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1  | INTRODUC TION

Antarctica is a desolate and largely unexplored region, and at the 
same time, it is a critical component of the global climate system 
(Kennicutt et al., 2014). As a consequence of current climate change, 
warming in Antarctica (Vaughan et al., 2003) has resulted in a 

dramatic retreat of ice and a rise in sea level, with associated impacts 
to society and the global system (Shepherd et al., 2012). For instance, 
climate change-related mass loss of Antarctic ice sheets is one of the 
main drivers of global sea-level rise (DeConto & Pollard, 2016). Such 
rapid environmental change raises fundamental questions about the 
capacity of the Antarctic ecosystem to cope with these impacts.
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Abstract
Antarctica is an iconic region for scientific explorations as it is remote and a critical 
component of the global climate system. Recent climate change causes a dramatic 
retreat of ice in Antarctica with associated impacts to its coastal ecosystem. These 
anthropogenic impacts have a potential to increase habitat availability for Antarctic 
intertidal assemblages. Assessing the extent and ecological consequences of these 
changes requires us to develop accurate biotic baselines and quantitative predictive 
tools. In this study, we demonstrated that satellite-based remote sensing, when used 
jointly with in situ ground-truthing and machine learning algorithms, provides a 
powerful tool to predict the cover and richness of intertidal macroalgae. The salient 
finding was that the Sentinel-based remote sensing described a significant proportion 
of variability in the cover and richness of Antarctic macroalgae. The highest 
performing models were for macroalgal richness and the cover of green algae as 
opposed to the model of brown and red algal cover. When expanding the geographical 
range of the ground-truthing, even involving only a few sample points, it becomes 
possible to potentially map other Antarctic intertidal macroalgal habitats and monitor 
their dynamics. This is a significant milestone as logistical constraints are an integral 
part of the Antarctic expeditions. The method has also a potential in other remote 
coastal areas where extensive in situ mapping is not feasible.
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Until recently, Antarctic coastal ecosystems were thought of as 
virtually devoid of macroscopic life. This barren appearance is re-
lated to frequent ice scour that removes a large proportion of mac-
robenthic intertidal organisms during winter (Pugh & Davenport, 
1997). In the past decade, however, a different picture has emerged 
(Kennicutt et al., 2014). The intertidal algal communities actually de-
velop rapidly during austral summer when large areas of the coast 
are devoid of ice (Griffiths & Waller, 2016). This cyclic process of 
recolonization—in combination with substrate heterogeneity and 
biotic interactions—is thought to underpin a high spatial variabil-
ity in the structure of intertidal Antarctic macroalgal assemblages 
(Valdivia et al., 2014). Such communities are restricted to regions 
with milder abiotic environmental conditions (Griffiths & Waller, 
2016). However, rapid warming and increasing risk of species intro-
ductions in Antarctica (Chown et al., 2015) can largely modify the 
current colonization pattern. In addition, glacial retreat has a huge 
potential to expose ever-increasing areas of intertidal habitat (Clark, 
Raymond, Riddle, Stark, & Johnston, 2015) and thereby even fur-
ther increase the role of intertidal macroalgal habitats in Antarctic 
ecosystems.

Antarctic macroalgal assemblages have very high rates of en-
demism (Wiencke & Clayton, 2002), and therefore, any dramatic 
shift in species distribution ranges, such as related to global climate 
change, could not only jeopardize the integrity of Antarctic coastal 
ecosystems, but also lead to irreplaceable loss of continental-scale 
biodiversity. To date, intertidal habitats of Antarctica still represent 
a great unknown, as biological exploration of this continent has 
been limited to a few bays. Moreover, most scientists visit the conti-
nent only for a few summer months each year (e.g., Valdivia, Pardo, 
Macaya, Huovinen, & Gómez, 2018; Waller, 2013; Zacher, Wulff, 
Molis, Hanelt, & Wiencke, 2007). Macroalgal assemblages in rocky 
intertidal areas of the Antarctic Peninsula—comprised of green, 
brown, and red algae—have been shown to be more diverse than 
those in southern South America (Griffiths & Waller, 2016). In addi-
tion, the intertidal species richness of King George Island is higher 
than that of any other Antarctic or sub-Antarctic island (Griffiths & 
Waller, 2016), but the latter may reflect an uneven sampling effort 
across these regions. Thus, standardized and comparable data of 
Antarctic intertidal habitats are of utmost importance for under-
standing how these systems function and against which to compare 
current and future trends.

