10 File). In addition to 

these predictor variables, each row of the table also had a corresponding activity call for 

each of 735 pathways (i.e., 735 separate response variables). These response variables are 

provided as supplementary material (S15 File).

For building and testing predictive models, in vivo experiments were randomly divided into 

three folds (S15 File), and training and test sets were formed for each pathway. To address 

data imbalance resulting from a high prevalence of in vivo response inactivity, SMOTE was 

applied to training sets (but not test sets) for each pathway and each fold of cross-validation. 

SMOTE synthesizes new “active” experiments using k-nearest-neighbor interpolation to 

better explore regions of predictor variable values associated with activity. Then, for 

SMOTEd training and non-SMOTEd test sets, hit-calls were made, intracellular and aqueous 

AC50 estimate values were computed, and cytotoxicity points were calculated across Tox21 

data, as detailed in the Methods. These training and test sets are included in supplementary 

material (S4 File). These data were then used to build and test predictive models.
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4.2. Including toxicokinetic modeling improved predictive performance

Predictive models were built and tested using various sets of predictor variables (Table 1), all 

aimed at using in vitro Tox21 data to predict pathway-level alterations in the rat liver. Model 

performance was ranked based on the number of pathways for which each model had the 

highest AUC-ROC. Models that included TK outranked models that did not include TK (Fig. 

3). The highest-ranking model included Tox21 AC50 values converted to aqueous (media) 

concentrations, and in vivo doses converted to TK-predicted circulating plasma 

concentrations (i.e., ‘Model 10′ in Table 1). Model performance rankings were compared 

across different pathway databases, where the REACTOME database showed the most 

consistent model performance rankings in comparison to all the databases combined, as it 

contained the largest number of pathways (supplementary material, S16 File). All random 

forest results, including fraction of classification trees voting “active” for each experiment 

for each combination of parameters across the training and test sets are available through 

Dataverse [55]. An example ROC curve is shown in Fig. 4 for the first-fold training set. All 

AUC-ROC values for each model and each pathway (for training and test sets for each fold 

of cross-validation) are provided in supplementary material (S17 File); ROC plots for all 

pathways for the highest-ranking model are provided in supplementary material (S18 File).

4.3. Biological interpretation of features contributing to the random forest model 
predictions

Unlike regression models, random forest models do not explicitly describe the nature of the 

inferred relationships between the predictor variables and the response variable [56]. For 

example, does an increase in TK model-predicted maximum plasma concentration 

correspond to an increase or decrease in pathway activity probability? How steep is the 

relationship? Is it modified by interactions with other predictor variables? To shed light on 

the nature of the model-inferred relationships between predictor and response variables for 

each pathway, the following analyses were performed for the models for each pathway: (1) 

variable importance rankings; and (2) feature contribution plots. These were carried out 

using results from the highest-ranking model (Model 10 in Table 1), re-trained using all data 

rather than the 2/3 training set for cross-validation. Such analyses represent qualitative first 

steps towards investigating the biological basis of resulting predictive models.

4.4. Variable importance rankings from the highest-ranking random forest model for each 
pathway

Predictor-variable importance rankings from the highest-ranking model are illustrated here 

for an example pathway, the PXR-RXR activation pathway (Fig. 5A), with variable 

importance rankings for the highest-ranking model for all pathways provided in 

supplementary material (S19 File). Variable importance here is measured by the mean 

decrease in accuracy in predicting out-of-bag samples when each variable is permuted; 

variable importance is ranked from highest to lowest mean decrease in accuracy. This is a 

standard metric for assessing variable importance in random forest models [51]. The PXR-

RXR pathway was used as an example in Fig. 5A because it represents a common pathway 

involved in liver toxicity, with pertinence in drug testing and chemical safety evaluations 

[57]. For this pathway, dose of the chemical administered (log10 dose) is the most important 

Ring et al. Page 14

Comput Toxicol. Author manuscript; available in PMC 2021 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predictor, followed by the physicochemical parameter, logP, and then concentration of the 

chemical estimated to occur within the in vivo tissue (log10 Cvivo in plasma). The top three 

Tox21 assays included two cell viability assays and one androgen receptor (AR) agonism 

assay. Other top-ranking assays include assays for sonic-hedgehog signaling (SHH) pathway 

agonism, other AR agonism and antagonism assays, progesterone-receptor (PR) antagonism 

assays, and constitutive androstane receptor (CAR) agonism assays. Interestingly, of the two 

assays which might be expected a priori to predict PXR-RXR activation — the TOX21 PXR 

agonism assay and the Tox21 RXR agonism assay — neither one ranks in the top 30 most 

important variables when predicting PXR-RXR activation in vivo.

