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Plant DNA polymerases a and & mediate
replication of geminiviruses
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Geminiviruses are causal agents of devastating diseases in crops. Geminiviruses have circular
single-stranded (ss) DNA genomes that are replicated in the nucleus of the infected plant cell
through double-stranded (ds) DNA intermediates by the plant DNA replication machinery.
Which host DNA polymerase mediates geminiviral multiplication, however, has so far
remained elusive. Here, we show that subunits of the nuclear replicative DNA polymerases o
and & physically interact with the geminivirus-encoded replication enhancer protein, C3, and
that these polymerases are required for viral replication. Our results suggest that, while DNA
polymerase o is essential to generate the viral dsDNA intermediate, DNA polymerase &
mediates the synthesis of new copies of the geminiviral ssDNA genome, and that the virus-
encoded C3 may act selectively, recruiting DNA polymerase 8 over € to favour productive
replication.
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eing obligate intracellular parasites, viruses rely on the host

molecular machinery to replicate and spread. Gemini-

viruses are a family of plant viruses with circular single-
stranded (ss) DNA genomes, causal agents of devastating diseases
in crops worldwide (reviewed in refs. 12). None of the
geminivirus-encoded proteins is a DNA polymerase, and gemi-
niviral replication, which occurs in the nuclei of infected cells,
completely relies on the plant DNA replication machinery.
In a first step, the viral ssDNA has to be converted into a
double-stranded (ds) intermediate, which is then replicated by
rolling-circle replication (RCR) and recombination-dependent
replication (RDR), producing multiple copies of the original viral
genome that are eventually encapsidated and can be transmitted
by the insect vector (reviewed in refs. 34). Only one viral protein,
the replication-associated protein (Rep), is required for the
replication of viral DNA: Rep reprograms the cell cycle, recruits
the host DNA replication machinery to the viral genome, and
mediates nicking and rejoining events required for the initiation
of replication and release of newly synthesized molecules
(reviewed in refs. 34). Another viral protein, C3, plays an ancillary
role in viral DNA replication, acting as an enhancer in this
process through an as-yet-unknown mechanism, but for which
homodimerization and interaction with Rep are required®-13. A
few host factors interacting with Rep and/or C3 and potentially
required for geminiviral DNA replication, including the
sliding clamp proliferating cell nuclear antigen (PCNA), the
sliding clamp loader replication factor C (RFC), and the ssDNA-
binding protein replication protein A (RPA), have been described
to date (>14-16; reviewed in ref. 4); a recent genetic screen has
identified a number of factors required for geminivirus replication
in yeast, which can act as a surrogate system”. However, so far,
no DNA polymerase associated with these viral proteins has been
identified, although their activity is conditio sine qua non for
geminiviral multiplication. A contribution of translesion DNA
polymerases to the replication of geminiviral DNA has been
proposed, but they were nevertheless not found essential for this
process!'®. To date, the identity of the plant DNA polymerase
replicating the viral genome has remained elusive.

Here, we show that the regulatory subunits of the nuclear
replicative DNA polymerases o and § physically associate with
the geminivirus-encoded replication enhancer protein, C3, and
that the activity of these polymerases is essential for viral repli-
cation. Our results indicate that DNA polymerase a is required
for the generation of the viral dsDNA replication intermediate,
while DNA polymerase § is involved in the downstream accu-
mulation of newly synthesized ssDNA. In stark contrast with the
other two replicative DNA polymerases, DNA polymerase &
exerts a negative effect on viral DNA replication. Taken together,
the results presented here suggest a model according to which the
viral C3 protein may act selectively mediating the productive
recruitment of DNA polymerase § over ¢ to enhance geminivirus
replication.

