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A novel patient-derived intra-femoral xenograft
model of bone metastatic prostate cancer that
recapitulates mixed osteolytic and osteoblastic
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Abstract: Prostate cancer metastasizes to bone in the majority of patients with advanced disease leading to
painfully debilitating fractures, spinal compression and rapid decline. In addition, prostate cancer bone
metastases often become resistant to standard therapies including androgen deprivation, radiation and
chemotherapy. There are currently few models to elucidate mechanisms of interaction between the bone
microenvironment and prostate cancer. It is, thus, essential to develop new patient-derived, orthotopic models.
Here we report the development and characterization of PCSD1 (Prostate Cancer San Diego 1), a novel patient-
derived intra-femoral xenograft model of prostate bone metastatic cancer that recapitulates mixed osteolytic
and osteoblastic lesions.

Methods: A femoral bone metastasis of prostate cancer was removed during hemiarthroplasty and transplanted
into Rag2-/-;gc-/- mice either intra-femorally or sub-cutaneously. Xenograft tumors that developed were analyzed for
prostate cancer biomarker expression using RT-PCR and immunohistochemistry. Osteoblastic, osteolytic and mixed
lesion formation was measured using micro-computed tomography (microCT).

Results: PCSD1 cells isolated directly from the patient formed tumors in all mice that were transplanted intra-
femorally or sub-cutaneously into Rag2-/-;gc-/- mice. Xenograft tumors expressed human prostate specific antigen
(PSA) in RT-PCR and immunohistochemical analyses. PCSD1 tumors also expressed AR, NKX3.1, Keratins 8 and 18,
and AMACR. Histologic and microCT analyses revealed that intra-femoral PCSD1 xenograft tumors formed mixed
osteolytic and osteoblastic lesions. PCSD1 tumors have been serially passaged in mice as xenografts intra-femorally
or sub-cutaneously as well as grown in culture.

Conclusions: PCSD1 xenografts tumors were characterized as advanced, luminal epithelial prostate cancer from a
bone metastasis using RT-PCR and immunohistochemical biomarker analyses. PCSD1 intra-femoral xenografts
formed mixed osteoblastic/osteolytic lesions that closely resembled the bone lesions in the patient. PCSD1 is a
new primary prostate cancer bone metastasis-derived xenograft model to study metastatic disease in the bone and
to develop novel therapies for inhibiting prostate cancer growth in the bone-niche.
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Background
Prostate cancer metastasis to bone leads to debilitating
fractures and severe bone pain in men with advanced
disease for which there is no treatment and is associated
with poor prognosis and rapid decline [1]. Recent stu-
dies have shown that 100% of men who die of prostate
cancer have bone metastases [2]. Paget’s “seed and soil”
hypothesis posits that the affinity that certain cancers
have for bone may be due to a supportive microenviron-
ment for tumor growth [3,4].
Androgen ablation therapy is standard-of-care for

advanced prostate cancer, however, bone metastatic
prostate cancer often becomes castration-resistant [5].
Two treatments that target the bone microenvironment
- bisphosphonates, eg. zolendronic acid, and the RANKL
inhibitor, denosumab, which inhibit osteoclasts and
osteolysis - have been effective in delaying the onset of
skeletal related events (SREs) and new bone metastases
in bone metastatic cancers with primarily osteolytic
bone lesions [6-11]. A characteristic of prostate cancer
bone metastases, however, is that they typically produce
osteoblastic or mixed osteoblastic/osteolytic bone lesions
that are not as efficiently treated with the osteoclast
inhibitors [12-16]. There is currently no curative treat-
ment for prostate cancer bone metastases [1].
A major limitation in understanding and treating pros-

tate cancer bone metastatic disease is that primary human
prostate cancer bone metastasis tissues are rarely available
for direct analysis or for the development of predictive
model systems [1,2]. In addition, spontaneous bone metas-
tasis of prostate cancer is a rare event in murine models of
prostate cancer [4,17-19]. Direct injection of prostate can-
cer cells into the endosteal space of murine leg bones has,
thus, provided a robust and reproducible method for
studying the growth of prostate cancer in the bone-niche
[20]. Prostate cancer cell lines such as LAPC4, LNCaP,
LuCAP23.1 and LuCAP35.1 - all of which originated from
lymph node metastases - were directly injected into bone
either intra-femorally or intra-tibially where they formed
tumors and induced bone lesions [4,20,21]. However,
direct injection models into the bone-niche using prostate
cancer cell lines that did not originate from patient bone
metastases may not reflect physiological interactions. The
C4-2B cell line is an improvement in this respect since it
arose from the sub-cutaneously xenografted LNCaP
tumor that spontaneously metastasized to bone within a
SCID mouse and formed mixed osteoblastic/osteolytic
lesions [22,23]. An intriguing alternative prostate cancer
xenograft model assessed metastasis to adult human bone
implanted in the hindlimbs of SCID mice [24]. Prostate
cancer cells from xenograft tumors homed to the human
bone and induced osteolytic lesions but only at low fre-
quencies [24].

Direct bone-injection murine xenograft models using
patient-derived bone metastatic prostate cancers, on the
other hand, are both an orthotopic and highly tractable
xenograft model system [4,20,25-28]. In patients in
whom the bone metastatic tumor is causing pathologic
fractures, orthopedic surgery is performed to stabilize
the bone and primary prostate cancer bone metastases
may be collected for study at this time [29,30]. Cur-
rently, there are three prostate cancer bone metastasis-
derived orthotopic bone xenograft models, PC3, LAPC9
and VCaP [31,32]. Xenograft transplantation of these
cell lines into bone demonstrated the range of bone
lesions produced by prostate cancer bone metastases:
PC3 formed purely osteolytic lesions in intra-tibial xeno-
grafts [25,27,28,31], VCaP produced mixed osteoblastic/
osteolytic lesions [32], while LAPC9 formed purely
osteoblastic lesions [25-28,31].
These models have led to important insights, however,

it is crucial to expand on the limited number of existing
prostate cancer bone metastasis-derived models in order
to understand variability between different patient-
derived tumors [21,33,34]. Next-generation genomic
DNA sequencing and RNASeq profiling of expression
and splice isoforms have revealed significant molecular
diversity and complexity of prostate cancers [35-37]. In
addition, the existing cell lines have been passaged ex
vivo for over a decade which has led to progressive
alteration of the cell lines away from the original patient
characteristics [21,22]. LAPC9 xenografts, for example,
generated androgen-independent derivatives that pro-
gressed in castrated SCID mice after passaging in mice
[33,34]. Genome-wide expression and integrative geno-
mic profiling have comprehensively shown that there
are differences between cell lines in vitro compared with
primary patient tumors [35-37]. Genome-wide analysis
of DNA methylation patterns comparing normal pros-
tate tissue to primary prostate cancer and cell lines
revealed a complex picture with some methylation pat-
terns consistently retained in prostate cancer tumors
and cell lines while others were distinct [38]. It is essen-
tial, therefore, to develop new patient-derived, orthoto-
pic bone metastasis prostate cancer xenograft models
that are closer to patients’ original tumors especially for
determining predictive therapy response profiles [39-42].
In this report we describe the development and charac-
terization of a new patient-derived bone metastatic pros-
tate cancer femoral injection murine model, PCSD1.

