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a b s t r a c t

The elimination of oxidatively modified proteins is a crucial process in maintaining cellular home-

ostasis, especially during stress. Mitochondria are protein-dense, high traffic compartments, whose

polypeptides are constantly exposed to superoxide, hydrogen peroxide, and other reactive species,

generated by ‘electron leakage’ from the respiratory chain. The level of oxidative stress to mitochon-

drial proteins is not constant, but instead varies greatly with numerous metabolic and environmental

factors. Oxidized mitochondrial proteins must be removed rapidly (by proteolytic degradation) or they

will aggregate, cross-link, and cause toxicity. The Lon Protease is a key enzyme in the degradation of

oxidized proteins within the mitochondrial matrix. Under conditions of acute stress Lon is highly

inducible, possibly with the oxidant acting as the signal inducer, thereby providing increased

protection. It seems that under chronic stress conditions, however, Lon levels actually decline. Lon

levels also decline with age and with senescence, and senescent cells even lose the ability to induce Lon

during acute stress. We propose that the regulation of Lon is biphasic, in that it is up-regulated during

transient stress and down-regulated during chronic stress and aging, and we suggest that the loss of

Lon responsiveness may be a significant factor in aging, and in age-related diseases.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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Introduction

Protein oxidation and proteolysis

Many oxidants are highly reactive and can cause major
damage to macromolecules. Side chains of amino acids are prone
to oxidation, which not only impairs protein structure and
function, but also creates exposed hydrophobic patches that will
attract and bind to other exposed, oxidized proteins, creating
toxic protein aggregates and cross-linked inclusion bodies that
interfere with normal cellular function [1]. Therefore, the prompt
removal of an oxidatively modified, irreparably damaged protein
prevents protein aggregation and accumulation. As a result, cells
of all organisms studied have evolved ‘vigilant’ enzymatic sys-
tems that rapidly bind oxidized proteins as soon as they are
produced, and either repair, or degrade them before further
damage occurs. There is substantial evidence suggesting that
failure to degrade or repair damaged proteins contributes sig-
nificantly to age-associated protein aggregation, and to neurode-
generative diseases [2,3].

Although oxidized sulfhydryl groups of cysteine/cystine and
methionine residues can be directly repaired by various sulfhy-
dryl reductase enzymes, the majority of amino acid oxidations
within proteins cannot be repaired and must, instead, be removed
by selective proteolytic degradation. In higher organisms, the
majority of oxidatively damaged proteins are removed by the 20S

proteasome and the immunoproteasome [4–6], which are found
in most cellular compartments including the nucleus, cytoplasm,
and the endoplasmic reticulum [7]. Proteasome is not, however,
present in mitochondria, which are physically separated from the
cytoplasm by a double membrane system. Mitochondria contain
an electron transport chain, which transfers high energy electrons
to a series of membrane protein complexes, before final accep-
tance by oxygen. Unfortunately, this process is not completely
efficient and leakage of electrons occurs, generating superoxide
and, through dismutation, hydrogen peroxide. Ultimately, even
more reactive species, such as the hydroxyl radical, may be
generated, causing damage to surrounding macromolecules [8].
Mitochondria are known to be one of the major sources of
intracellular free radical production [9]. Management of oxidative
damage inside mitochondria is, therefore, extremely important in
the maintenance of cellular function and survival. Dysfunctional
mitochondria and elevated production of oxidants has been
associated with numerous diseases and with the aging process
itself [10,11].

Within the mitochondrial matrix, there are multiple removal/
repair systems for oxidized proteins. Reversible oxidative damage
occurring to sulfur containing amino acids, such as cysteine,
cystine, and methionine can be catalytically reduced by mito-
chondrial reductases, which can repair disulfide bridges or
methionine sulfoxides [12,13]. Irreversible oxidative damage can
form adducts of proteins with carbohydrates, and lipids, and may
create bi-functional aldehydes and carbonyl groups, as well as
intramolecular crosslinks [14]. Such damage can impair or com-
pletely inactivate enzymes and structural proteins which, if not
rapidly removed, can aggregate, cross-link, and cause significant
cellular toxicity. We have previously reported that such oxidized
mitochondrial proteins are eliminated by the Lon Protease [15].