Results

The geminivirus-encoded C3 protein interacts with POLA2, a
subunit of DNA polymerase a, which is required for gemini-
virus replication. In order to identify host factors involved in the
replication of geminiviral DNA, we performed a yeast two-hybrid
(Y2H) screen using C3 from Tomato yellow leaf curl virus
(TYLCV, genus Begomovirus) as bait against a cDNA library from
infected tomato plants!?. Interestingly, we found that C3 interacts
with the N-terminal part of DNA polymerase a subunit 2
(SIPOLA2), the regulatory subunit of this holoenzyme (Fig. 1a);
this interaction was confirmed in yeast and in planta through
Y2H, co-immunoprecipitation (co-IP), and bimolecular

fluorescence complementation (BiFC) assays, and could also be
detected with POLA2 from the Solanaceae experimental host
Nicotiana benthamiana (NbPOLA2) (Fig. 1b-d; see “Methods”;
Supplementary Table 1). In addition, SIPOLA2 and NbPOLA2
interact with the C3 protein encoded by the geminiviruses Beet
curly top virus (BCTV, genus Curtovirus) and Tomato golden
mosaic virus (TGMV, genus Begomovirus) (Fig. 1c, d and Sup-
plementary Fig. 1), suggesting conservation of this interaction at
least within the genera Begomovirus and Curtovirus. Of note,
TYLCV induced the formation of nuclear speckles by POLA2
(Fig. le and Supplementary Fig. 2), although the functional
relevance of these nuclear bodies remains to be determined.
Chromatin immunoprecipitation (ChIP) assays indicated that
NbPOLA2 can bind the viral genome; since no significant dif-
ferences are detected between the wild-type (WT) and a C3 null
mutant virus, we conclude that this binding occurs in a C3-
independent manner (Fig. 1f and Supplementary Fig. 3).
Knocking down NbPOLA2 by Tobacco rattle virus (TRV)-medi-
ated virus-induced gene silencing (VIGS) in N. benthamiana
rendered plants with reduced height and thicker leaf blades
(Supplementary Fig. 4). Strikingly, although POLA2 silencing did
not impair Agrobacterium tumefaciens-mediated transient trans-
formation (Supplementary Fig. 5), it almost completely abolished
local TYLCV replication and systemic infection (Fig. 1g, h),
indicating an essential role of POLA2/DNA polymerase a in the
replication of the viral genome. A similar effect of NbPOLA2
silencing was observed on BCTV replication (Supplementary
Fig. 6), suggesting that the role of this polymerase in viral repli-
cation is likely conserved across different geminivirus species.
Silencing of the gene encoding the catalytic subunit of DNA
polymerase a, POLA1/ICU2, had a similar inhibitory effect on the
accumulation of TYLCV (Fig. 1i), supporting the potential
replicative function of this polymerase on the viral DNA, and
ruling out a specific effect of the POLA2 subunit.

DNA polymerase §, but not DNA polymerases ¢ or {, is
required for geminivirus replication. In eukaryotes, DNA
polymerase a primes DNA replication, while DNA polymerases &
and e act as the main processive replicative polymerases. These
three replicative polymerases are assembled into a large complex
termed replisome, which contains all proteins required for DNA
replication, including PCNA, RFC, and RPA (reviewed in ref. 20).
In yeast, DNA polymerase § elongates the RNA/DNA primers
produced by DNA polymerase a on both strands?! and,
according to the generally accepted model, then synthesizes the
lagging strand, with DNA polymerase € synthesizing the leading
strand?2; in addition, DNA polymerase § is believed to perform
initiation and termination of replication on both strands?3.
Recently, an alternative model has been proposed, according to
which DNA polymerase § would replicate both strands of the
DNA, and the switch to DNA polymerase £ would only occur
following replication errors®4, The DNA polymerase § regulatory
subunit NbPOLD2 associates with TYLCV C3 in co-IP experi-
ments, and interacts with TYLCV, BCTV, and TGMV C3 in BiFC
assays (Fig. 2a—c and Supplementary Fig. 1; see “Methods”;
Supplementary Table 1); no interaction could be detected
between C3 and the DNA polymerase & regulatory subunit
NbPOLE2/DPB2. Intriguingly, co-expression of NbPOLD2 and
geminiviral C3 led to a dramatic change in the morphology of the
fibrillarin-positive nuclear bodies (Fig. 2a). Despite this apparent
difference in C3 binding, both NbPOLD2 and NbPOLE2/DPB2
can bind the viral genome in ChIP assays, as previously shown for
POLA2 (Fig. 2d, e and Supplementary Fig. 7). Of note, lack of C3
in a TYLCV C3 null mutant enhances binding of NbPOLE2 to
the viral DNA, while increasing variation in the binding of
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NbPOLD?2 (Fig. 2d, e). With the aim to decipher whether DNA
polymerase a acts in concert with DNA polymerases § and/or € in
the replication of the viral DNA, we silenced the corresponding
regulatory subunits POLD2 and POLE2/DPB2 by VIGS in
N. benthamiana, and tested the capacity of TYLCV to replicate in
local infection assays and to infect systemically. Silencing of either
subunit results in a distinct developmental phenotype, with plants