Methods
Tumor xenograft preparation
A primary prostate cancer bone metastasis sample was
obtained from a lytic lesion in the proximal femur from
a patient with castrate-resistant prostate cancer with
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mixed osteoblastic and osteolytic bone metastases and a
Gleason score of 9 (5+4). Tumor specimen was prepared
aseptically in biohazard safety cabinet according to stan-
dard protocols with minor modifications [28,43-47].
Specimen was first minced with sterile razor blades to
1-3 mm3 sized pieces. A portion of the minced tumor
was snap frozen for genomic DNA and RNA extraction,
cryopreserved in 10%DMSO/90% FBS, or fixed for
immunohistochemistry. For sub-cutaneous transplanta-
tion, the minced tumor was mixed 1:1 with High Con-
centration Matrigel (Becton-Dickinson) and 0.1 ml was
injected. For intra-femoral injection, the minced tumor
sample was disaggregated by digestion in Accumax
(Millipore), filtered through sterile, mesh filter (Falcon).
Dissociated cells were centrifuged at 1200 RPM, 5 min-
utes, 4°C, washed three times and resuspended in
Iscove’s modified DMEM media, 10% FBS at 6.7 × 106

cells/ml. Cells were mixed 1:1 with high concentration
Matrigel for intra-femoral injection of 50,000 cells in 15
μl. Remainder of the dissociated tumor cells were cryo-
preserved or used for DNA and RNA purification. All
studies with human subjects were conducted with the
approval of the University of California, San Diego
School of Medicine Institutional Review Board. All
patients provided written informed consent.

Surgical technique
All animal protocols were preformed under a UCSD
animal welfare IACUC approved protocol. Sub-cuta-
neous injections were performed using standard proto-
cols [26,28,33]. Briefly, male Rag2-/-;gc-/- mice 6-8 weeks
old were anesthetized with ketamine/xylamine, skin ster-
ilized with 70% ethanol, a 2-3 mm incision was made
with autoclaved dissection scissors, a trochar (10 ml
*LDEV-Free, 14-gauge catheter (SC injections) Terumo
14 G IV Catheter) was used to inject 100 ul of tumor/
matrigel mix below skin right flank, skin flaps were
brought together and sealed with VetBond, mice revived
post-surgery with Antisedan injected sub-cutaneously at
base of neck ruff. For intra-femoral injections mice were
anesthesized by intra-peritoneal injection of a mix of
100 mg/kg ketamine and 10 mg/kg Xylazine and injec-
tions performed in a BL2 biosafety cabinet. Right hind
limb was prepared under standard sterile conditions
with 70% ethanol. Knee was held in flexed position and
25 G needle (Monoject 200 25 × 5/8A) was used to
make a port in the femoral plateau until there was no
resistance that was used as a guide-hole for injection of
15 ul of the tumor cell/Matrigel suspension using a 0.3
ml syringe and 27 G needle. Injection of sample was
performed slowly with minimal resistance. Needle was
withdrawn and leg immediately straightened, dabbed
with antibiotic ointment (RX Neomycin, Polymyxin,
Bacitracin Ophthalmic Ointment USP Sterile NDC

13985-017-55), on a sterile cotton tipped applicator (Q-
Tips) and held for straight for approximately 1 minute.
Mice were injected with Antisedan and placed on a
warm Deltaphase Isothermal Pad, and carefully watched
during recovery until ambulatory and active.

Cells and Reagents
Prostate cancer cell lines: LAPC4, was a gift from Dr.
Lily Wu, UCLA, and VCaP, purchased from ATCC,
were maintained in Iscove’s media, 10%FBS, penicillin-
streptomycin and K562, a chronic myelogenous leuke-
mia cell line in 10% heat-inactivated FBS, RPMI, Pen-
strep.

RT-PCR
Genomic DNA and RNA were extracted using mortar
and pestle pulverization of flash frozen tumor pieces in
liquid nitrogen and the Qiagen All-prep kit [47]. RNA
was re-purified with RNeasy and treated with RNAse-
free, DNase to remove contaminating genomic DNA.
For cell lines and purified, dissociated xenograft tumor
cells, RNA was extracted using Qiagen RNeasy mini-
prep kit. cDNA synthesis was performed with Super-
script III (Invitrogen, Inc.) according to manufacturer’s
protocol, and used for PCR (Taq polymerase, Monserate
Biotechnology Group LLC, San Diego, CA). RT-PCR
products were resolved on 1% agarose gels. All RT-PCR
primers are shown in Table 1. RT-PCR products of the
correct size were verified by sequencing (Retrogen, Inc.,
San Diego, CA).

Immunohistochemistry
PSA immunostaining was carried out using rabbit anti-
human PSA antibody (DAKO A0562) using standard
protocols [48] performed by the Moores Cancer Center
Histology Core, UCSD, La Jolla, CA. Paraformaldehyde-
fixed and paraffin embedded sections from sub-cuta-
neous PCSD1 xenografts were mounted and 6-μm sec-
tions were stained with H & E, anti-PSA, or rabbit IgG
isotype control (DAKO N1699) using HRP goat anti-
Rabbit as secondary antibody (Jackson 111-035-144) and
AEC (Vector SK4200). For intra-femoral tumors, the
tumor plus femur and tibia were dissected out as one,
formalin-fixed and EDTA de-calcified according to
Lavoie et al. [49]. Tissues were mounted in OCT, 6 μm
cryosections were fixed in acetone, blocked in 1%BSA/
PBS, incubated with anti-PSA or IgG isotype control
antibody then processed as above.

Micro CT Analyses
Femurs of mice injected intra-femorally with PCSD1
were scanned by micro-computed tomography (μCT)
SkyScan 1076 (Skyscan, Belgium) at the maximal poten-
tial 60 kV and 167 μA with 0.5 mm thick aluminum
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filter and at the voxel resolution of 9 μm. The μCT
scans were performed over 360° of total rotation with
each angular rotation step of 0.7°. The reconstructions,
performed using the NRecon software package (Sky-
scan), are based on the Feldkamp algorithm and resulted
in axial grayscale images. The 2D images were created
using CTAn software package (Skyscan) [50]. The 3D
μCT models of each femur were created using a 3D
reconstruction software package (Mimics 14.0, Materia-
lise, Belgium) [50,51].