Degradation of oxidized proteins within mitochondria

The degradation of oxidized proteins in mitochondria is essential
to maintain mitochondrial homeostasis [16]. There are 3 known
proteases that have been shown to degrade damaged proteins in the
mitochondria, all of which are ATP-stimulated. The AAA protease and
the Clp-like protease are hetero-oligomeric complexes, while the Lon
protease is homo-oligomeric. The AAA protease is localized to the
mitochondrial inner membrane, while Clp and Lon are both found in
the matrix. These proteases contribute to the degradation of short-
lived, misfolded, or damaged proteins [17,18].

The Lon Protease is the most studied among the three, and has
been shown to be the main protease for degradation of oxidized
proteins [19]. Lon was initially shown to degrade stress response
proteins and misfolded, missorted and nonassembled proteins in
Escherichia coli, and then in yeast mitochondrial matrix [20–24].
After further analysis, Lon was considered to be part of the heat
shock regulon of proteases in bacteria, along with HsIVU, and ClpP.
Eventual deletion studies showed that Lon and HsIVU are required
in the defense against carbonylation damage, however, deletion of
ClpP had no effect and interestingly, Lon can fully compensate for
the lack of ClpP [25]. Goldberg and colleagues found that the
Protease La, the E. coli homolog for Lon, can degrade small
hydrophobic peptides [26]. Indeed, the degradation of known Lon
substrates, such as StAR [27] has been shown to occur via exposure
of hydrophobic patches after protein oxidation.

The Lon protein consists of three domains, the substrate
binding domain, the AAA Module, and the proteolytic domain
[28]. ATP binds to the AAA module of the Lon complex resulting in
a change in Lon conformation into a proteolytic active state.
Oxidized proteins can give rise to exposed hydrophobic patches,
which presumably binds to the substrate recognition sequence of
Lon [29]. The degradation of folded proteins requires ATP
mediated substrate unfolding [27]. An unstructured or denatured
protein, does not require ATP hydrolysis, but its presence does
maximize the rate of substrate degradation [30]. ATP binding
activates the complex through a conformational change, and
hydrolysis facilitates the translocation of the unfolded peptide
into the proteolytic core for degradation [31]. Degradation of
substrates is thought to occur in a processive manner in which
translocation of the peptide chain into the proteolytic chamber of
the Lon homo-oligomer occurs [27], from the amino to carboxy
terminal, or vice versa.

In most cases, Lon does not recognize a specific consensus
peptide sequence, it prefers hydrophobic sequences adjacent to
the scissile bond [27,32,33]. Proteins with complex organization,
such as those that harbor cofactors or prosthetic groups are more
prone to Lon targeted degradation [34]. For example, Fe/S cluster
proteins are generally highly susceptible to oxidation-dependent
degradation [35]. However E. coli Lon can allosterically bind
specific degron tags on substrate proteins, which modulate
degradation rate. Different tags fused to the same protein can
alter the speed and energetic efficiencies by 10-fold or more,
according to physiological needs [36].

Protein damage has been demonstrated in E. coli after expo-
sure to oxidants, and it has also been shown that such oxidatively
damaged proteins are rapidly and selectively removed by proteo-
lysis [37]. Pim1 is the yeast homolog of Lon, and strains lacking
the gene have impaired ability to degrade mitochondrial matrix
proteins [38] and maintain functional DNA [39,40]. We suspected
that Lon might be the major protease for degradation of oxidized
proteins in the mitochondria and, indeed, when purified Lon was
incubated with native and oxidized aconitase, it preferentially
degraded oxidized aconitase at a much higher rate than native
aconitase [19].