of smaller size with leaves of abnormal shape (Supplementary
Fig. 4), but the ability of A. tumefaciens to mediate transient
transformation in these plants is not affected (Supplementary
Fig. 5). Knocking down POLD2 impaired TYLCV DNA replica-
tion in local infection assays (Fig. 2f), whereas knocking down
POLE2 enhanced viral accumulation both locally and systemically
(Fig. 2g, h). The same effect could be observed for BCTYV,
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Fig. 1 The geminivirus-encoded C3 protein interacts with POLA2, the regulatory subunit of DNA polymerase o, which is required for geminiviral

replication. a Schematic representation of bait (C3) and prey (SIPOLA2) isolated from the Y2H screen. Amino acid residues are indicated. SID: selected
interaction domain. b C3 and POLA2 interact in yeast. AD: activation domain; BD: binding domain. The interaction between the SV40 large T antigen (T)
and the tumor suppressor p53 is a positive control; empty AD- and BD-containing vectors (AD and BD, respectively) are used as a negative control. ¢ C3-
GFP (from TYLCV, BCTV, and TGMV) co-immunoprecipitates SIPOLA2-RFP (left) and NbPOLA2 (right) upon transient expression in N. benthamiana. IP:
immunoprecipitate; IB: immunoblot; CBB: Coomassie brilliant blue. The predicted protein sizes are as follows: SIPOLA2-RFP, ~100 kDa; NbPOLA2-RFP,

~100 kDa; C3 (TYLCV)-GFP, ~42 kDa; C3 (BCTV)-GFP, ~42 kDa; C3 (TGMV)-GFP, ~42 kDa; GFP, ~26 kDa. Full blots and membranes can be found in the
Source data file. d SIPOLA2 and NbPOLAZ2 interact with C3 from TYLCV, BCTV, and TGMYV in BiFC assays upon transient expression in N. benthamiana.
Fibrillarin-RFP marks the nucleolus and the Cajal body. Images were taken at 2 days post inoculation. Scale bar: 5um. Negative controls are shown in

Supplementary Fig. 1. e Nuclear distribution of transiently expressed SIPOLA2-GFP, NbPOLA2-GFP, and free GFP in the absence (empty vector, EV) or
presence of TYLCV in N. benthamiana. Scale bar: 5 um. Additional images are shown in Supplementary Fig. 2. f NbPOLA2 binds the TYLCV genome in ChIP
assays. The location of primers used for different genomic regions is shown in Supplementary Fig. 3a; the results for additional genomic regions are shown
in Supplementary Fig. 3b. Data are the mean of three independent biological replicates; error bars indicate SD. ITS is used as the normalizer. g-i Viral

accumulation in local (g, i; 3 days post inoculation) or systemic (h; 2 weeks post inoculation) TYLCV infections in POLAZ2-silenced (TRV-NbPOLA2) (g, h),
POLAT-silenced (TRV-NbPOLAT) (i) or control (TRV) N. benthamiana plants measured by gPCR. Plants inoculated with the empty vector (EV) are used as a
negative control. Data are the mean of six independent biological replicates; error bars represent SD. The 25S ribosomal DNA interspacer (ITS) was used as
a reference gene; values are presented relative to ITS. The phenotype of silenced plants and silencing efficiency are presented in Supplementary Fig. 4. All
experiments were repeated at least three times with similar results, with the exception of the ChIP assays, which were repeated twice. Asterisks indicate a
statistically significant difference according to a two-sided Student’s t test (***P < 0.001; **P < 0.01). The original data from all experiments and replicates

can be found in the Source data file.

indicating that the role of DNA polymerases 6 and € in viral DNA
replication is likely conserved in different geminivirus species
(Supplementary Fig. 6b, c). Supporting the role of the DNA
polymerase holoenzymes, and not specifically of POLD2/POLE2,
silencing of the genes encoding their respective catalytic subunits,
POLDI and POLE], had similar effects on viral accumulation to
those observed when silencing the regulatory subunits (Fig. 2i-k).
While in POLE2-silenced plants the accumulation of POLA2 and
POLD2 transcripts was decreased, no consistent reduction of
transcripts encoding subunits of DNA polymerase a was found
upon POLDI/POLD?2 silencing, hence ruling out indirect effects
based on changes in the availability of this polymerase (Supple-
mentary Fig. 8).