Results
Patient derived-prostate cancer bone metastasis tumor
specimen generated tumors in immunodeficient mice
A prostate cancer bone metastasis specimen was
obtained from a castrate-resistant patient and trans-
planted sub-cutaneously or intra-femorally into immu-
nodeficient, male Rag2-/-;gc-/- mice [52]. Minced tumor
sample that was injected sub-cutaneously (SQ) produced
xenograft tumors in all ten male Rag2-/-;gc-/- mice. Dis-
aggregated primary tumor cells that were injected intra-
femorally (IF) generated tumors in all eight Rag2-/-;gc-/-

mice. As shown in Figure 1, tumors were evident in
three representative mice at ten weeks in the tumor-

injected (right) leg of all intra-femorally transplanted
mice but not in the un-injected, contra-lateral (left) leg.
Therefore, the take-rate of the primary tumor sample
was 100% in both the sub-cutaneous and intra-femoral
niches. Tumors harvested from both sub-cutaneous and
intra-femoral tumors have been serially transplanted at
least three times both sub-cutaneously and intra-femo-
rally thus far: P0 (primagraft), P1 and P2. Low passage
PCSD1 tumors were cryopreserved and serially passaged
as intra-femoral and sub-cutaneous xenografts. Tumor
take-rates are shown in Table 2. The lower take-rate in
the intra-femorally injected mice is most likely due to
the significantly fewer tumor cells injected into the
femur than sub-cutaneously. Approximately 5,000
tumor cells were injected per femur which was ~10% of
the total mixture of 50,000 cells injected IF per mouse.
In contrast, the minced tumor pieces that were
implanted sub-cutaneously were ~ 1 mm3 containing
approximately one million total cells. Mice injected IF
with fewer as well as greater than 5,000 PCSD1 cells are
currently being analyzed. Freshly harvested xenograft
tumor cells as well as cryopreserved xenograft tumor
cells have been used for long term in vitro culture
experiments for testing novel compounds.

PCSD1 sub-cutaneous and intra-femoral xenograft tumors
express PSA and AR
To demonstrate whether the xenograft tumors originated
from prostate cancer in the patient bone metastasis speci-
men the expression of prostate specific antigen (PSA) was
measured. Primers that were specific for the human gene
target and spanned exon-intron boundaries were newly
designed or selected from the literature as shown in Table
1 and the RT-PCR products verified by sequencing. As
shown in Figure 2A, RT-PCR analysis showed the expres-
sion of human PSA in a sub-cutaneous PCSD1 xenograft
tumor (P1) as well as in the human prostate cancer cell
line, LAPC4, but not the human chronic myelogenous leu-
kemia (CML) cell line, K562, nor murine bone marrow,
spleen or liver [52]. Using primers for the full-length iso-
form of androgen receptor (AR) for RT-PCR demon-
strated human androgen receptor (AR) expression in
PCSD1 and LAPC4 (Figure 2A)[53,54]. Therefore, PCSD1
xenograft tumors originated from prostate cancer cells in
the patient’s femoral bone metastasis.
PSA protein expression was determined using immu-

nohistochemical staining of PCSD1 xenograft tumor sec-
tions. Cytoplasmic PSA staining was detected in cells in
sub-cutaneous PCSD1 xenografts (Figure 2B) and in
intra-femoral xenografts from the right leg (Figure 2C,
IF 2°TP (RL), lower panels). Cytoplasmic PSA staining
was not observed in femoral sections from the un-
injected, contra-lateral left leg (LL). Red blood cells in
the bone marrow space that showed up as slightly

Table 1 Primer sequences for RT-PCR analysis.

Oligo Name* Oligo Sequence (5’ – 3’)*

h-PSA-F ACCATGTGGGTCCCGGTTGT

h-PSA-R GAGTTGATAGGGGTGCTCAGG

h-ARfl-F [66,67] ACATCAAGGAACTCGATCGTATCATTGC

h-ARfl-R [66,67] TTGGGCACTTGCACAGAGAT

h-ARv567es-F [66,67] CCAAGGCCTTGCCTGATTGC

h-ARv567es-R [66,67] TTGGGCACTTGCACAGAGAT

h-KRT5-F2 CACCAAGACTGTGAGGCAGA

h-KRT5-R2 CCTTGTTCATGTAGGCAGCA

h-KRT8-F [68] CCTCATCAAGAAGGATGTGGA

h-KRT8-R [68] CACCACAGATGTGTCCGAGA

h-KRT14-F [68] GACCATTGAGGACCTGAGGA

h-KRT14-R [68] ATTGATGTCGGCTTCCACAC

h-KRT18-F1 CCAGTCTGTGGAGAACGACA

h-KRT18-R1 CTGAGATTTGGGGGCATCTA

h-KRT18-F2 CCAGTCTGTGGAGAACGACA

h-KRT18-R2 ATCTGGGCTTGTAGGCCTTT

h-NKX3.1-F [46] GGCCTGGGAGTCTTTGACTCCACTAC

h-NKX3.1-R [46] ATGTGGAGCCCAAACCACAGAAAATG

h-AMACR-F [69] CGCGGTGTCATGGAGAAACT

h-AMACR-R [69] CTTCCTGACTGGCCAAATCC

h-GAPDH-F [70] GGTGGTCTCCTCTGACTTCAACA

h-GAPDH-R [70] TTGCTGTAGCCAAATTCGTTGT

m-Gapdh-F [71] TGTTCCTACCCCCAATGTGT

m-Gapdh-R [71] GGTCCTCAGTGTAGCCCAAG

TMPRSS2-ERG-F[72] TAGGCGCGAGCTAAGCAGGAG

TMPRSS2-ERG-R[72] GTAGGCACACTCAAACAACGACTGG
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reddish brown in color that was not due to PSA immu-
nostaining were seen in the un-injected intra-femoral
sections (Figure 2C middle panels). In the femur of the
right leg, PCSD1 tumor cells were observed both in the
endosteal bone marrow space where they were injected
and having invaded extra-cortically surrounding the
femur. Regions of osteolysis were observed in the immu-
nostained sections and in H & E stained sections (Figure
2C, upper panels) through which the tumor may have
invaded and migrated outside of the bone.

PCSD1 xenograft tumors express luminal prostate
biomarkers
Further molecular analysis to characterize PCSD1
tumors was performed using RT-PCR on additional
human prostate biomarkers. Expression of keratins 5
(K5) and 14 (K14) are characteristic of basal prostate

epithelial cells whereas keratins 8 (K8) and 18 (K18) are
expressed in luminal prostate epithelial cells [44-46,55].
PCSD1 xenograft tumors expressed human K8 and K18
and very low levels of K5 and K14 (Figure 3A). Interest-
ingly, LAPC4 expressed all four of the keratins. PCSD1
and LAPC4 both expressed the prostate transcription
factor NKX3.1 [46]. PCSD1 and LAPC4 also expressed
AMACR, a biomarker that is often up-regulated in
advanced prostate cancer [56]. The human specific
GAPDH and mouse specific GAPDH were expressed in
the PCSD1 xenografts indicating the presence of both
human and murine cells within the xenograft tumor
[57,58]. Only human specific GAPDH was detected in
the human cell lines LAPC4 and K562 that were grown
in culture as expected. Correspondingly, the murine
bone marrow and spleen tissues only expressed the
mouse GAPDH. Taken together the results of the

Figure 1 Intra-femoral transplantation of PCSD1 (Prostate Cancer San Diego 1) cells generated xenograft tumors in mice. Tumor cells
isolated directly from a patient-derived femoral bone metastasis were transplanted intra-femorally into Rag2-/-;gc-/- male mice. Tumor growth
was observed in the tumor-injected (right) leg of intra-femorally transplanted mice but not in the un-injected, contra-lateral (left) leg as shown in
three representative mice 10 weeks post-transplantation.