Such quantitative baseline data can be gained using novel re-
mote sensing methods calibrated with in situ ground-truthing tech-
niques. The recently launched Sentinel-2A satellite equipped with 
a multispectral imager (i.e., an instrument simultaneously record-
ing about 10 bands across the electromagnetic spectrum) primar-
ily aims at monitoring variability in land surface conditions. Due to 
its wide observed area and high revisit time (i.e., the time elapsed 
between observations of the same point on earth by a satellite), it 
supports monitoring and understanding of global change and their 
impact on biota. The launch of Sentinel-2B furthermore reduced 
the revisit time down to 2–3 days in Antarctica and thereby sig-
nificantly increased the chance of acquiring cloud-free imagery in 

such frequently cloudy areas. Moreover, the satellite provides high-
spatial-resolution data (10 m) and thereby it is possible to monitor 
the shifting patterns of small-scale features not detected by most 
previous sensors (MERIS, MODIS). We are aware that the space-
borne hyperspectral instruments (i.e., instruments simultaneously 
recording about hundreds or thousands of bands across the elec-
tromagnetic spectrum) are even more efficient in collecting data at 
small spatial scales and offer more flexibility in building the train-
ing model relating remote sensing data and biotic patterns (Herkül, 
Kotta, Kutser, & Vahtmäe, 2013; Kotta, Kutser, Teeveer, Vahtmäe, 
& Pärnoja, 2013). However, the performance of these sensors will 
be soon limited by the laws of physics. Specifically, the high volume 
of data generated by an instrument with high spatial and frequency 
resolution allows only areas in the order of a few thousands km2/day 
to be scanned, even in the case of using experimental high-speed 
data links that are not yet commercialized (Villafranca, Corbera, 
Martín, & Marchán, 2012).

Mapping by remote sensing is based on an assumption that the 
features of interest in an image reflect or emit light energy in differ-
ent and often unique ways (Lillesand, Kiefer, & Chipman, 2014) and 
thereby only the spectrally different features can be mapped. The 
spectral signatures of submerged benthic vegetation are to a large 
extent determined by their pigment composition. Although all these 
macroalgae contain chlorophyll a, they have different quantities of 
other chlorophylls and accessory pigments (Hedley & Mumby, 2002) 
and thereby are expected to represent unique pigment combinations.

Earlier studies have demonstrated that remote sensing can be 
successfully applied to predict the occurrence (i.e., presence) of 
benthic macroalgae, especially if broad taxonomic groups are con-
sidered (Andréfouët et al., 2004; Kotta, Remm, Vahtmäe, Kutser, & 
Orav-Kotta, 2014), but it is much more challenging to assess patterns 
of macroalgal species richness, the total cover of macroalgae or the 
cover of particular species (see Herkül et al., 2013; Kotta et al., 2013 
for communities comprised of macroalgae and invertebrates). The 
optical signature of a remote sensing instrument integrates informa-
tion from spatial resolutions of meters to tens of meters and thereby 
consists of mixed signals of the various degrees of green, brown, and 
red algae either attached on primary substrate or growing epiphyt-
ically on other algae. Moreover, changes in spatial arrangement and 
densities of benthic macroalgae have a strong effect on the outcome 
as the seafloor may be covered either with small algal patches or 
lush benthic vegetation (Andréfouët et al., 2004; Hedley & Mumby, 
2003).

To date, the existing spectral libraries often consist of averaged 
reflectance values and ignore spectral variability among macroal-
gal individuals and taxa (Beach, Borgeas, & Smith, 2006; Vahtmäe, 
Kutser, Martin, & Kotta, 2006); however, conditions of low or negli-
gible spectral variability among individuals or taxa are rare in nature. 
To overcome this shortcoming, here we used a novel approach in 
which we took advantage of natural variability in the pigment com-
position of macroalgae and used a machine learning approach (see 
below) to find optimal Sentinel-2A-specific decision criteria that 
can statistically separate macroalgal taxa and predict their richness 
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and cover. Although the Sentinel MSI sensor was designed primarily 
for terrestrial applications, it can be very useful for aquatic applica-
tions (Dörnhöfer, Göritz, Gege, Pflug, & Oppelt, 2016; Toming et al., 
2016). To our knowledge, the Sentinel mission has never been used 
in the mapping of any aquatic environments but offers promising 
features to efficiently capture biotic signal with high-end accuracy 
and reliability.