A number of other Lon substrates have been identified. In
Saccharomyces cerevisiae mitochondria, Pim1 degrades Ilv5, an acid
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reductoisomerase that is prone to aggregation [41]. Under heat stress,
Pim1 degrades ATPase, a subunit of the F1F0 ATPase, and the b subunit
of MPPb, a matrix processing peptidase [38]. With 2D PAGE and
proteomics analysis, five metabolic enzymes were identified in Dpim1
yeasts, Ilv1, Ilv2, Lsc1, Lys4, and Yjl200c [34]. In another effort to
globally screen for substrates of Pim1, a combination of proteomic
techniques was used and a total of 19 protein substrates were
identified, 14 of which were carbonylated proteins that accumulate
in mutant Dpim1 cells. Seven of these had an oxidation index of
greater than 1 and correspond to Pim1-specific oxidized protein
substrates. The majority of the substrates are either mitochondrial
metabolic enzymes or respiratory chain subunits [42]. The effects of
oxidative stress on mitochondrial protein homeostasis were also
tested using proteomic methods. Yeast cells were grown in media
containing either menadione or H2O2, and protein profiles were
analyzed by 2D PAGE and identified by mass spectrometry. In
summary, enzymes containing oxidation sensitive prosthetic groups
such as Ilv3, Lys4 and Aco1 were major targets for degradation under
stress. Other antioxidant type enzymes, such as Ccp1, Yhb1, and Prx1
were also sensitive to Lon degradation. The idea that antioxidant
enzymes would experience more oxidation-initiated degradation may
initially seem counterintuitive. The very affinity of such enzymes for
oxidized substrates, and their high rates of interaction with oxidants,
however, presumably makes them highly susceptible to oxidative
modification. Deletion studies of Pim1 cells were used to identify that
Lon/Pim1 was the major protease in the degradation of oxidatively-
modified proteins found in the matrix [43].

In bacteria, Lon activity can be inhibited naturally by T4 phage
infection through the T4-encoded PinA protein, and occurs within a
few minutes of infection. Certain inhibitors of the Proteasome can
also inhibit Lon, suggesting similarities in the proteolytic mechanism
[44], however, standard inhibitors of Lon are about 2000-fold more
potent against the 20S proteasome [45]. Coumarinic derivatives do
not inhibit the 20S proteasome, providing a better option for studying
the physiological functions of Lon, but further tests are needed to
determine their effects on other proteases, such as Clp. However,
a recently developed therapeutic agent for lymphoma, the synthetic
triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO)
and its derivative, CDDO-Me, specifically and selectively inhibit Lon
proteolytic activity [46]. CDDO and CDDO-Me appear to act by
forming covalent adducts with the proteolytic active site of Lon, thus
rendering Lon irreversibly inactive [47]. Specific targeting of Lon was
demonstrated by inability of the enzyme to degrade a fluorescently-
labeled reporter substrate following incubation with CDDO. In con-
trast, no inhibitory effect was found with the 20S proteasome, as
proteolytic activity was maintained following incubation of purified
20S proteasome with CDDO [46]. As more diseases are identified with
underlying mitochondrial dysfunction, the potential of Lon suppres-
sion as a therapeutic intervention will spur increased interest to
generate additional Lon specific inhibitors.
Lon function and inducibility during stress

Significance of Lon induction during acute stress and disease

In order to study the physiological relevance of Lon, a number
of Lon silencing experiments were performed. Yeast cells lacking
a functional LON gene contained a nonfunctional mitochondrial
genome, were respiratory deficient, and lacked the ability to
degrade damaged proteins, resulting in the accumulation of
electron dense inclusions in their mitochondria [38]. In cultured
human cells, Lon knockdown resulted in impaired mitochondrial
function, accumulation of electron dense bodies in the mitochon-
dria, damaged mitochondrial morphology resembling aged cells,
and cell death occurring via apoptosis and necrosis [18].
The regulation of Lon is currently not well studied, and the
transcription factors of Lon have not been well defined. It is likely
that Lon is regulated by transcription factors that are associated
with mitochondrial biogenesis and oxidative stress. Promoter
characterization studies of the LON gene, PRSS15, identified puta-
tive binding sites for the transcription factors NRF-2, Nkx-2, and
Nfkb, and Lyf-1, using computer analysis [48]. Deletion studies of
NRF-2 and Nfkb suggests that Lon might be regulated by at least
these two transcription factors [48].