Table 2 PCSD1 tumor xenograft passaging and transplantation take-rate.

Tumor Passage No. Number of mice injected Number mice with tumor Take-rate

P0

SC 10 10 100%

IF 8 8 100%

P1

SC 18 18 100%

IF 29 19 66%

P2

SC 10 10 100%

IF 23 14 67%

Tumor passage number: P0 = primagraft: primary patient sample injected; P1 = first serial passage of tumor cells, that is, tumor cells harvested from P0 tumors
are re-implanted into new mice and tumors allowed to develop; P2 = second serial passage of xenograft tumors; SC = sub-cutaneously transplanted tumors; IF =
intra-femorally transplanted tumors.
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Figure 2 PCSD1 xenograft tumors expressed human prostate PSA and human AR. A. RNA was extracted from secondary transplant sub-
cutaneous xenograft tumors (Passage 1, P1) and used for RT-PCR analysis of human prostate specific antigen (PSA) and human androgen
receptor (AR). Human PSA and human AR-specific primers were used for PCR amplification of cDNA synthesized with reverse transcriptase (RT+)
or without (RT-) and confirmed by sequencing of correctly sized bands. Human GAPDH-specific primers were used as an internal control. Human
PSA and AR were expressed in the PCSD1 xenograft tumor and the human prostate cancer cell line, LAPC4, but not in the human chronic
myelogenous leukemia (CML) cell line, K562. RNA from mouse spleen, bone marrow and liver did not express human PSA or AR. B.
Immunohistochemical analysis showed human PSA protein expression in PCSD1 xenograft tumors. Images show paraffin embedded (PPFE) sub-
cutaneous PCSD1 secondary transplant xenograft sections stained with IgG isotype negative control or human PSA-specific antibody. (C) Upper
panels show H and E stained intra-femoral PCSD1 secondary transplant xenograft cryosections at 10× and 20× magnification. Middle panels
show cryosections from the left, un-injected, contralateral femurs immunostained with human PSA-specific antibody at 10× and 40×. Arrows
show red blood cells in bone marrow. Lower panels show cryosections from secondary intra-femoral transplants of PCSD1 immunostained with
anti-PSA. Arrows point to human PSA positive (+) prostate cancer cells.
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molecular analysis showed that PCSD1 is a luminal
epithelial-type advanced prostate cancer [43-47].
The TMPRSS2-ERG fusion gene is a frequent genomic

rearrangement in prostate cancers that results in placing
the ERG ETS-family transcription factor under the
androgen-regulated expression of the TMPRSS2 gene
[59]. RT-PCR was performed to determine whether this
gene fusion event was present in PCSD1. While the
fusion transcript was detected in VCaP cells as shown

previously [59], the TMPRSS2-ERG gene fusion was not
detected in PCSD1 (Figure 3B). In addition, analysis of
known alternative splicing variants of AR did not detect
these in PCSD1 xenografts.

PCSD1 intra-femoral xenograft forms mixed osteolytic
and osteoblastic bone lesions
Micro computed tomography small animal scanning
(microCT) was performed on mice injected intra-

Figure 3 PCSD1 xenograft tumors express luminal-type epithelial, advanced prostate cancer biomarkers. A. RT-PCR analysis was
performed on cDNA synthesized with reverse transcriptase (RT+) or without (RT-) from RNA purified from PCSD1 sub-cutaneous xenograft
tumors, cultures of LAPC4, a human prostate cancer cell line and K562, a human CML cell line culture, as well as murine spleen, bone marrow
and liver or H2O alone and RNA from normal human prostate tissue. Human specific primers for keratins 5, 8, 14 and 18, AMACR and NKX3.1,
GAPDH and mouse-specific GAPDH were used to detect expression of these genes. B. RT-PCR analysis was performed on intra-femoral xenograft
PCSD1 tumor cells, cultured VCaP prostate cancer cell line as well as normal human prostate tissue. Primers were specific for RNA from full
length human AR or the TMPRSS2-ERG fusion gene. GAPDH levels were comparable.
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femorally with PCSD1 to determine the effect of the
growth of the tumors [31]. MicroCT scans from mice
injected intra-femorally with the primary patient bone
metastasis sample are shown in Figure 4. Regions with
significant osteoporosis (bone thinning) as well as areas
of bone sclerosis (increased bone density) were apparent
in the femur in which the tumor was growing but not
in the un-injected contra-lateral leg (Figure 4A). Three-
dimensional (3D) reconstruction of the microCT scans
revealed the extensively pitted, porous and eroded distal
extremity of the femur from the tumor-injected (yellow)
leg compared to the smooth femur surface contours of
the contra-lateral, un-injected leg (Figure 4B). PCSD1
tumor growth produced significant osteolysis in the
femur. In addition, regions of sclerosis or osteoblastic
lesion formation were observed in the right, tumor
injected femurs as shown in Figure 5A. MicroCT cross-
sections along the length of the femur were compared
to show the increased thickness and density of the
femur in which PCSD1 tumor was growing compared to
the un-injected femur (Figure 5B). The PCSD1 tumor
induced bone lesion changes can be seen in the context
of the whole animal in the movie of the 3D reconstruc-
tion of the microCT analysis (Additional file 1). The
destructive effects of PCSD1 tumor growth on the inter-
nal and external surfaces of the distal femur are further
shown in the 3D reconstruction microCT in Additional
file 2. Therefore, in vivo microCT scanning revealed
PCSD1 tumor growth produced mixed osteolytic and
osteoblastic lesions. This recapitulated the mixed osteo-
blastic and osteolytic bone lesions observed in the
patient.