Machine learning provides a theoretical framework that moves 
beyond traditional paradigm boundaries by learning from new data 
(rather than assuming an appropriate data model) and resolving 
simultaneously a broad range of functions (rather than oversim-
plifying situations). As machine learning algorithms incorporate 
inherently “complex realism,” modeling can be seen here as a sophis-
ticated tool to improve our understanding of the patterns of species 
distribution and particularly the causes of that variation. Specifically, 
machine learning algorithms have a potential to translate the com-
plex optical signature of a remote sensing instrument into abiotic 
and biotic features in an ecosystem and thereby reveal identity and 
patterns of species in remote and largely unexplored regions. Among 
the novel predictive modeling techniques, boosted regression trees 
(BRTs) combine the strengths of machine learning and statistical 
modeling. BRT first relates a response to their predictors by recur-
sive binary splits (regression trees algorithm) and then adaptively 
combines many simple models to give improved predictive perfor-
mance (boosting algorithm). Ultimately, the final BRT model can 
be understood as an additive regression model in which individual 
terms are simple trees, fitted in a forward, stagewise fashion. As the 
method avoids overfitting the data, the BRT models are expected to 
provide robust estimates (Elith, Leathwick, & Hastie, 2008; Hastie, 
Tibshirani, & Friedman, 2009).

Here, we tested the ecological relevance of the Sentinel-2A 
sensor to describe the patterns of intertidal macroalgae of King 
George Island, Antarctic Peninsula (Figure 1). In order to do so, we 

quantified in situ the cover and richness of the key macroalgal taxa 
along the full range of intertidal habitats, and then, we used the 
BRT technique to relate these data to the spectral signal obtained 
from the sampled locations. For our analyses, we had the following 
expectations: (a) The Sentinel-2A sensor captures the signal of the 
patterns of intertidal macroalgae; (b) although the resolution of the 
remote sensing instrument is coarser compared to the size of mac-
roalgae and the macroalgal individuals cannot be directly sensed, 
specific habitat features predict the species richness of intertidal 
macroalgal communities; and (c) the cover of green, brown, and red 
algae is indicated by the intensities of reflectance values at specific 
wavelengths.

2  | MATERIAL S AND METHODS

2.1 | Macroalgal data

The spatial pattern of intertidal macroalgae was mapped in Fildes 
Peninsula, King George Island, during the austral summer (January) 
2013 (Figure 1; published in Valdivia et al., 2014). Intertidal sessile 
assemblages are mostly characterized by the red alga Iridaea cordata, 
the brown alga Adenocystis utricularis, and the green alga Urospora 
penicilliformis. The sampling followed a nested sampling design in 
which 10 shores were randomly selected and within each shore, 
three sites, separated by a few 100 s of meters, were randomly lo-
cated. Within each site, two patches of substratum separated by 10 s 
of meters were randomly located, and within each patch, the low, 
mid, and high intertidal zones were defined. Then, within each com-
bination of patch and tidal zone, three 50 × 50 cm replicate quadrats 
were randomly located. Within each quadrat, the percentage cover 
of each macroalgal species was quantified. Taxon richness was cal-
culated as the total number of macroalgal species identified in each 

F IGURE  1 Study area in King George 
Island, western Antarctic Peninsula. Dots 
denote the locations of the sampling 
sites. The background shows a processed 
reflectance image of the ESA satellite 
Sentinel-2A that has been processed 
using a freeware SNAP version 5.0.0 
downloadable at http://step.esa.int/main/
download/

http://step.esa.int/main/download/
http://step.esa.int/main/download/
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quadrat. The sampling plots covered different microhabitats, includ-
ing emergent rocks, boulders, and shallow tide pools.

2.2 | Remote sensing data

Sentinel-2A Level-1C (L1C) Top of Atmosphere (TOA) data were 
downloaded from Sentinels Scientific Data Hub (https://scihub.
copernicus.eu/; Table 1). Sentinel-2A cloud-free images with 20 m 
resolution were used for analyses. Sentinel-2A Toolbox (S2TBX) 
version 5.0.1 in Sentinel Application Platform (SNAP) version 5.0 
on Windows 10 (64 bit) was used to process the images. 1 × 1 and 
3 × 3 cloud-free pixels were extracted from each sampling point. 
The Sen2Cor 2.5.5 atmospheric correction module was applied to 
convert TOA into the bottom of atmosphere (BOA) reflectance.