This result likely occurs because there was much less in vitro activity in the PXR/RXR 

agonism assays than there was in vivo activity in the PXR-RXR pathway: activity in the in 
vitro RXR and PXR assays occurred in only 8 and 9 chemicals (corresponding to 19 and 24 

experiments) included in this analysis, respectively, whereas 310 experiments exhibited 

activity in the in vivo PXR-RXR pathway. This difference between in vitro and in vivo 
activity prevalence is likely caused by the much higher range of in vivo internal doses 

compared with the range of in vitro tested concentrations: the maximum tested in vitro 
concentration for the included chemicals was 100 μM, whereas 100 μM is only the 20th 

percentile of in vivo internal peak plasma concentrations for the included experiments. In 

other words, if higher concentrations had been tested in vitro, more chemicals might have 

shown activity in the PXR and RXR agonism assays, and that in vitro activity might have 

been predictive of in vivo activity in the PXR-RXR pathway. However, given the available 

range of tested in vitro concentrations, activity in other assays — in which more chemicals 

show activity at concentrations within the tested range — is identified by the machine-

learning model to be predictive of in vivo PXR-RXR pathway activity.

A global measure of variable importance, across all included pathways, is summarized in 

Fig. 5B, a heatmap of the mean decrease in accuracy in predicting each pathway (rows) 

when each variable (columns) was perturbed. Findings show that globally across pathways, 

the most important variables for predicting pathway-level activity are HTTK-predicted 

maximum in vivo plasma concentration; administered in vivo dose; and physicochemical 

parameters. Variables representing in vitro assay AC50s exhibit lower average importance 

across all pathways, although certain assay AC50s are still important for predicting activity 

in certain pathways.

The variable importance measure shown in Fig. 5A and B does not explain the direction of 

the relationship between each predictor and the response; it also does not explain whether 

the relationship is significant for that predictor alone, or whether interactions between that 

predictor and other predictors are important. However, variable importance rankings do 

provide important information about the overall contribution of each variable to model 

performance. Together, these findings demonstrate that metrics of external and internal dose 

are important, along with bioactive concentrations in assays that may not be a priori 
hypothesized to contribute towards in vivo pathway activation in response to chemical 

exposures.
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4.5. Feature contribution plots from the highest-ranking random forest model for each 
pathway

Feature contribution plots for all pathways (for the highest-ranking random forest model) are 

provided in supplementary material (S19 File), and an example plot is included here also 

focusing on the PXR-RXR activation pathway (Fig. 6). Feature contributions can be used to 

understand the change in the overall probability that the random forest model predicts 

activity that is attributable to a given predictor variable at a given value [54]. For example, 

the relationship between PXR-RXR pathway activity and the concentration estimated to 

elicit PXR-RXR pathway activity (log10 Cvivo) in the rat plasma (third panel from left in the 

top row of Fig. 6) appears to be sigmoidal in shape, with log10 Cvivo < 2 corresponding to a 

nearly-constant decreased probability of activity and log10 Cvivo > 2 corresponding to an 

increasing probability of activity. This result suggests a relationship that may be based on a 

threshold value of the plasma concentration around 100 μM. The relationship between PXR-

RXR pathway activity and logP (second panel from left in the top row of Fig. 6) indicates 

that the probability of pathway-level activity in vivo decreases dramatically as logP of the 

chemical decreases below approximately 1, and is increased by an approximately constant 

amount for logP above 1, also indicating a potential threshold in the relationship. For the in 
vitro Tox21 AC50s predictor variables, cell viability assays (e.g., 

TOX21_RT_HEK293_FLO_08hr_viability) show the general trend where in vivo PXR-

RXR pathway activation probability decreases as viability assay AC50 decreases 

(representing increased in vitro potency). Conversely, other in vitro Tox21 predictor 

variables (e.g., AR agonist, AR antagonist, SHH agonist, CAR agonist, and PR antagonist 

assays) show relationships to increased PXR-RXR pathway activation probability alongside 

decreased AC50 values (Fig. 6). Feature contribution plots can also be color-coded by a 

specified predictor variable, allowing for the qualitative assessment of potential interactions 

with a predictor variable of interest. Fig. 6 is color-coded by the log10 in vivo dose. 

Interactions are not blatantly obvious, suggesting that the illustrated other predictor variables 

may act mostly independent of log10 dose in this specific example.