Discussion
Prostate cancer progression is marked by metastasis to
bone, resistance to androgen deprivation therapy, radio-
therapy and chemotherapy as well as the emergence of
an apoptosis-resistant, tumor-initiating population for
which there is no effective therapy [34,60-66]. There is a
pressing need for new models to investigate prostate
cancer interaction with the bone microenvironment and
to develop therapies but they have been difficult to
establish due to poor take-rates of xenograft transplan-
tation of primary prostate tumors [17-19]. Here we
describe PCSD1, a robust new patient bone metastasis-
derived prostate cancer intra-femoral xenograft model
for studying prostate metastatic bone disease. PCSD1
generated serially-transplantable sub-cutaneous and
intra-femoral tumors when transplanted into immuno-
deficient Rag2-/-;gc-/- male mice. PCSD1 xenograft
tumors were characterized as PSA+, AR+, K5-, K14-, K8
+, K18+, AMACR+, NKX3.1+, and TMPRSS2:ERG-

human prostate cancer. These biomarkers identified

PCSD1 as an advanced luminal prostate cancer bone
metastatic cancer [43-47,56,63,64]. MicroCT analyses
revealed PCSD1 formed mixed osteoblastic and osteoly-
tic lesions in a murine femoral injection model which
closely resembled the bone lesions in the patient
[28,31,60].
The PCSD1 xenograft model will be used to under-

stand the development of castrate-resistant prostate can-
cer in the bone microenvironment. Tumor growth of
PCSD1 xenografts in intact versus surgically castrated
mice is currently being measured. In culture, PCSD1
cells demonstrated androgen-independence as they can
survive and proliferate without the addition on
androgens.
Current standard-of-care therapies such as bispho-

sphonates, radiation, anti-androgens, chemotherapy,
such as docetaxel, often eventually fail in patients who
develop castrate-resistant prostate cancer [1,5,15,67-70].
The PCSD1 model will be used not only to elucidate
mechanisms of failure of standard-of-care therapy but
also to develop new therapies alone or in combination
with current therapies.
The PCSD1 model will also be used to gain under-

standing of the unexpected, discordant effects of some
new prostate cancer therapies that are being reported
for bone metastatic prostate cancer. For example, in a
Phase II Study of the new anti-androgen, Abiraterone, it
was found that approximately one third of patients with
chemotherapy-naive metastatic castration-resistant pros-
tate cancer displayed bone scan flare discordant with
PSA serologic response [71]. In other words, many
patients with significantly lowered PSA levels after treat-
ment with abiraterone still showed positive bone scans
[71]. Conversely, some patients treated with the new c-
Met tyrosine kinase inhibitor, Cabozantinib (c-Met TKI,
XL184), showed dramatic reductions in positive bone
scans but, paradoxically, no decrease in their PSA levels
[72]. New bone metastasis models such as PCSD1 are,
therefore, essential to understand the complex mechan-
isms of interaction of prostate cancer with the bone
microenvironment and the variation in response to
therapies in different patients, types of bone lesions or
stages of bone metastatic prostate cancer progression.

Conclusions
PCSD1 xenografts tumors were characterized as
advanced, luminal epithelial prostate cancer from a bone
metastasis using RT-PCR and immunohistochemical
biomarker analyses. PCSD1 intra-femoral xenografts
formed mixed osteoblastic/osteolytic lesions that closely
resembled the bone lesions in the patient. PCSD1 is a
new primary prostate cancer bone metastasis-derived
xenograft model to study metastatic disease in the bone
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Figure 4 MicroCT imaging of patient-derived intra-femoral (IF) PCSD1 xenografts revealed mixed osteolytic and osteoblastic bone
lesions. MicroCT scanning was performed on femurs and tibia isolated from mice injected with primary patient-derived tumor in the right
femur showed that areas of increased bone density and sclerosis were apparent in the femur in which the tumor was growing as shown above
for mouse IF15. A. P0 Bones osteolytic/osteoblastic microCT images. B. 3D reconstruction of distal femur.
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Figure 5 MicroCT imaging of PCSD1 secondary intra-femoral transplanted xenograft showing osteolytic lesion at distal extremity of
femur and osteoblastic lesion formation along shaft of femur. A. Osteoblastic lesion MicroCT imaging of intra-femoral (IF) xenografts:
microCT and cross-sections. B. Axial microCT scan series for comparison of femur cross-sections from un-injected, contra-lateral femur to PCSD1
tumor-injected femur.
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and to develop novel therapies for inhibiting prostate
cancer growth in the bone-niche.

Additional material

Additional file 1: Three-dimensional reconstruction of lower body
microCT scan of mouse with intra-femoral PCSD1 xenograft at 10
weeks. Effects of PCSD1 tumor growth in the right femur compared to
the un-injected, contra-lateral, left femur including osteolysis in the right
distal femur, periosteal reaction and “sunburst” appearance along the
inner shaft of the right femur. Soft tissue mass of PCSD1 tumor can be
seen around the right femur.

Additional file 2: Three-dimensional microCT reconstruction of the
lower extremity of the right femur from a PCSD1 intra-femoral
xenograft in a mouse showing exterior and interior surfaces of the
bone lesion.

Abbreviations
AR: androgen receptor; IHC: Immunohistochemistry; FACS: fluorescence
activated cell scanning or sorting; IF: intra-femoral injection or
transplantation; K562: Chronic myelogenous leukemia derived human cell
line; LAPC4: Los Angeles Prostate Cancer cell line 4; LAPC9: Los Angeles
Prostate Cancer cell line 9; Micro-CT: X-ray micro-computed tomography; P0:
primagraft: primary patient sample injected; P1: first serial passage of tumor
cells, that is; tumor cells harvested from P0 tumors are re-implanted into
new mice and tumors allowed to develop; P2: second serial passage of
xenograft tumors; PCSD1: Prostate Cancer San Diego 1 patient-derived
xenograft or tumor cells; PSA: prostate specific antigen; Rag2-/-;γc

-/-:
immunodeficient mouse strain with homozygous targeted deletions of
Recombinase activated gene-2 and Interleukin 2 receptor common gamma
chain; RT-PCR: Reverse transcription and polymerase chain reaction; SC: sub-
cutaneous injection or transplantation; VCaP: vertebral metastasis of cancer
of the prostate cell line.

Acknowledgements
We especially thank Dr. Dennis Carson for critical reading of the manuscript,
essential scientific input and support of the project, Dr. Nissi Varki for
pathology expertise and Dr. Norman Greenberg for insight and advice on
prostate cancer models. We thank the Moores Cancer Center Histology Core,
Brian Crane for expertise in xenograft tumors, Alice Shih and Angela Court
for help with breeding mice. We also thank Kim Wilson for help with
manuscript preparation, and Jonathan M. Lee for help with preparation of
figures.

Author details
1Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
2Division of Urology, Department of Surgery, UCSD, La Jolla, CA, USA.
3Division of Orthopedic Surgery, Dept. of Surgery, UCSD, La Jolla, CA, USA.
4Dept. of Medicine, UCSD, La Jolla, CA, USA. 5Dept. of Radiation Oncology,
UCLA, Los Angeles, CA, USA. 6Department of Urology, Chonbuk National
University, Jeonju, South Korea.