2.3 | Analyses

Macroalgal and remote sensing data were joined based on geograph-
ical proximity. When linking ground truth and remote sensing data, 
we used the archived snapshot of the reflectance data that were 
temporally closest to the ground truth data. A sampling in the same 
day is usually not possible due to high number of cloudy days in 
Antarctica. Nevertheless, the lack of exact timing is not an important 
source of error as within-season and even between-year variability 
of intertidal macroalgal patterns is not large in Antarctica. An aver-
age of 18 quadrats (three replicate quadrats at each combination of 
patch and tidal zone) was used to characterize one sentinel pixel. 
The relationships between different remote sensing variables (i.e., 
the BOA reflectance of different remote sensing bands shown in 
Table 1), richness, and percentage cover of intertidal green, brown, 
and red macroalgae were explored using the BRT technique. The BRT 
is a technique that combines the strength of machine learning and 
statistical modeling; it avoids starting with a data model and rather 
uses an algorithm to learn the relationship between the response 
and its predictors (Hastie et al., 2009). The predictive performance 
of BRT models is superior to most traditional modeling methods. The 

BRT iteratively develops a large ensemble of small regression trees 
constructed from random subsets of the data. Each successive tree 
predicts the residuals from the previous tree to gradually boost the 
predictive performance of the overall model. The final BRT model is 
a linear combination of many trees (usually hundreds to thousands) 
that can be thought of as a regression model where each term is a 
tree. Although BRT models are complex, they can be summarized in 
ways that give powerful ecological insight (Elith et al., 2008; Kotta 
et al., 2017). In fitting a BRT, the learning rate and the tree com-
plexity must be specified. The optimum model was selected based 
on model performance, with learning rates, number of trees, and in-
teraction depth set at 0.001, 3000, and 5, respectively. In order to 
avoid potential problems of overfitting, unimportant variables were 
dropped using a simplify tool. Such simplification is most useful for 
small datasets where redundant predictors may degrade perfor-
mance by increasing variance. Model performance was evaluated 
using the cross-validation statistics calculated during model fitting 
(Hastie et al., 2009).

In order to assess the transferability of the developed models, 
we used another macroalgal dataset collected from 13 sites during 
late January and early February 2017 to demonstrate how well the 
developed models predicted macroalgal cover and richness when 
applied outside of the training data. The collection of remote sensing 
data and linking of the BOA reflectance values to the ground truth 
data were performed as described above. The quality of the models 
was assessed using a simple linear regression fitting.

We expected that wetting and drying cycles have only marginal 
effects in our models as green algae are essentially uncovered with 
water, whereas other algal groups are mostly covered with water. 
Thus, within macroalgal groups, we do not expect large differences 
in wetting. Moreover, the environmental conditions in the Antarctic 
Peninsula are cold and humid. Thus, even during low tide, algae al-
ways remain wet due to the almost complete lack of solar energy. 
Similarly, the BRDF effects are expected to be minor as virtually all 
intertidal algae are very small. Ultimately, as we used a statistical ap-
proach that quantified typical reflectances of the studied macroalgal 

Band name Central wavelength Bandwidth Spatial resolution

B1 443 20 60

B2 490 65 10

B3 560 35 10

B4 665 30 10

B5 705 15 20

B6 740 15 20

B7 783 20 20

B8 842 115 10

B8a 865 20 20

B9 945 20 60

B10 1375 30 60

B11 1610 90 20

B12 2190 180 20

TABLE  1 Spectral bands, central 
wavelengths (nm), bandwidths (nm), and 
appropriate spatial resolutions (m) of 
Sentinel-2A MSI sensor

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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groups, the wavelengths that potentially incorporated the above ef-
fects would have been excluded from the final models due to high 
noise-to-signal ratio.

3  | RESULTS

Our BRT models on a pooled dataset showed that the Sentinel-based 
remote sensing described a significant proportion of variability in the 
cover and richness of Antarctic macroalgae (Figure 2; Table 2). The 
highest performing models were for macroalgal richness (r2 = 0.49) 
and the cover of green algae (r2 = 0.45) as opposed to the model of 
brown (r2 = 0.40) and red algal cover (r2 = 0.31).

Macroalgal richness was best predicted by reflectance values at 
490 and 865 nm. If higher reflectances at 490 nm predicted lower 
macroalgal richness, then an inverse relationship was found at 865 nm.

The intensity of reflectance at 865 nm increased logistically 
with the elevated cover of green algae. At a higher wavelength of 
1,610 nm, however, the relationship between reflectance and green 
algal cover was opposite. Brown and red algae were identified at 
490 nm, and higher reflectance values at this wavelength predicted 
lower algal biomasses. Besides, the brown and red algae can be iden-
tified by characteristic features in their reflectance at the red end of 
the spectra (around 700 nm). The latter is also true for green algae 
but as their reflectance values were very high in the infrared spec-
trum of light, the red area of the spectrum had a marginal indicative 
value.