In yeast and mammalian cells, the translesion DNA polymer-
ase ( shares two regulatory subunits with DNA polymerase §,
namely POLD2 and POLD3 2>26, In order to test whether the
detected effect of silencing POLD2 on viral DNA replication may
derive from an impact on the activity of DNA polymerase {, we
silenced the gene encoding the catalytic subunit of this complex,
REV3 (Supplementary Table 1). As shown in Supplementary
Fig. 9, REV3 silencing did not affect viral accumulation in local
infection assays, in sharp contrast to POLDI or POLD?2 silencing
(Fig. 2f, 1), indicating that DNA polymerase  is not required for
geminiviral replication. Our results, therefore, point to DNA pol
§, but not DNA pol € or DNA polymerase {, as required, together
with DNA pol a, for replication of the geminiviral genome.

DNA polymerase a is required for the synthesis of the viral
dsDNA replicative intermediate, while DNA polymerase § is
required for the downstream accumulation of ssDNA. We next
used two-step anchored qPCR?’ to quantify the relative accu-
mulation of viral ssDNA (viral strand, VS) and the dsDNA
intermediate (as complementary strand, CS) (Fig. 3a) in local
infection assays with TYLCV-WT or a C3 null mutant in N.
benthamiana plants in which POLA2, POLD2, or POLE2 have
been silenced by VIGS (Fig. 3b-e). In agreement with previous
results, the lack of C3 resulted in a decrease in the accumulation
of both strands of the viral DNA, consistent with the role of this
viral protein as a replication enhancer (Fig. 3b-e;°). Strikingly,
silencing of POLA2 impaired the accumulation of the viral
complementary strand (Fig. 3b, c), hence compromising the
subsequent production of the viral strand, which requires dsDNA

as a template (Fig. 3d, e); silencing of POLD2 did not affect the
synthesis of the viral complementary strand, but interfered with
the downstream accumulation of viral ssDNA (Fig. 3b-e),
pointing at a function of this DNA polymerase in RCR. As pre-
viously observed (Fig. 2g), the lower levels of POLE2 led to an
increased accumulation of viral DNA, an effect that could be
observed on both viral strands (Fig. 3b-e). Taken together, these
results suggest that DNA polymerase a is essential for the initial
synthesis of the viral complementary strand, and therefore for the
generation of the dsDNA replicative intermediate, ultimately
limiting the accumulation of both dsDNA and ssDNA, while
DNA polymerase §, alone or in combination with a, is required
for the following RCR.

The lack of C3 can be complemented by silencing of DNA
polymerase & subunits. The finding that both DNA polymerases
§ and e can associate to the geminiviral genome, but § is required
for viral replication while € seems to exert a negative effect that is
released by its silencing, suggests that both DNA polymerases
may compete for binding to the viral DNA with opposite out-
comes, since only DNA polymerase § leads to replication. The
observations that (i) C3 can physically interact with POLD2, and
(ii) the non-productive binding of POLE2 to the viral DNA is
increased in the absence of C3, hint at the possibility that C3
might mediate the selective recruitment of DNA polymerase &
over e. Supporting this hypothesis, silencing of POLE2 increases
DNA replication of a C3 null mutant TYLCV to wild-type-like
levels in control plants (Fig. 3d, e). In order to further test this
idea, we inoculated N. benthamiana POLE2-silenced or control
plants with a TYLCV C3 null mutant and evaluated the capacity
of this mutant virus to establish a systemic infection. In systemic
tissues of control plants, the mutant virus accumulated to very
low levels, and caused only mild symptoms (Fig. 4a—c); never-
theless, upon POLE2 silencing, both viral accumulation and
symptom development were dramatically increased (Fig. 4a-c).
Silencing POLEI, encoding the catalytic subunit of DNA poly-
merase €, had a similar effect on the ability of a TYLCV C3 null
mutant to establish a systemic infection (Fig. 4d). The finding that
silencing subunits of DNA polymerase € can complement the lack
of C3 strengthens the idea that one of the functions of this viral
protein is to counter the negative effect of DNA polymerase € on
viral replication.
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Discussion DNA polymerase §, is essential for the accumulation of the

