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Synopsis
The GPI (glycosylphosphatidylinositol) transamidase complex catalyses the attachment of GPI anchors to eukaryotic
proteins in the lumen of ER (endoplasmic reticulum). The Saccharomyces cerevisiae GPI transamidase complex
consists of the subunits yPIG-K (Gpi8p), yPIG-S (Gpi17p), yPIG-T (Gpi16p), yPIG-U (CDC91/GAB1) and yGPAA1. We
present the production of the two recombinant proteins yGPAA170–247 and yGPAA170–339 of the luminal domain of
S. cerevisiae GPAA1, covering the amino acids 70–247 and 70–339 respectively. The secondary structural content
of the stable and monodisperse yGPAA170–247 has been determined to be 28% α-helix and 27% β -sheet. SAXS
(small-angle X-ray scattering) data showed that yGPAA170–247 has an Rg (radius of gyration) of 2.72 +− 0.025 nm and
Dmax (maximum dimension) of 9.14 nm. These data enabled the determination of the two domain low-resolution
solution structure of yGPAA170–247. The large elliptical shape of yGPAA170–247 is connected via a short stalk to the
smaller hook-like domain of 0.8 nm in length and 3.5 nm in width. The topological arrangement of yGPAA170–247 will
be discussed together with the recently determined low-resolution structures of yPIG-K24–337 and yPIG-S38–467 from S.
cerevisiae in the GPI transamidase complex.
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INTRODUCTION

GPI (glycosylphosphatidylinositol) lipid anchoring is an alternat-
ive post-translational modification for cellular systems to anchor
proteins to the outer leaflet of the cell membrane [1,2]. Approx-
imately 0.5 % of all proteins in higher eukaryotes are capable
of being GPI lipid-anchored [3], including cell surface receptors
like urokinase receptor, CD14, CD16, enzymes [ALP (alkaline
phosphatase) and 5′-nucleotidase], adhesion proteins and anti-
gens [Thy-1, DAF (decay-accelerating factor) and MACIF (mem-
brane attack complex inhibition factor)]. GPI lipid-anchoring of
proteins has medical implications in a variety of conditions, in-



Abbreviations used: BV, bed volume; Dmax, maximum dimension; DTT, dithiothreitol; ER, endoplasmic reticulum; GPI, glycosylphosphatidylinositol; GST, glutathione transferase; IPTG,
isopropyl β -D-thiogalactopyranoside; MM, molecular mass; NSD, normalized spatial discrepancy; Rg, radius of gyration; SAXS, small-angle X-ray scattering; TM, transmembrane.
1 To whom correspondence should be addressed (email ggrueber@ntu.edu.sg).

cluding paroxysmal nocturnal haemoglobinuria, prion disease
pathogenesis, AD (Alzheimer’s disease) and parasitic diseases
such as malaria [1,4].

The GPI lipid anchor is biosynthesized stepwise by a series of
enzymes located in the ER (endoplasmic reticulum) membrane
[1]. Typically, the nascent substrate proprotein is exported into
the ER after ribosomal synthesis via the signal peptide pathway.
The so-called transamidase complex in the ER lumen recognizes
a specific GPI lipid anchor attachment signal located at the
C-terminus of protein substrates [5–7]. This GPI lipid anchor
attachment signal consists of a sequence motif from residue
ω − 11 to the very C-terminus of the protein substrate, with
a region of polar residues between ω − 11 and ω − 1, a short
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stretch of small polar residues from ω − 1 to ω + 2, including
the ω-site for cleavage and the GPI attachment, a linker
region that contains moderately polar residues, followed by a
hydrophobic tail from ω + 9 to the C-terminus of the proprotein
(Figure 1) [1]. During the modification process the C-terminal
propeptide after the ω-site is removed and replaced with a
pre-synthesized GPI moiety by the GPI transamidase complex
[1,8]. The GPI lipid anchor is a complex organic structure made
up of a lipid-modified phosphatidylinositol, a tetrasaccharide
with variable elaborations and phosphoethanolamine subunits
[2,9]. Although the general outline of the GPI lipid anchor
biosynthesis pathway is common among eukaryotes, there are
distinctive taxon-specific differences that might be useful for
species-specific inhibitor design as described for suppression of
unicellular parasites such as Trypanosoma [10,11].