4.6. Assessing contribution of Tox21 predictor variables

All compared models in Table 1 include Tox21 predictor variables (hit calls or AC50s). To 

assess whether including Tox21 predictor variables improves model performance vs. not 

including these predictors, an additional set of models could be trained that excluded all 

Tox21 predictors, but retained various combinations of dose/physicochemical and 

toxicokinetic predictors. However, such a model performance comparison would be 

complicated by the substantially-smaller number of predictor variables for non-Tox21 

models: because the random forest algorithm selects the best split from a randomly-selected 

subset of predictors at each split of each tree, a model with a large number of predictors may 

perform differently than a model that includes a small subset of those predictors. In other 

words, the number of predictor variables included in the model can significantly influence 

model performance and therefore minimize the relevance of such a comparison. To assess 

the contribution of Tox21 variables while controlling for the potential influence from the 

predictor variable number, the top 20 most important variables were identified for each 

pathway from the highest-ranked model identified in the foregoing analysis. The model was 
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re-fit (in three-fold cross validation) with only those top 20 variables, called the “top 20” 

model. Then, any Tox21 variables were excluded from the top 20, and the model was again 

re-fit (in three-fold CV) with that non-Tox21 subset of the top 20 variables (the exact 

number of variables depended upon how many Tox21 variables were in the original top 20), 

called the “top without Tox21” model. The AUC-ROC was computed for the test set for each 

pathway and each fold of cross-validation, for both the “top 20” model and the “top without 

Tox21” model, and then averaged across the three folds of cross-validation. The average test 

set AUC-ROC was greater for the “top 20” model than for the “top without Tox21” model in 

543 out of 735 pathways, indicating that Tox21 predictor variables do contribute important 

information for predicting pathway-level activity.

4.7. Prediction results across all biological pathways for chemicals in Tox21 using the 
winning predictive model

The utility of the highest-performing model (‘Model 10’ in Table 1) was demonstrated by 

generating new predictions of in vivo biological responses across all biological pathways for 

chemicals tested in Tox21 with sufficient data coverage (n = 6617). The random forest 

model predicts the probability of activity at a specified dose, not the dose at which activity 

occurs. Therefore, the model was evaluated to make activity predictions at a set of three 

theoretical doses, spanning the doses evaluated in the DrugMatrix/TG-Gates databases. 

Doses were selected as the 5th, 50th, and 95th percentiles of the doses tested in DrugMatrix 

and TG-Gates. These doses correspond to 2.4 mg/kg/day (5th percentile); 150 mg/kg/day 

(50th percentile); and 2000 mg/kg/day (95th percentile). It is notable that these doses are all 

fairly high in the context of environmental relevance; the median ExpoCast predicted 

exposure for these 6617 chemicals in humans is approximately 5e-6 mg/kg/day, and the 

highest ExpoCast predicted exposure for these 6617 chemicals is approximately 5 mg/kg/

day, on the order of the 5th percentile dose. ExpoCast predicted exposures for these 

chemicals are available in the supplementary material (S11 File)

The resulting probability of activity for each chemical in each pathway was visualized using 

heat maps, focusing on pathways with the highest predictive performance (Fig. 7). These 

top-ranking pathways specifically included those with the top 10% AUC-ROC for the 

winning model, with AUCs ranging from about 0.84 to about 0.76. Model-predicted 

probabilities of activity for all pathways are available in the supplementary material (for the 

5th percentile dose in S12 File; for the 50th percentile dose in S13 File; and for the 95th 

percentile dose in S14 File). Three key points are clear from these heatmap visualizations. 

First, the pathways with the overall highest AUC-ROC, as shown in Fig. 7, include those of 

high relevance to the liver, including many pathways involved in metabolism, as well as 

inflammation/immune response, cell growth, cell differentiation, and cell death, among 

others. Second, biological activity generally increases with dose for most chemicals: there is 

almost no activity in any pathway at a dose of 2.4 mg/kg/day; more activity at 150 mg/kg/

day; and even more activity at 2000 mg/kg/day. Third, there are some chemicals that exhibit 

activity probability > 50% broadly across pathways at a dose of 150 mg/kg/day (top half of 

the heatmap), and others that exhibit more selective pathway activity at the same dose 

(bottom half of the heatmap). A rough difference between these two groups of chemicals is 

revealed by annotating the heatmap with the plasma concentration (Cvivo): the chemicals 
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with more selective pathway activation have generally lower plasma concentration at the 

same dose than the chemicals with less selective activation. This result reflects the 

importance of TK in the best-performing model. However, these differences do not fully 

explain the large differences in pathway selectivity. Moreover, the activity predictions could 

be evaluated for these 6617 chemicals by screening the literature to compile evidence for 

potential liver disruptions at the evaluated doses. It would be interesting in future studies to 

evaluate additional factors contributing to pathway selectivity and additional evidence 

streams relating to liver toxicity.