Taken together, our results identify DNA polymerases a and § as
required for replication of geminiviruses in their host plants. The
role of replicative DNA polymerases in this process is in agree-
ment with the previous observation that treatment with aphidi-
colin, an inhibitor of DNA polymerases a, §, and ¢, impairs
geminiviral accumulation in plants?8. DNA polymerase a, but not

dsDNA replicative intermediate (Fig. 3b). Despite its basal low
processivity, it remains to be determined whether DNA poly-
merase o performs the synthesis of the viral CS alone, or it does
so in conjunction with a yet-to-be-identified polymerase. DNA
polymerase § is required for the subsequent synthesis of new viral
ssDNA; a contribution of DNA polymerase o, or of additional
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Fig. 2 DNA polymerase 3, but not DNA polymerase ¢, interacts with the geminivirus-encoded C3 protein and is required for geminiviral replication. a,
b NbPOLD2 (a), but not NbPOLE2 (b), interacts with C3 from TYLCV, BCTV, and TGMYV in BiFC assays upon transient expression in N. benthamiana.
Fibrillarin-RFP marks the nucleolus and the Cajal body. Scale bar: 5 um. Negative controls are shown in Supplementary Fig. 1. ¢ C3-GFP co-
immunoprecipitates NbPOLD2-RFP (left), but not NbPOLE2-RFP (right), upon transient expression in N. benthamiana. IP: immunoprecipitate; IB:
immunoblotting; CBB: Coomassie brilliant blue. The predicted protein sizes are as follows: NbPOLD2-RFP, ~46.5 kDa; NbPOLE2-RFP, ~63 kDa; C3 (TYLCV)-
GFP, ~42 kDa; GFP, ~26 kDa. Full blots and membranes can be found in the Source data file. d, e NbPOLD2 (d) and NbPOLE2 (e) bind the TYLCV genome
in ChIP assays. The location of the amplified sequences at different genomic regions is shown in Supplementary Fig. 3a; results for additional genomic
regions are shown in Supplementary Fig. 7. Data are the mean of three independent biological replicates; error bars indicate SD. Asterisks indicate a
statistically significant difference according to a two-sided Student's t test (*P < 0.05). ns: not significant. f, g Viral accumulation in local TYLCV infections
(3 days post inoculation) in POLD2-silenced (TRV-NbPOLD2) (f), POLE2-silenced (TRV-NbPOLE2) (g), or control (TRV) N. benthamiana plants measured
by gPCR. Plants inoculated with the empty vector (EV) are used as negative control. Data are the mean of six independent biological replicates; error bars
represent SD. The phenotype of silenced plants and silencing efficiency are presented in Supplementary Fig. 4. h Viral accumulation in systemic TYLCV
infections (2 weeks post inoculation) in POLE2-silenced (TRV-NbPOLE2) or control (TRV) N. benthamiana plants measured by gPCR. Plants inoculated with
the empty vector (EV) are used as negative control. Data are the mean of six independent biological replicates; error bars represent SD. The 25S ribosomal
DNA interspacer (ITS) was used as a reference gene; values are presented relative to ITS. i, j Viral accumulation in local TYLCV infections (3 days post
inoculation) in POLDI-silenced (TRV-NbPOLD1) (i), POLET-silenced (TRV-NbPOLE1) (j), or control (TRV) N. benthamiana plants measured by gPCR. Plants
inoculated with the empty vector (EV) are used as negative control. Data are the mean of six (i) or five (j) independent biological replicates; error bars
represent SD. The phenotype of silenced plants and silencing efficiency are presented in Supplementary Fig. 4. k Viral accumulation in systemic TYLCV
infections (2 weeks post inoculation) in POLET-silenced (TRV-NbPOLET) or control (TRV) N. benthamiana plants measured by gPCR. Plants inoculated with
the empty vector (EV) are used as negative control. Data are the mean of five independent biological replicates; error bars represent SD. The 25S
ribosomal DNA interspacer (ITS) was used as a reference gene; values are presented relative to ITS. All experiments were repeated at least three times
with similar results, with the exception of the ChIP assays, which were repeated twice. Two-sided Student’s t test (f, g, h, 1, j, k) was performed to test
statistical significance (****P <0.0001; ***P <0.001; **P < 0.01). ns: not significant. The original data from all experiments and replicates can be found in

the Source data file.