The GPI transamidase complex is made up of at least five
subunits named PIG-K, PIG-T, PIG-U, PIG-S and GPAA1 in hu-
mans [12–16]. PIG-K is the catalytic subunit in this complex and
proposed to be responsible for the C-terminal proteolytic pro-
cessing of the substrate proteins [17–19]. GPAA1 is predicted to
consist of an N-terminal TM (transmembrane) region, a globu-
lar luminal domain and six C-terminal TM segments in humans,
yeast and trypanosomes [1,20]. GPAA1 is discussed to play a role
in structural function and/or in supplying the mature GPI lipid
anchor to the protein substrate [1].

The molecular mechanisms of the GPI transamidase com-
plex are the most non-understood aspect of the GPI lipid an-
chor biology. Therefore, biochemical and structural studies are
needed to delineate the biological functions of the transami-
dase subunits. Structural studies of the transamidase subunits
have proved difficult because of their solubility issue. Recently,
the low-resolution solution structures of yPIG-K (yPIG-K24–337)
and yPIG-S (yPIG-S38–467) from Saccharomyces cerevisiae have
been solved [21]. yPIG-K24–337 consists of an egg-like domain
and a small globular segment that are linked by a short stalk,
while yPIG-S38–467 appears like an open-hand domain attached
to a wrist made up by the smaller domain. Since GAA1/GPAA1 is
described to interact with GPI transamidase subunits and in par-
ticular with Gpi8p/PIG-K [13,22], we wanted to extend the struc-
tural insight into the subunit ensemble of the GPI transamidase.
Based on sequence analytic considerations, we generated the two
constructs yGPAA170–247 and yGPAA170–339 of the luminal do-
main of S. cerevisiae GPAA1. In comparison with yGPAA170–339

the recombinant protein yGPAA170–247 showed a higher degree
of stability as well as monodispersity and enabled us to observe
the first low-resolution solution structure of this protein by SAXS
(small-angle X-ray scattering).

EXPERIMENTAL

Biochemicals
Restriction enzymes were purchased from Fermentas. Chemic-
als for gel electrophoresis were received from Serva. All other

chemicals were at least of analytical grade and received from
BIOMOL, Merck, Roth, Sigma or Serva.

Cloning of luminal domain of yGPAA1
To amplify the luminal domain of yGPAA1 genes encoding resi-
dues 70–339 and 70–247 (UniProt P39012, EMBL U53880.1),
three oligonucleotide primers 5′-CTTTGGATCCTCTGAATG-
GAACATTTTGAGGGGCTATC-3′ (forward primer), 5′-A-
ATACTCGAGCTACGATTGGTGAAATTTTTCCAAAAGG-3′

(yGPAA170–339 reverse primer) and 5′-CTTTCTCGAGCTA-
ATGTTCCGTAATGGATATAGCGATGTTG-3′ (yGPAA170–247

reverse primer), incorporating BamHI and XhoI restriction
sites (underlined), were designed. Following digestion with
BamHI and XhoI, the PCR products were ligated into the
pGEX-6P-1 vector. The vectors containing yGPAA170–339 and
yGPAA170–247 genes were then transformed into Escherichia coli
cells [strain BL21(DE3)]. The cells were grown on 100 μg/ml
ampicillin-containing LB (Luria–Bertani) liquid cultures until an
attenuance (D600) of 0.6 was reached. To induce the production
of GST (glutathione transferase)-tagged yGPAA170–339 and
yGPAA170–247, the cultures were supplemented with IPTG
(isopropyl β-D-thiogalactopyranoside) to a final concentration
of 1 mM, and incubated for 16 h at 20 ◦C.