When applying the developed models at different sites for which 
ground truth data were also available, models that explained better 
training data were also more powerful in predicting macroalgal spa-
tial patterns under novel conditions. The models of green algae and 
macroalgal richness predicted a similar percentage of total variability 

F IGURE  2 Left: Photographs of the 
key intertidal benthic taxa in the study 
area. Right: Partial dependence plots 
for the two most influential remote 
sensing variables (x-axis: the bottom of 
atmosphere reflectance at an indicative 
wavelength) in the model for the cover 
or richness of different macroalgal 
taxonomic groups (y-axis: marginal effect 
on logit (p))
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of both training and validation data. The other two models, however, 
performed poorly under novel conditions (Figure 3).

4  | DISCUSSION

In the current study, we demonstrate a methodology that allows a 
statistically significant separation of spectral signatures of benthic 
intertidal macroalgae. Our analyses also showed that the shapes 
of functional-form relationships of reflectance spectra at specific 
wavelengths with macroalgal species richness, and with cover of 
green, brown, and red algae, were consistent.

Distinctive spectral signatures of the studied macroalgae could 
often be inferred from the knowledge of the characteristic pigments 
present in different macroalgal groups. Although the morphology, 
thickness of thalli, and cellular architecture may affect the relation-
ship between pigment densities, absorption, and thus reflectance 
spectra (Hannach, 1989; Ramus, 1978; Vogelmann & Björn, 1986), 

such natural variability did not hinder us from demonstrating some 
clear-cut differences in spectral signatures between different taxo-
nomic groups of macroalgae. The photosynthetic pigments of green 
algae are chlorophylls a and b that absorb strongly in the blue and 
red part of the spectrum, and thereby produce low reflectance val-
ues in the bands from 400 to 500 nm as well as from 650 to 680 nm 
(Haxo & Blinks, 1950). Our study showed a distinct reflectance pat-
tern at these wavelengths, but as the reflectance values of green 
algae were very high in the infrared spectrum of light, the blue 
and red area of the spectrum had only a marginal indicative value. 
The cover of green algae was best predicted by reflectances at the 
near-infrared spectrum of light. The established functional-form 
relationships largely varied among the studied wavelengths. Lower 
wavelengths (865 nm) were indicative of green algae and thereby in-
creased reflectance intensities at these wavelengths corresponded 
to the elevated cover values of green algae. At higher wavelengths 
(1,610 nm), bare substrates had higher reflectance compared to 
green algae, and therefore, the relationship was opposite at this part 
of the spectrum.

Brown and red algae were best predicted at 490 nm. The basic 
mechanism behind this relationship is that the primary pigment in 
plants (i.e., chlorophyll) absorbs light the most in the blue regions 
of the visible light spectrum, and therefore, areas with higher plant 
cover are characterized by lower reflectances at this spectral range 
(e.g., Anderson & Barrett, 1979; Haxo & Blinks, 1950). Brown and 
red algae are known to have clear reflectance peaks between 600 
and 650 nm (Kotta et al., 2014). However, the Sentinel-A satellite 
does not have appropriate detection wavelength bands to separate 
such reflectance peaks. This suggests that hyperspectral instru-
ments should be used instead to ensure appropriate detection of 
the pigments of brown and red algae (e.g., Vahtmäe & Kutser, 2013). 
Moreover, red light is absorbed more strongly by water compared 
to shorter wavelength light. Consequently, the absolute reflec-
tance values of brown and red algae are considerably lower than 
that of green algae making the detection of these algal groups more 
challenging.

The remote sensing signal of macroalgal richness is expressed as 
a sum of the multitude of optically differing species that are confined 
at the same location. Due to coarser spatial resolution of the satellite 
sensors compared to the size of macroalgae, the patchiness of the 
reflectance spectra of remotely sensed images may only hint at algal 
richness (Herkül et al., 2013). Nevertheless, the total cover of green 
and brown algae seems to be a good proxy of macroalgal richness in 
the Antarctic region as shown by a strong linkage between macroal-
gal richness and reflectances at 490 and 865 nm.

Our study also showed that the predictive performance of statis-
tical models varied among green, brown, and red algae. This differ-
ence in predictive performance is due to better detection of objects 
that are situated on the upper shore and/or at the top of biota (such 
as green algae). As green algae are located high in the intertidal 
zone and often covered only by a thin layer of seawater, these algae 
are easily identified in the region of the infrared spectrum of light 
(Kutser, Dekker, & Skirving, 2003; Kutser, Vahtmäe, & Martin, 2006). 