DNA polymerases, to this step of the viral cycle cannot be ruled
out at this point. Interestingly, TYLCV has been recently proven
to replicate in the insect vector in a DNA polymerase 06-
dependent manner??, which raises the idea that the mechanisms
replicating geminiviruses might be conserved between the animal
and plant kingdoms.

Protein-protein interactions and functional data suggest a
model in which the geminivirus-encoded replication enhancer C3
acts selectively recruiting DNA polymerase § over the non-
productive DNA polymerase ¢ (Fig. 4e); this function of C3 would
explain the long-standing observation that the lack of this viral
protein decreases the accumulation of viral DNA®8912.13,30,
Notably, a C3 null mutant TYLCV shows a decrease in both VS
and CS (Fig. 3b-e), in agreement with previous observations’; this
raises the possibility that C3 also plays a role in the initial pro-
ductive recruitment of DNA polymerase a, an idea supported by
its physical interaction with POLA2 (Fig. 1). Nevertheless, it
should be noted that not all geminiviruses are described to encode
a C3 protein, and hence alternative mechanisms for the selective
recruitment of DNA polymerases might be in place. It also needs
to be considered that viral replication-related proteins are not
present during the first phase of infection; hence, the initial
recruitment of DNA polymerase o and any other factors required
for the synthesis of the dsDNA must happen without the con-
tribution of these viral effectors.

In yeast, DNA polymerase § acts replicating the leading strand
during double-strand break repair, a process in which it is error-
prone3132; during the replication of the geminiviral genome, a
similar decrease in fidelity might explain the high mutation rate
of these viruses. DNA polymerase a, which lacks proofreading
activity, may also introduce errors during the synthesis of the
dsDNA intermediate. Alternatively or additionally, the accumu-
lation of mutations in geminiviral genomes might not be linked to
the replicative process, but occur in the ssDNA form as a result of
oxidative damage (reviewed in ref. 33,

Geminiviruses belong to the Eukaryotic Circular Rep-Encoding
Single-Stranded DNA (CRESS DNA) viruses, a virus phylum that
encompasses Rep-encoding ssDNA viruses with a likely common
ancestor infecting organisms from different kingdoms of life,

including animals, plants, and fungi®33% since CRESS DNA
viruses are expected to display similar strategies for the replica-
tion of their genomes, the identification of the DNA polymerases
mediating replication of geminiviruses could have an impact on
host-virus interactions beyond those involving this viral family.

Methods
Plant materials. N. benthamiana plants were grown in a controlled growth
chamber under long-day conditions (LD, 16 h of light/8 h of dark) at 25 °C.

Plasmid construction. Plasmids and primers used for cloning are summarized in
Supplementary Tables 2 and 3. The TYLCV clone used as a template is AJ489258
(GeneBank). pGTQLI1211YN and pGTQL1221YC are described in3?; vectors from
the pGWB series are described in refs. 3%37. DNA fragment cloned into the
pENTR™/D-TOPO entry vector or the pPDNOR-zeo entry vector (Thermo Sci-
entific) were recombined into the corresponding destination vectors through a
Gateway LR reaction (Thermo Scientific).

Y2H assay. Yeast two-hybrid assays were performed following the Matchmaker
Yeast Two-Hybrid User Manual (Clontech).

Identification and selection of Nicotiana benthamiana orthologous genes
encoding DNA polymerase subunits. Orthologs of Arabidopsis POLA1/2,
POLD1/2, POLE1/2, and REV3 proteins in N. benthamiana were identified by
BLAST (Supplementary Table 1). The proteins and coding genes used in this work
were selected among the corresponding orthologs based on their gene expression in
TYLCV-infected N. benthamiana samples (38; Supplementary Table 1).