Authors’ contributions
OR provided clinical expertise, selected, designed and performed RT-PCR
and analyzed immunohistochemical images. AAK provided patient samples,
clinical expertise in orthopedic oncology and interpretation of microCT
scans. CW provided animal experiment expertise and performed intra-
femoral injections assisted by HL. YBJ, performed RT-PCR and analyzed
immunohistochemical images. KMS guided RT-PCR analyses and performed
sequence confirmation. DG assisted with RT-PCR and primer design. TY and
KM performed microCT scanning and analyses and generated 2D and 3D
microCT images and movies; KM also performed scanning of intra-femoral
PSA IHC slides. CHMJ provided expertise in generating primagraft and
xenograft cancer models, bone marrow niche analysis as well as Rag2-/-;γc-/-

mice. SM provided clinical expertise and statistical analyses. NAC, provided
molecular biology expertise and was involved in data analysis, biomarker
selection and provided signal transduction expertise. CJK provided primary

prostate tissue and tumor specimens, contributed to writing the manuscript
and clinical expertise in prostate cancer. CAMJ is the PI of the study, wrote
the manuscript, guided all aspects of generating the model and analysis. In
addition, CAMJ performed patient sample preparation, xenograft tumor
dissection and cell preparation for IF injections, RNA, DNA purification, tumor
fixation, decalcification and mounting for sectioning and cryopreservation of
tumor cells and sub-cutaneous injections. All authors have read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 9 August 2011 Accepted: 28 October 2011
Published: 28 October 2011

References
1. Sturge J, Caley MP, Waxman J: Bone metastasis in prostate cancer:

emerging therapeutic strategies. Nat Rev Clin Oncol 2011, 8:357-68.
2. Mehra R, Kumar-Sinha C, Shankar S, Lonigro RJ, Jing X, Philips NE,

Siddiqui J, Han B, Cao X, Smith DC, Shah RB, Chinnaiyan AM, Pienta KJ:
Characterization of bone metastases from rapid autopsies of prostate
cancer patients. Clin Cancer Res 2011, 17:3924-32.

3. Koeneman KS, Yeung F, Chung LW: Osteomimetic properties of prostate
cancer cells: a hypothesis supporting the predilection of prostate cancer
metastasis and growth in the bone environment. Prostate 1999,
39:246-261.

4. Virk MS, Lieberman JR: Tumor metastasis to bone. Arthritis Res Ther 2007,
9(Suppl 1):S5.

5. Kim HS, Freedland SJ: Androgen deprivation therapy in prostate cancer:
anticipated side-effects and their management. Curr Opin Support Palliat
Care 2010, 4:147-52.

6. Guise T: Examining the metastatic niche: targeting the
microenvironment. Semin Oncol 2010, 37(Suppl 2):S2-14.

7. Suva LJ, Washam C, Nicholas RW, Griffin RJ: Bone metastasis: mechanisms
and therapeutic opportunities. Nat Rev Endocrinol 2011, 7:208-18.

8. Wilson C, Coleman RE: Adjuvant therapy with bone-targeted agents.
CurrOpinSupportPalliatCare 2011, 5:241-50.

9. Body JJ: New developments for treatment and prevention of bone
metastases. Curr Opin Oncol 2011, 23:338-42.

10. Puhaindran ME, Farooki A, Steensma MR, Hameed M, Healey JH, Boland PJ:
Atypical subtrochanteric femoral fractures in patients with skeletal
malignant involvement treated with intravenous bisphosphonates. J
Bone Joint Surg Am 2011, 93:1235-42.

11. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J,
Scagliotti GV, Sleeboom H, Spencer A, Vadhan-Raj S, von Moos R,
Willenbacher W, Woll PJ, Wang J, Jiang Q, Jun S, Dansey R, Yeh HJ:
Randomized, double-blind study of denosumab versus zoledronic acid
in the treatment of bone metastases in patients with advanced cancer
(excluding breast and prostate cancer) or multiple myeloma. Clin Oncol
2011, 29:1125-32.

12. Lee RJ, Saylor PJ, Smith MR: Treatment and prevention of bone
complications from prostate cancer. Bone 2011, 48:88-95.

13. Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P,
Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C:
Denosumab versus zoledronic acid for treatment of bone metastases in
men with castration-resistant prostate cancer: a randomised, double-
blind study. Lancet 2011, 377:813-22.

14. Sartor O: Denosumab in bone-metastatic prostate cancer: known effects
on skeletal-related events but unknown effects on quality of life. Asian J
Androl 2011, 13:612-3.

15. Sonpavde G, Sternberg CN: Contemporary management of metastatic
castration-resistant prostate cancer. Curr Opin Urol 2011, 21:241-7.

16. Smith MR, Brown GA, Saad F: New opportunities in the management of
prostate cancer-related bone complications. Urologic Oncology: Seminars
and Original Investigations 2009, 27(Suppl 1):S1-S20.

17. Hurwitz AA, Foster BA, Allison JP, Greenberg NM, Kwon ED: The TRAMP
mouse as a model for prostate cancer. Current Protocols in Immunology
2001, 20.5.1-20.5.23.

18. Pienta KJ, Abate-Shen C, Agus DB, Attar RM, Chung LW, Greenberg NM,
Hahn WC, Isaacs JT, Navone NM, Peehl DM, Simons JW, Solit DB, Soule HR,

Raheem et al. Journal of Translational Medicine 2011, 9:185
http://www.translational-medicine.com/content/9/1/185

Page 11 of 13

http://www.biomedcentral.com/content/supplementary/1479-5876-9-185-S1.MOV
http://www.biomedcentral.com/content/supplementary/1479-5876-9-185-S2.MOV
http://www.ncbi.nlm.nih.gov/pubmed/21556025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21556025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21555375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21555375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10344214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10344214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10344214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17767743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20592607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20592607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21111245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21111245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21200394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21200394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21519257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21519257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21776577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21776577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20621630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20621630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21353695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21353695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21353695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21499282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21499282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21455038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21455038?dopt=Abstract


VanDyke TA, Weber MJ, Wu L, Vessella RL: The current state of preclinical
prostate cancer animal models. Prostate 2008, 68:629-39.

19. Lopez-Barcons LA: Human prostate cancer heterotransplants: a review on
this experimental model. Asian J Androl 2010, 12:509-18.

20. Corey E, Quinn JE, Bladou F, Brown LG, Roudier MP, Brown JM, Buhler KR,
Vessella RL: Establishment and characterization of osseous prostate
cancer models: intra-tibial injection of human prostate cancer cells.
Prostate 2002, 52:20-33.

21. Davies MR, Lee YP, Lee C, Zhang X, Afar DE, Lieberman JR: Use of a SCID
mouse model to select for a more aggressive strain of prostate cancer.
Anticancer Res 2003, 23:2245-52.

22. Lin DL, Tarnowski CP, Zhang J, Dai J, Rohn E, Patel AH, Morris MD, Keller ET:
Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line
mineralizes in vitro. Prostate 2001, 47:212-221.

23. Morrissey C, Kostenuik PL, Brown LG, Vessella RL, Corey E: Host-derived
RANKL is responsible for osteolysis in a C4-2 human prostate cancer
xenograft model of experimental bone metastases. BMC Cancer 2007,
7:148.