Hypoxia-inducible factor 1 (HIF-1) is known as a master
regulator for a battery of genes involved in oxygen homeostasis.
Under hypoxic conditions, HIF-1 is activated due to a decline in
hydroxylation. Fukuda et al. [49] suggest that, under hypoxia, the
generation of free radicals actually increases due to inefficient
electron transfer at complex I and complex III, causing elevated
superoxide production, and increased overall H2O2 levels [49].
Analysis of the LON gene (PRSS15) promoter revealed three HIF-1
sites that can regulate Lon transcription. Cells exposed to hypoxic
conditions displayed an induction of Lon (up to 5-fold) in a variety
of cell and tissue types [49]. HIF-1 upregulates both Lon and a more
stress resistant COX4-2, allowing for the degradation of COX4-1.
The switch between COX proteins seems to be an adaptive
response to optimize cytochrome c oxidase activity under hypoxic
stress. These data are further corroborated by another group, when
a different set of in vitro studies with hypoxia, ischemia, and ER
stress resulted in the enhanced expression of Lon mRNA [50]. These
authors agree that the enhanced Lon expression regulates the
assembly and/or degradation of cytochrome c oxidase during
stress.

Although the regulatory mechanism(s) governing Lon levels
is/are still somewhat elusive, there is a growing body of evidence
to show that Lon is modulated by stress. Indeed, we have explicitly
proposed that Lon is a human stress protein [51]. In rhabdomyo-
sarcoma cells, exposure to multiple independent stressors, includ-
ing heat shock, serum starvation, and oxidative stress, all resulted
in dramatic increases in Lon protein levels. This induction of Lon
prevented the accumulation of carbonylated cellular proteins, thus
resulting in improved cell survival and conserved mitochondrial
function. Blockage of Lon induction with siRNA resulted in drama-
tically increased levels of carbonylated proteins, and the loss in
mitochondrial function and cell survival [51]. A similar study in
yeast showed that the expression of Lon/Pim1 is also induced in
both heat stress and oxidative stress [43]. The induction of Lon has
also been observed in situations which encourage mitochondrial
biogenesis. In rats bearing the Zajdela hepatoma tumor, or
hyperthyroid rats, the mRNA and protein, as well as the actual
activity of Lon, were all enhanced. This induction of Lon was also
correlated with the induction of mitochondrial biogenesis [52].

Frataxin is a mitochondrial protein that is involved with the
regulation of iron-sulfur protein (Fe-S protein) activities. A loss of
frataxin leads to the accumulation of iron, accumulation of oxidative
damage, and reduced lifespan in FRDA models [53,54]. In a Frie-
dreich Ataxia mouse model, in which frataxin has been deleted in
striated muscles, an increase in ClpP and Lon mRNA, protein, and
activity was observed in the isolated mitochondria of mice between
5 and 10 weeks of age [55]. The upregulation of Lon and ClpP was
accompanied by a progressive loss of mitochondrial Fe-S proteins
with no change in mRNA levels, suggesting degradation.

Stimulation of Lon activity has also been associated with
increased carbonyl content in vivo in a cardiac ischemia/reperfusion
model and in a yeast frataxin homolog-deficient strain. Cardiac
ischemia/reperfusion is associated with mitochondrial free radical
production, where reperfusion injury causes oxidative damage to
proteins. Levels of oxidized aconitase, an Fe-S protein, was measured
after reperfusion in hearts of rats, and the activity of Lon was
increased while the levels of oxidatively modified proteins



J.K. Ngo et al. / Redox Biology 1 (2013) 258–264 261
decreased [56]. Interestingly, frataxin and aconitase interact with
one another to reverse the inhibition of aconitase during oxidative
stress. Bulteau et al. [57] propose that if the damage incurred during
oxidative stress is mild and reversible, frataxin might act as a
chaperone and promote re-assembly. On the other hand, when such
stress results in irreversible inactivation and 4Fe-S cluster disas-
sembly, degradation of such proteins would take place through the
Lon protease [57]. These data suggest that Lon induction might be a
regulated event to help reduce irreparable damage to the
mitochondria.