Purification of recombinant yGPAA170–247

Cells were lysed on ice by sonication for 3 × 1 min in buffer A
[25 mM sodium phosphate, pH 7.0, 150 mM NaCl, 2 mM DTT
(dithiothreitol) and 2 mM PefablocSC (BIOMOL)]. The lysate
was cleared by centrifugation at 12 500 g for 25 min and then
the supernatant was filtered (0.45 μm; Millipore). For affinity
purification of GST–yGPAA170–247, the filtered supernatant was
incubated with the glutathione–Sepharose 4B (GE Healthcare)
for 1 h, equilibrated with buffer B (25 mM sodium phosphate,
pH 7.0, 150 mM NaCl and 2 mM DTT). Subsequently, the me-
dium was washed with 5 BV (bed volume) of buffer B twice and
followed by 10 BV of buffer C (50 mM Tris/HCl, pH 7.5, 150 mM
NaCl, 2 mM DTT and 1 mM EDTA). The on-column cleavage of
GST tag from GST–yGPAA170–247 was performed by incubating
the medium with bound proteins together with PreScission Pro-
tease (GE Healthcare) for 16 h at 4 ◦C. Following incubation, the
cleaved yGPAA170–247 protein was collected and applied to gel fil-
tration column (Superdex 75 HR 10/30 column, GE Healthcare)
in buffer D (50 mM Tris/HCl, pH 7.5, and 150 mM NaCl). Frac-
tions containing yGPAA170–247 were identified by SDS/PAGE
[23], pooled and concentrated using Amicon Ultra-4 Centrifugal
Unit [10 kDa MM (molecular mass) cut-off] (Millipore).

CD spectroscopy
Steady-state CD spectra were measured in far-UV light (188–
260 nm) using a CHIRASCAN spectropolarimeter (Applied Pho-
tophysics). Spectra were collected in a 60 μl quartz cell (Hellma)
with a path length of 0.1 mm at 20 ◦C and a step resolution
of 1 nm. The readings were for an average of 2 s at each
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Figure 1 The GPI lipid anchor motif in substrate proteins and the sequence architecture of GPAA1
(A) Schematic diagram of the GPI lipid anchor attachment signal of a GPI-anchored proprotein. The attachment signal is
mainly classified into four regions: the polar region from ω − 11 to ω − 1, a short segment with small polar residues from
ω − 1 to ω + 2, a moderately polar linker and a stretch of hydrophobic residues from ω + 9 to ω + 10 to the C-terminus
of the proprotein. The cleavage site and GPI anchor attachment site is at position ω. (B) Amino acid sequence alignment of
S. cerevisiae GPAA1 (UniProt P39012) with the GPAA1 from Homo sapiens (O43292), M. musculus (Q9WTK3), P. falciparum
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wavelength and the recorded ellipticity values were the aver-
age of three determinations for each sample. CD spectroscopy
of yeast GPAA170–247 (1.1 mg/ml) was performed in buffer of
50 mM Tris/HCl, pH 7.5 and 150 mM NaCl. The spectrum for
the buffer was subtracted from the spectrum of the protein. CD
values were converted into mean residue molar ellipticity (�) in
units of degree · cm2/dmol using the software Chirascan Version
1.2, Applied Photophysics. This baseline-corrected spectrum was
used as input for computer methods to obtain prediction of sec-
ondary structure. The CD spectrum was analysed using the K2D3
web server [24].

X-ray scattering experiments and data analysis
The synchrotron radiation X-ray scattering data for
yGPAA170–247 were collected following the standard pro-
cedures on the X33 SAXS camera [25,26] of EMBL Hamburg
located on a bending magnet (sector D) on the storage ring
DORIS III of the DESY (Deutsches Elektronen Synchrotron). A
photon counting Pilatus 1 M pixel detector (67 mm × 420 mm)
was used at a sample–detector distance of 2.4 m covering the
range of momentum transfer 0.1<s<4.5/nm [s = 4p sin(q)/l,
where q is the scattering angle and l = 0.15 nm is the X-ray
wavelength]. The s-axis was calibrated by the scattering pattern
of silver-behenate salt (d-spacing 5.84 nm). The scattering from
the buffer alone was measured before and after each sample
measurement and the average of the scattering before and after
each sample was used for background subtraction. The scattering
pattern from yGPAA170–247 was measured at protein concentra-
tions of 2.3 and 5.8 mg/ml respectively in a buffer composed
of 50 mM Tris/HCl, pH 7.5 and 150 mM NaCl. The protein as
well as the buffer samples were injected automatically using
the sample-changing robot for solution scattering experiments
at the SAXS station X33 [27]. All data processing steps were
performed automatically using the program package PRIMUS
[28]. The forward scattering I(0) and the Rg (radius of gyration)
were evaluated using the Guinier approximation [29] assuming
that for spherical particles at very small angles (s<1.3/Rg) the
intensity is represented by I(s) = I(0) exp[ − (sRg)2/3]. These
parameters were also computed from the entire scattering
patterns using the indirect transform package GNOM [30],
which also provide the distance distribution function ρ(r) of the
particle as defined by:

ρ(r ) = 2π

∫
I (s)sr sin(sr )ds

The MM of both proteins was calculated by comparison with
the forward scattering from the reference solution of BSA. From

this procedure a relative calibration factor for the MM can be
calculated using the known MM of BSA (66.4 kDa) and the
concentration of the reference solution by applying

M Mp = I (0)p/cp × M Mst

I (0)st/cst

where I(0)p, I(0)st are the scattering intensities at zero angle of the
studied and the BSA standard protein respectively, MMp, MMst

are the corresponding MMs and cp, cst are the concentrations.
Errors have been calculated from the upper and the lower I(0) er-
ror limit estimated by the Guinier approximation. Low-resolution
models of yeast GPAA170–247 were built by the program DAM-
MIN [31] as described in [32].

RESULTS AND DISCUSSION

Sequence analytic finding for yeast GPAA1
The sequence architecture of yeast GPAA1 (UniProt P39012
[33]) as predicted by sequence-analytic tools [1,34,35] consists of
an N-terminal TM helical segment (20–42), a large luminal sup-
posedly globular domain (42–356), followed by six TM helical
regions (357–377, 389–408, 413–435, 455–480, 537–556 and
579–600) (Figures 1B and 1C). The yeast GPAA1 has a sequence
identity to the human, Mus musculus and Plasmodium falciparum
proteins of 26 %, 26 % and 19.4 % respectively. Within the pre-
dicted luminal domain located between the first TM segment and
the second TM region, two conserved motifs are found at residues
126–133 (RXPRX3TE) and 228–239 (NGX2PNXDX2N) (Fig-
ure 1C) which had been suggested to have a role in supplying the
GPI lipid anchor to the transamidase complex [1]. These two mo-
tifs are proposed to be located at the membrane–lumen interface
of the ER. Furthermore, the luminal domain of GPAA1 is essen-
tial for the assembly of GPI transamidase complex [22]. Here, two
constructs were designed, in which one construct (yGPAA170–339)
covers the predicted luminal part of yGPAA1 and one shorter lu-
minal construct, yGPAA170–247, that still include the conserved
motifs (Figure 1C).

Expression and purification of the luminal domain
of yGPAA1
The S. cerevisiae GPAA1 genes, encoding the residues 70–339
and 70–247, have been amplified and cloned, and the GST-tagged
proteins yGPAA170–339 and yGPAA170–247 have been produced
in significant amounts in BL21(DE3) cells (Figure 2A). How-
ever, degradation of GST–yGPAA170–339 was observed in the

(C0H5L4), Trypanosoma brucei (Q7YTW5) and Trypanosoma cruzi (Q4DAV8) using Clustal Omega [39] in Jalview 2.8 [40]. The secondary structures
presented were predicted based on yeast GPAA1 using JNet Secondary Structure Prediction server [41,42], with red cylinders (α-helices) and green
arrows (β -strands). Two conserved motifs are labelled with red arrows. (C) Schematic diagram of the yGPAA1 protein sequence encoding 614
residues, showing that yGPAA1 contains seven potential TM segments, which are situated at residues 20–42, 357–377, 389–408, 413–435,
455–480, 537–556 and 579–600. The two conserved motifs (RXPRX3TE and NGX2PNXDX2N) within the globular domain of yGPAA1 [1] are found
at residues 126–133 (M1) and 228–239 (M2). The constructs of residues 70–339 and 70–247 were created, which cover the luminal domain of
yGPAA1 and two conserved motifs. The Figure has been generated using the program described in [43].
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Figure 2 Production and purification of recombinant yGPAA170–247

(A) SDS/PAGE (17 % total acrylamide and 0.4 % cross-linked acrylamide) of produced GST–yGPAA170–339 (lanes 1 and
2) and GST–yGPAA170–247 (lane 3 and 4) in the absence ( − ITPG) and presence ( + IPTG) of 1 mM IPTG. Degradation
was observed in GST–yGPAA170–339. (B) The eluted yGPAA170–247 (lane 1) and GST (lane 2) after GST tag cleavage by
PreScission Protease at 4 ◦C, 16 h. (C) The eluted yGPAA170–247 was subsequently applied on to a Superdex 75 HR
10/30 column at a flow rate of 0.5 ml/min. The insert shows SDS/PAGE of the pooled protein fractions (grey area in the
chromatogram).

corresponding SDS/PAGE (Figure 2A, lane 2). The same phe-
nomenon was also described previously, where the recombinant
full-length protein of the luminal loop of human GPAA1 under-
went proteolysis in cells [22]. Therefore, only the recombinant
GST–yGPAA170–247 was selected for further experiments.