5. Discussion

There is an ever-expanding need to improve computational models that can better leverage 

findings from in vitro systems to predict in vivo biological responses resulting from 

chemical exposures and/or pharmaceutical treatments. This study serves as a critical 

advancement towards this effort by demonstrating how recent developments in chemical 

disposition and toxicokinetic modeling can be used to improve model performance in 

predictive biology applications. Here, Tox21 HTS data were used to train and test several 

models, all aimed at predicting pathway-level activities derived through transcriptomic 

evaluation of the livers of rats exposed acutely to one of 221 chemicals. Methods addressed 

certain limitations inherent in high-dimensional chemical screening data, including data 

imbalance caused by many inactive responses. Resulting computational models were able to 

successfully incorporate chemical disposition modeling and toxicokinetics, yielding 

improved predictive model performance. The two highest performing models were based on 

estimates in the in vitro system representing aqueous (media) and intracellular 

concentrations, and estimates in the in vivo system representing circulating plasma and liver 

concentrations.

Strategies were also incorporated to interpret biological relationships between modeled 

predictor and response variables, where unexpected combinations of multiple in vitro assays 

predicted in vivo pathway-level activities. Overall, this project provides a novel strategy 

through which in vitro data can be used to predict in vivo biological responses, which was 

lastly applied towards the prediction of in vivo responses across all chemicals in Tox21.

Our results demonstrate that the top-ranking predictive models incorporated chemical 

disposition estimates within in vitro cell-based systems. The majority of predictive 

toxicology studies using in vitro HTS data to predict in vivo outcomes have modelled in 
vitro activity and/or dose–response relationships using nominal concentrations (i.e., the 

concentration of a chemical(s) dissolved in solution and applied to the test system). There 

are inherent limitations to using nominal doses in such modeling efforts. To detail, the 

amount of chemical reaching and entering target cells within a test system may be non-

linearly related to the nominal dose, as test chemicals can bind to extracellular components 

of in vitro systems in a non-linear manner [28,58,59]. Our results are in line with a recent 

study by Honda et al., which found that in vitro activity concentrations converted through 

the Armitage model were better than nominal activity concentration at predicting in vivo 
points-of-departure based on apical toxicity [21]. Results are also congruent with a study by 

Casey et al. demonstrating that adjusting in vitro estrogen receptor activity concentrations 
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from nominal to intracellular concentrations substantially improved the ability to predict in 
vivo estrogenic activity [60]. These data, together, support the utility in modeling chemical 

disposition within in vitro cell-based systems within predictive biology applications.

Results consistently showed that the ability to predict in vivo biological responses was 

substantially improved by using toxicokinetic modeling. These results build upon our recent 

publication showing that in vitro-to-in vivo biological response concordance was 

significantly improved through the use of a TK filter for in vivo doses that are more 

comparable to in vitro activity concentrations [23]. The current study expands upon this 

approach by using forward TK to convert in vivo dosing information into a corresponding 

tissue concentrations and using those values as continuous predictor variables alongside in 
vitro activity information. The top performing model interestingly incorporated chemical 

concentration estimates circulating in plasma, while the second ranking model incorporated 

concentration estimates within liver tissue. These findings suggest that for future modeling 

purposes with similar uncertainties, plasma estimates may suffice in absence of tissue-

specific data; though further research is needed to understand potential ranges of 

applicability. Together, results from this study provide unique evidence demonstrating the 

utility in incorporating chemical disposition and toxicokinetic modeling into predictive 

toxicology applications.

This analysis also employed methods to aid in the overall interpretation of the resulting 

models. These methods included the parsing of predictor-variable importance rankings from 

the random forest models and feature contribution plots. These additional views of the data 

all demonstrated that one in vitro assay does not simply inform whether or not the parallel 

molecular target will show activity in vivo. Previous studies have advocated for the use of 

orthogonal assays in informing in vivo biological responses [26,61]. Here, we expand on 

these findings by providing novel evidence supporting the utility of additional assays that 

may not be thought of as informative based on existing knowledge, though contribute 

valuable information towards informing and developing high performing computational 

models.