24. Tsingotjidou AS, Zotalis G, et al: Development of an animal model for
prostate cancer cell metastasis to adult human bone. Anticancer Res
2001, 21:971-8.

25. Lee Y, Schwarz E, Davies M, Jo M, Gates J, Wu J, Zhang X, Lieberman JR:
Differences in the cytokine profiles associated with prostate cancer cell
induced osteoblastic and osteolytic lesions in bone. J Orthop Res 2003,
21:62-72.

26. Craft N, Chor C, et al: Evidence for clonal outgrowth of androgen-
independent prostate cancer cells from androgen-dependent tumors
through a two-step process. Cancer Research 1999, 59:5030-5036.

27. Gamradt SC, Feeley BT, Liu NQ, Roostaeian J, Lin YQ, Zhu LX, Sharma S,
Dubinett SM, Lieberman JR: The effect of cyclooxygenase-2 (COX-2)
inhibition on human prostate cancer induced osteoblastic and osteolytic
lesions in bone. Anticancer Res 2005, 25:107-15.

28. Feeley B, Gamradt SC, Hsu WK, et al: Influence of BMPs on the formation
of osteoblastic lesions in metastatic prostate cancer. J Bone and Mineral
Research 2005, 20:2189-2199.

29. Ristevski B, Jenkinson RJ, Stephen DJ, Finkelstein J, Schemitsch EH,
McKee MD, Kreder HJ: Mortality and complications following stabilization
of femoral metastatic lesions: a population-based study of regional
variation and outcome. Can J Surg 2009, 52:302-308.

30. Piccioli A, Maccauro G, Rossi B, Scaramuzzo L, Frenos F, Capanna R: Surgical
treatment of pathologic fractures of humerus. Injury 2010, 41:1112-6.

31. Hsu WK, Virk MS, Feeley BT, Stout DB, Chatziioannou AF, Lieberman JR:
Characterization of osteolytic, osteoblastic, and mixed lesions in a
prostate cancer mouse model using 18F-FDG and 18F-fluoride PET/CT. J
Nucl Med 2008, 49:414-21.

32. Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ, McCauley LK: A
destructive cascade mediated by CCL2 facilitates prostate cancer growth
in bone. CancerRes 2009, 69:1685-92.

33. Klein KA, Reiter RE, Redula J, Moradi H, Zhu XL, Brothman AR, Lamb DJ,
Marcelli M, Belldegrun A, Witte ON, Sawyers CL: Progression of metastatic
human prostate cancer to androgen independence in immunodeficient
SCID mice. Nat Med 1997, 3:402-408.

34. Nickerson T, Chang F, Lorimer D, et al: In vivo progression of LAPC-9 and
LNCaP prostate cancer models to androgen independence is associated
with increased expression of insulin-like growth factor I (IGF-I) and IGF-I
receptor (IGF-IR). Cancer Res 2001, 61:6276-80.

35. Sandberg R, Ernberg I: The molecular portrait of in vitro growth by meta-
analysis of gene-expression profiles. Genome Biol 2005, 6:R65.

36. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK,
Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I,
Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI,
Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL: Integrative
genomic profiling of human prostate cancer. Cancer Cell 2010, 18:11-22.

37. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY,
Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K,
Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D,
Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K,
Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L,
Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES,
Getz G, Rubin MA, Garraway LA: The genomic complexity of primary
human prostate cancer. Nature 2011, 470:214-20.

38. Kim JH, Dhanasekaran SM, Prensner JR, Cao X, Robinson D, Kalyana-
Sundaram S, Huang C, Shankar S, Jing X, Iyer M, Hu M, Sam L, Grasso C,
Maher CA, Palanisamy N, Mehra R, Kominsky HD, Siddiqui J, Yu J, Qin ZS,
Chinnaiyan AM: Deep sequencing reveals distinct patterns of DNA
methylation in prostate cancer. Genome Res 2011, 21:1028-41.

39. Virk MS, Petrigliano FA, Liu NQ, Chatziioannou AF, Stout D, Kang CO,
Dougall WC, Lieberman JR: Influence of simultaneous targeting of the
bone morphogenetic protein pathway and RANK/RANKL axis in
osteolytic prostate cancer lesion in bone. Bone 2009, 44:160-7.

40. Hung TT, Chan J, Russell PJ, Power CA: Zoledronic acid preserves bone
structure and increases survival but does not limit tumour incidence in
a prostate cancer bone metastasis model. PLoS One 2011, 6:e19389.

41. Bruni-Cardoso A, Johnson LC, Vessella RL, Peterson TE, Lynch CC:
Osteoclast-Derived Matrix Metalloproteinase-9 Directly Affects
Angiogenesis in the Prostate Tumor-Bone Microenvironment. Mol Cancer
Res 2010, 8:459-70.

42. Chen CD, Welsbie DS, Tran C, et al: Molecular determinants of resistance
to antiandrogen therapy. Nat Med 2004, 10:33-39.

43. Collins AT, Berry PA, Hyde C, et al: Prospective identification of
tumorigenic prostate cancer stem cells. Cancer Res 2005, 65:10946-10951.

44. Duhagon MA, Hurte EM, Sotelo-Silveira JR, Zhang X, Farrar WL: Genomic
profiling of tumor initiating prostatospheres. BMC Genomics 2010, 11:324.

45. Garraway IP, Sun W, Tran CP, et al: Human prostate sphere-forming cells
represent a subset of basal epithelial cells capable of glandular
regeneration in vivo. Prostate 2010, 70:491-501.

46. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON: Identification of a
cell of origin for human prostate cancer. Science 2010, 329:568-71.

47. Gregg JL, Brown KE, Mintz EM, et al: Analysis of gene expression in
prostate cancer epithelial and interstitial stromal cells using laser
capture microdissection. BMC Cancer 2010, 10:165.

48. Mitra N, Banda K, Altheide TK, Schaffer L, Johnson-Pais TL, Beuten J,
Leach RJ, Angata T, Varki N, Varki A: SIGLEC12, a Human-specific
Segregating (Pseudo)gene, Encodes a Signaling Molecule Expressed in
Prostate Carcinomas. J Biol Chem 2011, 286:23003-11.

49. Lavoie , et al: Skin-derived precursors differentiate into skeletogenic cell
types and contribute to bone repair. Stem Cells and Development 2009,
18:893-906.

50. Ritacco LE, et al: Three-dimensional morphometric analysis of the distal
femur: a validity method for allograft selection using a virtual bone
bank. Stud Health Technol Inform 2010, 160:1287-90.

51. Ochia RS, et al: Three-dimensional in vivo measurement of lumbar spine
segmental motion. Spine 2006, 31:2073-8.

52. Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ,
Durocher J, Creusot RS, Karimi M, Jones C, Zehnder JL, Keating A,
Negrin RS, Weissman IL, Jamieson CH: Glycogen synthase kinase 3beta
missplicing contributes to leukemia stem cell generation. Proc Natl Acad
Sci USA 2009, 106:3925-9.

53. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA, Page ST,
Coleman IM, Nguyen HM, Sun H, Nelson PS, Plymate SR: Castration
resistance in human prostate cancer is conferred by a frequently
occurring androgen receptor splice variant. J Clin Invest 2010,
120:2715-30.

54. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, Kim K,
Sawyers CL: Constitutively active androgen receptor splice variants
expressed in castration-resistant prostate cancer require full-length
androgen receptor. Proc Natl Acad SciUSA 2010, 107:16759-65.

55. Lawson DA, Zong Y, Memarzadeh S, Xin L, et al: Basal epithelial stem cells
are efficient targets for prostate cancer initiation. Proc Natl Acad SciUSA
2010, 107:2610-5.

56. Ouyang B, Leung YK, Wang V, Chung E, Levin L, Bracken B, Cheng L,
Ho SM: α-Methylacyl-CoA racemase spliced variants and their expression
in normal and malignant prostate tissues. Urology 2011, 77:249.e1-7.

57. Johnson MB, Kawasawa YI, Mason CE, et al: Functional and evolutionary
insights into human brain development through global transcriptome
analysis. Neuron 2009, 62:494-509.

58. Nervina JM, Magyar CE, Pirih FQ, Tetradis S: PGC-1alpha is induced by
parathyroid hormone and coactivates Nurr1-mediated promoter activity
in osteoblasts. Bone 2006, 39:1018-25.

59. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW,
Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB,

Raheem et al. Journal of Translational Medicine 2011, 9:185
http://www.translational-medicine.com/content/9/1/185

Page 12 of 13

http://www.ncbi.nlm.nih.gov/pubmed/18213636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18213636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20364154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20364154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11992617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11992617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12894499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12894499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11351351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11351351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17683568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17683568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17683568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11396190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11396190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12507581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12507581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10519419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10519419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10519419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15816526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15816526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15816526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19680515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19680515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19680515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20828692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20828692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18287261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18287261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9095173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9095173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9095173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11507082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11507082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11507082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11507082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16086847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16086847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20579941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20579941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21307934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21307934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21724842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21724842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18929692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18929692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18929692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21603655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21603655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21603655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20332212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20332212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14702632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14702632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16322242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16322242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20500816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20500816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19938015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19938015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19938015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20671189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20671189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21555517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21555517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21555517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20841892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20841892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20841892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16915091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16915091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16765661?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16765661?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16765661?dopt=Abstract


Pienta KJ, Rubin MA, Chinnaiyan AM: Recurrent fusion of TMPRSS2 and
ETS transcription factor genes in prostate cancer. Science 2005, 310:644-8.

60. Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D:
Pathogenesis of osteoblastic bone metastases from prostate cancer.
Cancer 2010, 116:1406-18.

61. Grubb RL, Deng J, Pinto PA, et al: Pathway biomarker profiling of
localized and metastatic human prostate cancer reveal metastatic and
prognostic signatures. J Proteome Res 2009, 8:3044-54.

62. Ugolkov AV, Eisengart LJ, Luan C, Yang XJ: Expression analysis of putative
stem cell markers in human benign and malignant prostate. Prostate
2011, 71:18-25.

63. Wang X, Kruithof-de Julio M, Economides KD, et al: A luminal epithelial
stem cell that is a cell of origin for prostate cancer. Nature 2009,
461:495-500.

64. Petrigliano FA, Virk MS, Liu N, Sugiyama O, Yu D, Lieberman JR: Targeting
of prostate cancer cells by a cytotoxic lentiviral vector containing a
prostate stem cell antigen (PSCA) promoter. Prostate 2009, 69:1422-34.

65. Schayek H, Seti H, Greenberg NM, Sun S, Werner H, Plymate SR: Differential
regulation of insulin-like growth factor-I receptor gene expression by
wild type and mutant androgen receptor in prostate cancer cells. Mol
Cell Endocrinol 2010, 323:239-45.

66. Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T,
Thomas SB, Farrar WL: Invasive prostate cancer cells are tumor initiating
cells that have a stem cell-like genomic signature. Clin Exp Metastasis
2009, 26:433-46.

67. Koreckij T, Nguyen H, Brown LG, Yu EY, Vessella RL, Corey E: Dasatinib
inhibits the growth of prostate cancer in bone and provides additional
protection from osteolysis. Br J Cancer 2009, 101:263-8.

68. Tang Y, Hamburger AW, Wang L, et al: Androgen deprivation and stem
cell markers in prostate cancers. Int J Clin Exp Pathol 2009, 3:128-38.

69. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-
Jones PM, Yoo D, Kwon A, Wasielewska T, Welsbie D, Chen CD, Higano CS,
Beer TM, Hung DT, Scher HI, Jung ME, Sawyers CL: Development of a
second-generation antiandrogen for treatment of advanced prostate
cancer. Science 2009, 324:787-90.

70. Scher HI, Beer TM, Higano CS, et al: Antitumour activity of MDV3100 in
castration-resistant prostate cancer: a phase 1-2 study. Lancet 2010,
375:1437-46.

71. Ryan CJ, Shah S, Efstathiou E, Smith MR, Taplin ME, Bubley GJ,
Logothetis CJ, Kheoh T, Kilian C, Haqq CM, Molina A, Small EJ: Phase II
study of abiraterone acetate in chemotherapy-naive metastatic
castration-resistant prostate cancer displaying bone flare discordant
with serologic response. Clin Cancer Res 2011, 17:4854-61.

72. Scholz M: Cabozantinib. PCRI Insights 2011, 14:12-14.

doi:10.1186/1479-5876-9-185
Cite this article as: Raheem et al.: A novel patient-derived intra-femoral
xenograft model of bone metastatic prostate cancer that recapitulates
mixed osteolytic and osteoblastic lesions. Journal of Translational
Medicine 2011 9:185.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Raheem et al. Journal of Translational Medicine 2011, 9:185
http://www.translational-medicine.com/content/9/1/185

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/16254181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16254181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20108337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19275204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19275204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19275204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20583131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20583131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19741607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19741607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19489029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19489029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19489029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20417685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20417685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20417685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19221883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19221883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19603032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19603032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19603032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20126580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20126580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19359544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19359544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19359544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20398925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20398925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21632851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21632851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21632851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21632851?dopt=Abstract

	Abstract
	Methods
	Results
	Conclusions

	Background
	Methods
	Tumor xenograft preparation
	Surgical technique
	Cells and Reagents
	RT-PCR
	Immunohistochemistry
	Micro CT Analyses

	Results
	Patient derived-prostate cancer bone metastasis tumor specimen generated tumors in immunodeficient mice
	PCSD1 sub-cutaneous and intra-femoral xenograft tumors express PSA and AR
	PCSD1 xenograft tumors express luminal prostate biomarkers
	PCSD1 intra-femoral xenograft forms mixed osteolytic and osteoblastic bone lesions

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