GST–yGPAA170–247 was affinity-bound to the glutathione–
Sepharose 4B medium from the crude lysate, before subjected
to the on-column cleavage of GST tag by PreScission protease
(Figure 2B). The eluted fractions were further purified via size-
exclusion chromatography (Superdex 75 HR 10/30 column) as
demonstrated by SDS/PAGE, revealing the high purity of the pro-
tein (Figure 2C). A Superdex 75 gel filtration column was calib-
rated by determining the Kav values for a set of standard proteins
of known MM. Comparison of the Kav for yGPAA170–247 with the
standard proteins suggests a native MM of approximately 24 kDa.

Secondary structure content of yGPAA170–247

The secondary structure of recombinant yGPAA170–247 was de-
termined from CD spectra, measured between 188 and 260 nm

(Figure 3). The average secondary structure content was 28 %
α-helix and 27 % β-sheet. This result is consistent with sec-
ondary structure predictions based on yGPAA170–247 amino acid
sequence using the web server PredictProtein [36,37] (36 % α-
helix, 25 % β-sheet and 38 % random coil). The molar ellipticity
values at 208 nm and at 222 nm are in a ratio of 1.26.

Shape determination of yGPAA170–247 in solution
The high protein purity allowed SAXS experiments to be
performed, with the aim to determine the first low-resolution
structures of yeast GPAA170–247 in solution. The final compos-
ite scattering curve of yGPAA170–247 is shown in Figure 4(A).
Inspection of the Guinier plot of the protein at low angles
showed good data quality and no protein aggregation (Fig-
ure 4B). The Rg of yGPAA170–247 is 2.72 +− 0.025 nm and the Dmax

(maximum dimension) of the protein is 9.14 nm (Figure 4C).
Comparison of forward scattering I(0) between yGPAA170–247

and reference protein, BSA, yields a MM of 28 kDa,
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Figure 3 Far-UV CD spectrum of recombinant yGPAA170–247

The protein was measured in 50 mM Tris/HCl, pH 7.5, and 150 mM
NaCl.

indicating that yGPAA170–247 is monomeric at the concentration
used. Qualitative analysis of the distance distribution function

ρ(r) suggests that yGPAA170–247 consists of a major portion,
yielding a principal maximum in the ρ(r) at around 3.0 nm (Fig-
ure 4C), whereas the separated protuberance domain giving rise
to a shoulder from 6.5 to 9.14 nm.

The gross structure of yGPAA170–247 was restored ab initio
from the scattering patterns in Figure 4(A), using the program
DAMMIN. The obtained shape for yGPAA170–247 yields a good fit
to the experimental data in the entire scattering range. The corres-
ponding fit, shown in Figure 4(A), has a discrepancy of χ 2 = 1.3.
All 10 independent reconstructions yielded a reproducible shape
(Figure 4D). The NSD (normalized spatial discrepancy), which is
a measure of similarity between sets of three-dimensional points
[29], was computed between all 10 reconstructions, with a range
of NSD from 0.396 to 0.476. The reconstruction with least NSD
was selected, which has NSD = 0.396. The protein appears as a
two-domain molecule with a large elliptical shape, followed by
a hook-like domain, and connected via a narrowed 0.8 nm short
stalk (average diameter 0.8 nm). The major domain has dimen-
sions of approximately 7.1 nm × 4.8 nm, whereby the smaller
domain is approximately 0.8 nm × 3.5 nm.