Troglitazone is an insulin sensitizing, antidiabetic drug that
was withdrawn from the market due to risks of drug induced liver
injury. Specifically, troglitazone causes mitochondrial membrane
depolarization [58,59], and increased intramitochondrial oxidant
stress [60]. A study with SODþ /� mice, which are sensitized to
mitochondrial oxidant stress when treated with a hepatotropic
drug challenge, showed an induction of adaptive response pro-
teins, including heat shock proteins, catalase, and the Lon pro-
tease [61]. Treatment of animals after 2 weeks induced these
adaptive response proteins, during the first phase, and was able to
prevent the carbonylation of mitochondrial proteins. Prolonged
treatment for 4 weeks, however, resulted in a second phase,
where distinct proteome expression changes occur that indicated
irreparable oxidant damage, and increased protein carbonyls [61].

One of the side effects of HIV patients treated with HAART type
drugs, which are nucleosidic inhibitors (NRTIs), is lipodystrophy
associated with mitochondrial toxicity [62–64]. In a global screen
of mRNA levels in HIV-positive patients with lipodystrophy, the
Lon protease was expressed at significantly higher levels. Patients
with NRTIs also showed a decrease in mitochondrial DNA.
Analysis of Lon upregulation in the model cell line SW872,
showed that it is not the decrease in mitochondrial DNA per se

that induced Lon, rather, it was the NRTI induced production of
superoxide and hydrogen peroxide that resulted in an approx-
imate 4-fold increase in Lon mRNA and protein[65].

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-
like episodes (MELAS) is a disease most frequently associated with a
point mutation with an A4G transition on the mitochondrial
tRNALEU(UUR) gene [66,67]. In an immortalized B cell line, harboring
the A3243G mutation in 10% of the mitochondrial DNA, in other
words, a heteroplasmic state, Lon protease protein levels were
increased by 2.5-fold [68]. The upregulation of Lon protein is
associated with increased Lon activity, as measured by degradation
of the peptide SLLVY-AMC, and aconitase activity. MELAS cells
however, displayed impaired transmembrane potential compared
to normal cells [68]. This contradicts previous data that show that
downregulation of Lon results in loss of transmembrane potential.
It is likely that during such disease conditions, a decoupling between
Lon induction and transmembrane potential occurs, or perhaps the
increased Lon is not effective in maintaining mitochondrial home-
ostasis under chronic stress conditions.

Decline of Lon inducibility in aging and during chronic stress

Under physiologic concentrations, endogenous O2 and H2O2

help to maintain homeostasis. Adaptive responses caused by an
acute stress seem to be an effective coping mechanism in cellular
tolerance and survival. Mild doses of an oxidant such as hydrogen
peroxide can induce a repertoire of adaptive response proteins,
one of which is Lon, which will temporarily equip cells with
increased defenses against high levels of stress. However, when
oxidants (including H2O2) are produced in great excess for
prolonged periods of time, they cause chronic oxidative stress,
with serious adverse effects. In a proteomic study of acute versus
chronic oxidative stress on peripheral blood mononuclear cells,
it was observed that cells treated with an acute dose of H2O2
induced classical indicators for stress such as chaperones, redox
regulating enzymes, and DNA repair proteins, to minimize O2

and H2O2 production. On the other hand, cells displaying chroni-
cally higher levels of oxidation also exhibit proteomic alterations
which appear to be related to inflammation and apoptosis
regulation [69].

Lon mRNA levels were originally shown by Lee et al., in 1999,
to be approximately 4-fold lower in the muscle tissues of aged
mice than in young controls. This apparent down-regulation was
completely prevented by caloric restriction [70]. Subsequently,
we reported that Lon protein levels and Lon activity were
similarly depressed in the muscles of aged normal mice, and
were even lower in muscles from (mangano) superoxide dismu-
tase heterozygotes [15]. These results were then tested in human
cells. WI-38 lung fibroblasts cells undergo a finite number of
doublings in culture, eventually leading to cellular senescence.
The cells can be classified by population doubling number, as
early, middle, and late passage cells. Carbonyl protein damage
increased dramatically in late passage cells compared to early
passage cells [71]. Concurrently, the level of Lon from isolated
mitochondria stayed the same in senescent cells, but was sig-
nificantly decreased when measured in whole cells. Lon levels
declined sharply in senescent cells and Lon inducibility, after an
acute H2O2 treatment, was abolished [72]. Importantly, the
induction of Lon in early passage cells was associated with a
reduction in background protein carbonylation, while in middle
passage cells, Lon induction was sluggish and was associated with
delayed carbonyl reduction. Of, perhaps, greatest interest was the
finding that Lon was not inducible at all in senescent cells, and
that the lack of Lon induction was accompanied by ever increas-
ing levels of carbonyl-containing proteins that were never
removed/degraded [72].