Local and systemic viral infections. Local and systemic viral infection assays were
done as described in ref. 33. In brief, Agrobacterium cells carrying the TYLCV-WT,
TYLCV-C3mut, or BCTV infectious clones, or an empty vector (EV) as control,
were liquid-cultured in LB with appropriate antibiotics overnight. Bacterial cultures
were centrifuged at 4000 x g for 10 min and resuspended in infiltration buffer
(10 mM MgCl,, 10 mM MES, pH 5.6, and 150 uM acetosyringone). After a 4-h
incubation at room temperature in the dark, bacterial cultures were used to infil-
trate the underside of leaves of 4-week-old N. benthamiana plants (for local
infection assays) or inject on the stems of 3-week-old N. benthamiana plants (for
systemic infection assays).

Virus-induced gene silencing (VIGS). Tobacco rattle virus (TRV)-mediated
virus-induced gene silencing (VIGS) assays were performed as described in3°.
TRV-NbPDS was used as a positive control®0. Briefly, Agrobacterium cells carrying
pTRVI1- and pTRV2-based constructs were grown in LB medium overnight with
appropriate antibiotics. Cultures were resuspended in the infiltration buffer
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Fig. 3 Effect of silencing POLA2, POLD2, or POLE2 on the accumulation of viral and complementary DNA strands. a Schematic representation of the
viral DNA forms during the infection. VS: viral strand; CS: complementary strand; ssDNA: single-stranded DNA; dsDNA: double-stranded DNA. b, ¢, d, e
Accumulation of complementary strand (CS) (b, ¢) and viral strand (VS) (d, e) during local TYLCV infections in POLA2-silenced (TRV-NbPOLA2), POLD2-
silenced (TRV-NbPOLD?2), POLE2-silenced (TRV-NbPOLE2), or empty vector control (EV) N. benthamiana plants, measured by qPCR at 3 days post
inoculation. Data are the mean of six independent biological replicates; error bars represent SD. The 25S ribosomal DNA interspacer (ITS) was used as a
reference gene; values are presented relative to ITS. TYLCV-WT: wild-type TYLCV; TYLCV-C3mut: C3 null TYLCV mutant. Mean values are shown. Letters
indicate a statistically significant difference according to one-way ANOVA-Welch (in b: degrees of freedom df =3, F value =50.98; in d: degrees of
freedom df =3, F value =18.42; in e: degrees of freedom df =3, F value =17.70) followed by Games-Howell's multiple comparison test (P <0.05), or
according to one-way ANOVA (in c: degrees of freedom df = 3, F value = 32.27) followed by Tukey's multiple comparison test (P < 0.05). The original data

from all experiments and replicates can be found in the Source data file.

(10 mM MgCl,, 10 mM MES, pH 5.6, and 150 uM acetosyringone) and incubated
at room temperature for 4 h in the dark. Mixed cell cultures were used to inoculate
2-week-old N. benthamiana plants. Two weeks later, plants were used for local
infection assays. For systemic infection assays, Agrobacterium cells carrying the
virus infectious clones were co-infiltrated with pTRV1- and pTRV2-based
constructs.

Quantitative real-time PCR (qPCR) and reverse transcription PCR (RT-gPCR).
To determine viral accumulation, total DNA was extracted from N. benthamiana
leaves (from infiltrated leaves in local infection assays and from apical leaves in
systemic infection assays) using the CTAB method*!. Quantitative real-time PCR
(qPCR) was performed with primers to amplify Rep (Supplementary Table 3). The
25S ribosomal DNA interspacer (ITS) was used as a reference gene (Supplementary
Table 3).

The quantification of viral and complementary strand in local infections was
performed following ref. 27.

To detect gene expression in N. benthamiana, total RNA was extracted from
leaves by using Plant RNA kit (OMEGA Bio-tek). cDNA was synthesized using the
iScript™ gDNA clear cDNA Synthesis Kit (Bio-Rad) according to the
manufacturer’s instructions. NbActin was used as a reference gene. qPCR and RT-
qPCR were performed in a Bio-Rad CFX96 real-time system with Hieff™ qPCR

SYBR Green Master Mix (Yeason). The reactions were done as follows: 3 min at
95 °C, 40 cycles consisting of 15 s at 95 °C, and 30 s at 60 °C. Primers used are
described in Supplementary Table 3.