Mechanistic-based mappings of in vitro assays to in vivo pathways may not always identify 

the assays that are strongly correlated with in vivo activity. Rather, a “mechanistically-

agonistic” approach that considers activity across assays, even if there is no obvious 

mechanistic connection with those assays, appears to do a better job of predicting in vivo 
activity. For example, we showed that assay response profiles from AR agonism and 

antagonism assays, progesterone-receptor (PR) antagonism assays, and constitutive 

androstane receptor (CAR) agonism assays are important predictor variables when 

predicting the likelihood of PXR-RXR activity in the rat liver. These are not necessarily 

assays that would be mapped a priori to in vivo PXR-RXR activation based on the biological 

understanding of PXR-RXR signaling. The importance of these assays in the random forest 

model does not necessarily imply mechanistic involvement of AR, PR, or CAR in PXR-

RXR activation. The predictive power of these assays may well represent correlation, not 

causation. Our findings demonstrate that these correlations, though sometimes unexpected, 

provide useful information when predicting in vivo activity.
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This study serves as an advancement in methods that can be used to interpret in vitro 
screening data to inform in vivo toxicity responses; though there remain additional steps that 

could further enhance this research area. One challenge faced in this analysis was the 

considerable class imbalance in data used to train and test predictive models. The majority 

of probed in vitro assays and in vivo pathways were inactive for the chemicals evaluated. 

This data imbalance presents a challenge for training a machine-learning model to predict 

activity vs. inactivity, since the model has relatively few examples of activity from which to 

learn. The problem of imbalanced data has been pervasive throughout research aimed at 

incorporating in vitro screening into predictive biology applications [14,23,62,63], and is a 

widely-recognized issue in many other applications of machine learning [64,65]. Here, we 

addressed this limitation through the application of an algorithm, namely, SMOTE, which 

was selected based on its ability to allow improved characterization of in vitro activity 

response distributions; though other approaches could be applied in future investigations. An 

additional challenge of this analysis was the high-dimensional feature space, with 144 Tox21 

assays included in the analysis. Future investigations could benefit from feature selection 

methods to select the predictor variables that carry the most unique information. An 

additional challenge faced by predictive toxicology studies surrounds the availability of data 

spanning large numbers of chemicals to build and test in silico models. This study evaluated 

221 chemicals that had adequate data coverage across the Tox21, DrugMatrix, and/or TG-

Gates databases. As the generation of experimental data becomes increasingly higher 

throughput, it will be important to further develop and refine predictive models based on 

larger chemical domains. An additional challenge is the current paucity of high-throughput 

dose–response data for pathway enrichment analysis that would allow the derivation of a 

point of departure for pathway-level activity. This research gap will be addressed in part by 

future releases of high-throughput in vitro toxicogenomic screening data [66]. With point-of-

departure data, models could be developed to directly predict the exposure level at which 

pathway-level activity might occur, rather than the probability of activity at a given exposure 

level. This research also could be applied towards understanding whether chemical 

disposition / toxicokinetic modeling aids in prediction of apical endpoints, as well as disease 

outcomes, in addition to the pathway-level responses evaluated here.

6. Conclusions

In conclusion, this study serves as an important advancement in predictive modeling by 

presenting approaches to more successfully leverage in vitro data to inform and predict in 
vivo biological responses to chemicals. These approaches are based on the careful 

consideration of in vitro chemical disposition, in vivo toxicokinetics, and machine learning 

methods. We specifically demonstrated that in vitro Tox21 data could be used to 

successfully predict in vivo biological responses in the rat liver, and leveraged the highest 

performing model to predict responses across all chemicals tested in Tox21. These 

approaches will undoubtably continue to expand in the upcoming years, resulting in 

increased confidence surrounding in silico and alternative test strategies to more rapidly 

identify chemical treatment strategies and evaluate the overall safety of chemicals in 

humans.
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Fig. 1. 
Concentration estimates tested as different predictor/outcome variables to identify those 

producing maximal predictivity. (A) In vitro chemical concentrations were evaluated as 

either the nominal concentrations (representing the concentration of the tested chemical 

dissolved in the solute applied to the assay), the aqueous concentrations (representing the 

concentration of the tested chemical that dissolves in the assay solution), or the intracellular 

concentrations (representing the concentration of the tested chemical that enters and 

accumulates in the cells). (B) In vivo chemical concentrations were evaluated as the 

concentration circulating within blood plasma or the concentration that is absorbed in the 

specific target tissue of interest (in this case study, the liver). Within circulating plasma or 