In mice, the level of protein carbonylation increases dramati-
cally with age. Protein carbonyl accumulation is even greater in
heterozygous mitochondrial SOD2þ /� knockout mice, and
reaches significant levels even in young animals [15]. This effect
is largely attributed to the decreased ability of SOD2þ /� mice to
neutralize superoxide, making them a model for chronic oxidative
stress. The levels of Lon were also measured in these mice, and
there seems to be an inverse relationship between protein
oxidation levels and Lon [15]. Taken together, these data suggest
that exposure to age-associated, chronic oxidative stress, down-
regulates Lon, and the protection against protein damage is lost.

The age-associated modulation of Lon levels and activity is tissue
specific. The Lon activity of old rats was decreased by 2.5-fold in the
liver, however, the protein level remained the same in the mito-
chondrial matrix, suggesting Lon inactivation [73]. In contrast, Lon
activity remained the same in old rat hearts but the protein level
was increased by 5-fold, suggesting compensation for lost activity
[74]. A more detailed review on the effects of aging and oxidative
stress on Lon has been published by Ugarte et al [28].

A decline of Lon and ClpP protein levels has been reported in
cells from a patient with Hereditary Spastic Paraplegia (SPG13).
These cells encode a mutant HSP60 protein, caused by a single
point mutation that decreases the efficiency of mitochondrial
protein folding normally provided by this chaperone. The authors
suggest that a compensation mechanism in these cells down-
regulates the expression of ClpP and Lon protease, in order to
prevent the rapid degradation of misfolded peptides, allowing
more folding attempts instead of premature degradation. Unfor-
tunately, these patients suffer from gradual axon degradation in
specific motor neurons, and is believed to be caused by the
accumulation of misfolded proteins due to insufficient clearance
of proteins by proteases [75].

On the contrary, a study in the fungus Podospora Anserina reported
that constitutive upregulation of Lon results in lifespan extension



J.K. Ngo et al. / Redox Biology 1 (2013) 258–264262
without any adverse effects on respiration, growth, or fertility [76].
These fungi exhibit increased ATP-stimulated protease activity
(resulting in higher resistance against oxidative stress), lower levels
of oxidized and glycodized proteins, and a reduction in the production
of H2O2, [76].

The budding yeast, S. cerevisiae has only the Lon homolog,
Pim1, to degrade oxidized mitochondrial proteins [77].
Senescent yeast show a marked decline in Pim1 proteolytic
activity, coupled with accumulation of electron-dense inclusion
bodies and increased carbonyl content [78]. Strains of pim1D
exhibit reduced lifespan and a parallel increase of oxidized and
ubiquitinylated cytosolic proteins which, as previously demon-
strated [3,7], are potent inhibitors of the 20S proteasome [78].
Interestingly, proteasome activity is nearly fully restored, in
pim1D strains that overexpress Hsp104, a cytosolic chaperone
protein, indicating that a lack of Pim1 can contribute to elevated
cytosolic protein aggregates [78]. The dual role of Pim1/Lon may
be critical for protein maintenance and mitochondrial protein
degradation to prevent impairment of the 20S proteasome [78].
This observation from yeast highlights the interdependency
between cytosolic and mitochondrial repair systems, with the
loss of mitochondrial Pim1 also leading to a loss of cytosolic 20S
proteasome activity [78].