Figure 4 SAXS data of yGPAA170–247

(A) Experimental scattering data (o) and the fitting curve (–; green: experimental, red: calculated from ab initio model) for
yGPAA170–247. (B) Guinier plot with the linear fit (red line). (C) The distance distribution function of the same protein. (D)
Low-resolution solution structure of yGPAA170–247 derived from SAXS data. The right-hand model is rotated by 180◦ around
the y-axis.
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Figure 5 Proposed topological model of the subunits yPIG-K, yPIG-S, yPIG-T, yPIG-U and yGPAA1 inside the S. cerevisiae
GPI transamidase complex
The low-resolution solution structure of yGPAA170–247 is shown together with the low-resolution structures of yPIG-K28–337

and yPIG-S38–467 described in Toh et al. [21]. A calculated three-dimensional model of yPIG-K, including the residues
28–292, is superimposed on the low-resolution solution structure yPIG-K24–337 as described recently [21]. The broken
line indicates the predicted cross-link between subunit yPIG-K and yPIG-T via a disulfide bond between amino acid residue
Cys85 of PIG-K (blue spheres) and a conserved cysteine residue in PIG-T (blue spheres).

Insight into the structural topological arrangement
of GPI transamidase
The eukaryotic transamidase complex is composed of five major
subunits: PIG-K, PIG-S, PIG-T, PIG-U and GPAA1. The sub-
strate protein interacts as folded protein with this complex [38].
The recently determined first solution structures of yPIG-K24–337

and yPIG-S38–467 from yeast provided the basis for a better un-
derstanding of the structural shape and arrangement of these sub-
units on the ER lumen side. The hand-wrist shaped yPIG-S38–467

(Figure 5) with its concave surfaces allows this protein to inter-
act with other subunits and to fulfil the function of stabilizing a
substrate protein–transamidase complex. yPIG-K24–377 has been
described as an elongated particle consisting of an egg-like por-
tion and a small globular segment linked together by an 1.9 nm
long stalk. The egg-like portion involves the active site machinery
(Figure 5) [21], which belongs to the C13 cysteine peptide fam-
ily. The conserved residue Cys85 of yPIG-K24–377 is exposed to
the solvent [21] and proposed to form a disulfide bridge with
a cysteine residue in subunit PIG-T of the yeast transamidase,
bringing both subunits in close proximity (Figure 5) [21].

PIG-K co-precipitates with GPAA1 [13]. Both subunits are
described to be in close proximity. PIG-K is known to bind the
ω-site of the GPI anchor attachment signal in the substrate pro-
protein sequence [1]. The removal of the C-terminal TM domains
in GPAA1 yields a non-functional GPI transamidase, while the
assembly of the whole complex is not affected, suggesting the lu-

minal domain of GPAA1 is important in the interaction with PIG-
K, PIG-S and PIG-T [22]. The elongated shape of yGPAA170–247

with its elliptical domain, which is connected via a short stalk
to the smaller hook-like domain, has a total length of 9.14 nm
and would provide sufficient space to interact with yPIG-K24–377,
having a Dmax of 10.3 nm (Figure 5) [21]. yGPAA170–247 includes
the two conserved stretches of polar residues, i.e. RXPRX3TE
between residues 126–133 and NGX2PNXDX2N in the amino
acid sequence 228–239. These two motifs have been suggested
to play a role in the binding of the free GPI lipid anchor and to
supply it to PIG-K [1]. The arrangement of yGPAA170–247 and
yPIG-K24–377 in the model presented brings both subunits in close
proximity, which allows the entrance of the GPI lipid anchor for
the subsequent catalytic event. The hydrophobic tail of the sub-
strate would then supposedly be stabilized by residues of the TM
helices at the N- and C-termini of yGPAA170–247, predicted to be
involved in GPI interaction [1].

In summary, the cloning and production of the recombinant
yGPAA170–247 provided a pure and monodisperse protein with
a proper secondary structural content. The protein has been
demonstrated as an elongated protein with a major elliptical-
and a smaller hook-like domain that connected via a short stalk.
Together with the recently determined low-resolution struc-
tures of yPIG-K24–337 and yPIG-S38–467 [21], the presented low-
resolution structure of yGPAA170–247 in solution shines new
light into the concerted interaction of the transamidase complex
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subunits together with its substrate protein and provides the basis
for a better understanding of the structural shape and arrangement
of these subunits on the ER lumen side.

AUTHOR CONTRIBUTION

Wuan Geok Saw designed and conducted experiments, and per-
formed data analysis. Birgit Eisenhaber and Frank Eisenhaber
contributed to the experimental design and discussions. Gerhard
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