the specific target tissue, chemical concentration were estimated as the maximum or the 

mean concentration after exposure.
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Fig. 2. 
Study overview. Flowchart of steps carried out to evaluate predictivity of in vitro Tox21 

bioactivity vs. in vivo pathway-level activities, through the incorporation of chemical 

disposition and toxicokinetic modeling.
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Fig. 3. 
Model performance rankings for each combination of variables tested. Variable 

combinations were ranked based on the number of biological pathways where the 

corresponding model had the highest AUC-ROC. The models (variable combinations) on the 

horizontal axis are listed in order of descending number of pathways for which the 

corresponding model had the highest AUC-ROC, averaged across folds. Colored circles 

indicate the number of pathways for each fold; black X’s indicates the average number of 

pathways across folds. Model numbers are provided, as summarized in Table 1. Each model 

is labeled as “TK” (including toxicokinetics) or “no TK” (not including toxicokinetics). 

Abbreviations: ccells (intracellular concentration); Cmean (mean tissue concentration); 

Cmax (maximum tissue concentration); cwat (aqueous [or water] concentration).
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Fig. 4. 
Example model performance metrics for the PXR-RXR activation pathway. An example 

ROC for the winning model for the fold-1 test set is displayed. AUC-ROC for this curve is 

0.80. Points on the curve corresponding to possible classification thresholds between 0.1 and 

0.9 are marked with open circles and the threshold value. The best threshold (0.61) is 

marked with a star; this is the optimal threshold to set for classifying an experiment as active 

(model-predicted activity probability above 0.61) or inactive (model-predicted activity 

probability below 0.61), maximizing the true positive rate and minimizing the false positive 

rate. The dashed diagonal line indicates the theoretical ROC for a perfectly useless classifier 

(AUC = 0.5). The ROC and the best threshold varied according to pathway and test set, with 

all values provided in supplementary material.
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Fig. 5. 
Predictor-variable importance for the winning random forest model. Results are summarized 

(A) for the example PXR-RXR activation pathway, with variables are arranged from top to 

bottom in decreasing order of mean decrease in accuracy in predicting out-of-bag samples 

when each predictor variable was permuted; mean decrease in accuracy values are indicated 

along the x-axis. Results are also summarized (B) across all evaluated pathways, where a 

heatmap shows mean decrease in accuracy in predicting out-of-bag samples for each 

pathway (rows) when each variable (columns) is perturbed. Variables are arranged from left 

to right in decreasing order of average mean decrease in accuracy across pathways. These 

plots focus on the top 30 variables.
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Fig. 6. 
Example feature contribution plots. Results are shown for the top 20 most important 

predictor variables (as shown in Fig. 5) for the winning random forest model for the PXR-

RXR activation pathway. Each panel shows the contribution of the specified predictor 

variable to the probability that each experiment is classified as active in this pathway; each 

point represents one in vivo experiment. Each panel includes the same number of points (in 
vivo experiments); however, points may be plotted on top of one another, so that fewer 

individual points may be visible in some panels. For in vitro Tox21 log10 AC50 values 

(variables beginning with “TOX21”), placeholder values of 99 (for hit-call 0) are plotted at 

the value 6. Points are color-coded by a specific predictor variable of interest; namely, log10 

administered dose for each experiment. This coloration allows for the qualitative assessment 

of whether each predictor variable may have an interaction with the response variable, log10 

dose, indicating the concentration estimated to elicit activation of the PXR-RXR pathway in 

the rat liver.
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Fig. 7. 
In vivo pathway activity predictions across Tox21 chemicals. Results are shown for 

pathways with the highest model performance. These heat maps display the probability of 

each pathway being altered in vivo after exposure to a chemical in Tox21, based on the 

winning random forest model. Rows represent 6617 Tox21 chemicals; columns represent the 

73 pathways with the top 10% AUC-ROC (pathway names are truncated to 30 characters). 

Rows (chemicals) are annotated with colorbars representing log10 of maximum plasma 

concentration (“Cvivo”) and log P. Columns (pathways) are annotated with colorbars 

representing pathway database (“pathDB”) and AUC-ROC (“AUC”). Pathway activation 

predictions were generated based on treatment doses spanning the (left) 5th, (middle) 50th, 

and (right) 95th percentiles of the doses tested in DrugMatrix/TG-Gates. For visualization 

purposes, only the pathways demonstrating the highest predictive performance (i.e., top 10% 

AUC-ROC) are included. For all predictions, see supplementary material (S12 File, S13 

File, S14 File)
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