Chromatin immunoprecipitation (ChIP) assay. ChIP assay was performed as
described previously*2. Agrobacterium clones carrying the binary vectors to express
NbPOLA2-, NbPOLD2-, or NbPOLE2-GFP were co-infiltrated with those carrying
the TYLCV or TYLCV-C3mut infectious clones in N. benthamiana leaves. The
infiltrated tissue was collected and cross-linked with 1% formaldehyde in 1xPBS
buffer at 2 dpi; 3 ug of antibody were used. ChIP products were diluted into 200 pL
of ddH,O and inputs were diluted at a 1:100 ratio, and analyzed by qPCR. Anti-
GFP antibody (Abcam, ab290) and IgG (Sigma, 15006) were used in this assay. The
primers used in this experiment are listed in Supplementary Table 3.

Protein extraction and co-immunoprecipitation (co-IP) assays. Agrobacterium
cells carrying the appropriate constructs were infiltrated in N. benthamiana leaves
and collected at 2 dpi. After grinding the agroinfiltrated tissue in liquid nitrogen,
nuclei were extracted as in ChIP assay, and then subjected to protein extraction and
co-immunoprecipitation assays with GFP-Trap beads (Chromotek, Germany;

Smart Lifesciences, SA070005) as described in ref. 1°. The antibodies used are as
follows: anti-GFP (Abiocode, M0802-3a), anti-RFP (Chromotek, 5F8), anti-mouse
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Fig. 4 Silencing subunits of DNA polymerase ¢ enables systemic infection of a C3 null mutant geminivirus. a, b Symptoms of POLE2-silenced (TRV-
NbPOLE2, right) or control (TRV-EV, left) N. benthamiana plants inoculated with a C3 null mutant TYLCV at 4 weeks post inoculation. EV: empty vector
control. Scale bar: 2 cm. ¢, d Viral accumulation in systemic TYLCV infections (4 weeks post inoculation) in POLE2-silenced (TRV-NbPOLE2) (c), POLET-
silenced (TRV-NbPOLE1) (d), or control (TRV-EV) N. benthamiana plants measured by gPCR. Plants inoculated with the empty vector (EV) are used as
negative control. Data are the mean of five independent biological replicates; error bars represent SD. The 25S ribosomal DNA interspacer (ITS) was used
as a reference gene; values are presented relative to ITS. Asterisks indicate a statistically significant difference according to a two-sided Student’s t test
(***P<0.001; *P<0.05). e Hypothetical model of the role of DNA polymerases a and & in the replication of the geminiviral genome. DNA polymerase « is
required to convert the viral ssDNA genome to the dsDNA replicative intermediate, which is then replicated by DNA polymerase & to produce new viral
ssDNA. The virus-encoded C3 protein interacts with DNA polymerase o (POLA2) and DNA polymerase 8 (POLD2), and selectively recruits the latter over
the non-productive DNA polymerase e. The original data from all experiments and replicates can be found in the Source data file.

IgG (Sigma, A2554), and anti-rat IgG (Abcam, ab7097). Primary antibodies were
diluted 1:5000; secondary antibodies were diluted 1:15,000.

Protein subcellular localization. For subcellular localization, GFP- or RFP-tagged
proteins were transiently expressed in N. benthamiana leaves and imaged with a
Leica TCS SMD confocal microscope using the preset settings for GFP (Ex: 488 nm,
Em: 500-550 nm) and RFP (Ex: 554 nm, Em: 570-620 nm).

Bimolecular fluorescence complementation (BiFC). Bimolecular fluorescence
complementation (BiFC) assays were performed in N. benthamiana leaves as
described in ref. 3. Agrobacterium cells carrying the appropriate BiFC clones and
RFP-Fibrillarin*? were infiltrated on 4-week-old N. benthamiana plants with 1-mL
needleless syringe. Imaging was performed 2 days later under a Leica TCS SMD
confocal microscope by using the preset sequential scan settings for YFP (Ex: 514
nm, Em: 525-575 nm) and for RFP (Ex: 554 nm, Em: 570-620 nm).

Reporting summary. Further information on experimental design is available in the
Nature Research Reporting Summary linked to this paper.

Data availability
All data generated or analyzed during this study are included in this published article
(and its supplementary information files). Source data are provided with this paper.
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