The relationship between the 20S proteasome and Lon, found
in senescent yeast, can be taken as an indication that multiple
cellular redundancies may exist to limit the accumulation of
oxidative damage. The age-related loss of Pim1 may trigger
release of damaged mitochondrial proteins into the cytoplasm,
eliciting a response similar to endoplasmic reticulum-associated
degradation (ERAD) [79]. Inhibition of the 20S proteasome may,
in turn, induce mitophagy in an attempt to limit further damage
from the mitochondria [80]. A similar (probably mechanistically
related) phenomenon is also witnessed in ischemic myocardial
mitochondria [81]. Loss of mitochondrial proteolytic activity, due
to oxidative damage during ischemia/reperfusion injury, poten-
tially forces the cell to rely upon secondary cytoplasmic mechan-
isms (i.e. proteasome) to remove damaged mitochondrial proteins
[81]. The 20S proteasome has been shown to independently
degrade ubiquitin-free mitochondrial proteins and is tightly
modulated following oxidative stress [81]. This indicates that
the 20S proteasome may help to regulate mitochondrial function
by acting in an alternate pathway to remove damaged mitochon-
drial proteins. Further work will be necessary to determine if the
interdependency between the 20S proteasome and Lon discov-
ered in yeast also operates in senescent mammalian cells. It will
also be extremely important to determine the potential interplay
between Lon and proteasome, and autophagic pathways for the
removal of oxidized protein aggregates.
Conclusions and future prospects

Proteins have unique three-dimensional structures that are
essential for their specific functions. Aerobic cells are constantly
exposed to various oxidizing species that can change the native
structure of proteins. The exposure of hydrophobic stretches of
peptides increases the probability of irregular protein interactions
and aggregation. Aggregates of oxidized proteins readily form
covalent cross-links, which prevent their dissociation and can
inhibit or preclude proteolytic removal. The accumulation of such
cross-linked protein aggregates, and the inability of cells to
remove such large clusters, poses a perpetual toxic process [82],
that may be a major contributor to the aging process, and
numerous age-related degenerative diseases.

An estimated 700 mitochondrial proteins make up the yeast
mitochondrial proteome [83] and mammalian cells must contain
an equal or greater number. Such a large number of proteins
require the coordination of biosynthesis, complex assembly, and
degradation systems, in order to maintain proper mitochondrial
function, especially during stress. Interestingly, the Lon protease
is a multi-faceted protein that performs several functions. In
addition to its proteolytic properties, Lon exhibits a chaperone
function [84] and it can also bind to promoter sequences in the
mitochondrial DNA, as well as genomically important proteins
such as mitochondrial polymerase g, twinkle helicase, mitochon-
drial transcription factor B, mitochondrial transcription factor A,
and single strand breaks in mitochondrial DNA [85–87]. These
multiple functions further poise Lon as a ‘‘juggler’’ of responsi-
bilities, involving the quality control of proteins, and the main-
tenance of vital mitochondrial functions.

The ability of cells to cope with stress through adaptive
responses that induce the synthesis of key stress proteins, such
as Lon, proteasome, heat shock proteins, chaperones, and anti-
oxidants such as superoxide dismutase, is an effective mechanism
ensuring temporary cellular survival, that has been widely con-
served throughout evolution [4–6,51,72,88–90]. As cells age
however, protective pathways are not as efficient, which can
cause cumulative damage that will hamper cellular competence.
For instance, oxidant-induced unfolding of proteins is an irrever-
sible modification that may serve as a signal to target such
damaged proteins to the Lon degradation pathway [91]. A prompt
response by Lon would seem to be crucial in order to prevent
aggregation of such damaged proteins. The Lon protease itself, is
susceptible to inactivation by oxidants such as ONOO- [92].
Therefore, the presence of oxidants can both regulate or ‘‘de-
regulate’’ protective actions by the cell. We suggest that during
chronic stress conditions, there is a bias towards de-regulation,
and a decline of Lon can further accelerate this deteriorative
process. In a study measuring protein modification levels in four
fractions of cells, it was shown that 44% of the protein modifica-
tions were found in mitochondria, 28% in the cytosol, 11% in the
endoplasmic reticulum, and 8% in the cytoskeleton [93]. There-
fore, a decline in Lon levels and activity, whether due to normal
aging processes or chronic stress, might be a major factor in the
age-related state of mitochondrial health. It now seems likely that
Lon is a key element in stress protection and ‘healthy’ aging,
which raises the intriguing possibility that preservation of Lon
levels and activity throughout life (by means yet to be deter-
mined) might be a viable intervention to improve (or increase?)
human life.
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