TABLE  2 The percentage of total variance explained by the BRT 
models (in bold) and the relative contribution of different remote 
sensing bands to total variance (summing up to 100%)

Model and model variables
% variability 
explained

Green algae model 45

BOA1 × 1_20m_865 26.5

BOA1 × 1_20m_1610 25.0

BOA1 × 1_20m_490 17.4

BOA1 × 1_20m_560 17.4

BOA1 × 1_20m_665 8.6

BOA1 × 1_20m_705 4.4

BOA1 × 1_20m_740 2.6

Brown algae model 40

BOA1 × 1_20m_490 49.7

BOA1 × 1_20m_705 28.8

BOA1 × 1_20m_560 21.5

Red algae model 31

BOA1 × 1_20m_490 36.9

BOA1 × 1_20m_705 18.3

BOA1 × 1_20m_1610 11.8

BOA1 × 1_20m_560 10.7

BOA1 × 1_20m_665 9.6

BOA1 × 1_20m_783 4.8

BOA1 × 1_20m_865 4.6

BOA1 × 1_20m_740 3.32

Species richness model 49

BOA1 × 1_20m_490 41.4

BOA1 × 1_20m_865 23.6

BOA1 × 1_20m_1610 19.2

BOA1 × 1_20m_560 15.8
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The Sentinel-2 MSI sensor has spectral bands in the red edge and 
near-infrared parts of spectrum and, as shown above, this gives the 
MSI sensor a significant advantage over other satellite sensors in 
detecting and classifying slightly submerged and emergent benthic 
vegetation. The models of brown and red algae performed poorly, 
and this stems from generic low reflectance of brown and red algae 
as well as the lack of appropriate detection wavelength bands of the 
Sentinel-A satellite. The latter is a significant limitation of the cur-
rent method and can be alleviated by a wider usage of hyperspectral 
space missions.

Although our statistical models reproduced many of the ob-
served biotic patterns, a large part of the total variability of the ob-
served macroalgal data remained unexplained. Currently, the remote 
sensing instruments operate at the spatial scale of 10 s of meters, 
whereas important components of variability of biotic patterns 
occur at the scale of individual meters. Thus, in order to achieve a 
full potential of models developed in this manuscript, the usage of 
better satellite images at higher resolution is also advised.

This single-case study indicates many limitations concerning the 
generalizations that can be made from these results. Nevertheless, 
we clearly demonstrated that remote sensing, when combined with  
in situ mapping and machine learning algorithms, provides a pow-
erful tool to identify sites hosting intertidal macroalgae and, what 

is even more important, to predict the cover and richness of these 
macroalgae. The models vary greatly in the results but considering 
the fast development of remote sensing applications (increased 
number of hyperspectral remote sensing missions operating at fine 
spatial scales) many of such statistical uncertainties can be removed 
in the near future.

By pooling all available georeferenced data in the continent, the 
generality of models can be improved to a large extent, thereby giv-
ing us the opportunity to map all intertidal macroalgal habitats and 
monitor their dynamics during all vegetative seasons in Antarctica. 
This is a significant milestone as many coastal areas in Antarctica are 
difficult to access and most scientific visits occur in summer months 
only. We still have to assess the application of this method to other 
marine habitats—such as shallow-subtidal areas—for which baseline 
data and evidences of climate change-related dynamics are available 
(Quartino, Deregibus, Campana, Latorre, & Momo, 2013; Mystikou 
et al., 2014; Campana et al. 2018). When continuous fine-resolution 
large-scale observations become available, a series of novel hypoth-
eses can be formulated and tested, which can be considered as di-
rections for future research with important potential. To forecast 
responses to global climate change, we need to learn (a) how rates 
of species range expansion and extinctions compare among a wide 
range of regions, (b) which macroalgal habitats respond first, and (c) 

F IGURE  3  Interpolation test for assessing the performance of the developed models at different sites for which ground truth data were 
also available. X-axis: percent coverage of different macroalgal taxonomic group or macroalgal richness estimated by BRT modeling, and 
y-axis: percent coverage of different macroalgal taxonomic group or macroalgal richness estimated during a separate field survey; R2: the 
coefficient of determination of linear regression fitting
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whether there are irreversible environmental thresholds where the 
return to the original state is no longer likely.
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