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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is one of the most 
lethal solid tumors with a poor prognosis (5-year survival rate 
less than 8%).1 Carbohydrate antigen 19-9 (CA19-9) is the 
only serum biomarker approved by the Food and Drug 
Administration (FDA), but due to its low sensitivity and speci-
ficity, it does not meet the clinical needs.2 Even with the advent 

of several new diagnostic markers (eg, macrophage inhibitory 
cytokine-1 and mucin 5AC) and liquid biopsies (eg, ctDNA, 
Circulating tumor cells, and exosomes), early diagnosis of pan-
creatic cancer remains difficult.3-5 Therefore, the diagnosis of 
PDAC is often confirmed in the advanced stage of the tumor, 
and the patient loses the opportunity for surgery. A part of 
patients with PDAC could benefit from immune checkpoint 
inhibitors (PD-L1  and CTLA4), chimeric antigen receptor T 
(CAR) cells, immunomodulators, and vaccines.6 In addition, 
the tumor is surrounded by a dense stroma and a tumor 
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ABSTRACT

Background: Exosomes play a role in intercellular communication and participate in the interaction between pancreatic ductal adeno-
carcinoma (PDAC) cells and immune cells. Macrophages can receive tumor cell–derived exosomes to polarize into M2-type macrophages, 
which can enhance the invasion and metastasis of pancreatic cancer, leading to poor prognosis. However, the mechanism by which pan-
creatic cancer cell–derived exosomes promote M2-type macrophages is still unclear.

Methods: M2 macrophage–associated exosome-derived key module genes were identified by differentially expressed genes (DEGs) and 
weighted gene co-expression network analysis (WGCNA) analysis using exoRbase 2.0, The Cancer Genome Atlas (TCGA), and The Inter-
national Cancer Genome Consortium (ICGC) databases. Multivariate Cox regression analysis was used to identify key prognostic genes and 
obtain regression coefficients to establish prognostic signature. Immune infiltration, tumor mutations, and GSEA among different risk groups 
were compared. exoRbase 2.0, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), HPA, and TISCH2 databases were used to fur-
ther analyze the expression pattern of S100A9 in pancreatic cancer. In vitro experiments, cell-derived exosome isolation, quantitative poly-
merase chain reaction (qPCR), western blot, flow cytometry analysis, cell transfection, transwell assay, and CCK-8 assay were applied to 
investigate the roles of S100A9 in macrophage M2 polarization and tumor progression.

Results: The key genes of PDAC-derived exosomes promoting M2-type macrophage polarization were identified, and a risk score model 
was established. The risk score is related to the expression of common immune checkpoints, immune score, and stromal score, and the 
tumor mutational burden and biological function of high- and low-risk groups were also different. S100A9 was positively correlated with 
M2-type macrophage marker. In addition, scRNA-seq data from the TISCH2 database revealed that S100A9 is predominantly expressed in 
pancreatic cancer cells and mono/macrophage cells, suggesting that S100A9 in pancreatic cancer cells could be received by macrophages, 
thereby inducing macrophage polarization. In vitro, we used exosomes from BxPC-3 cell lines to coculture macrophages and found that 
macrophages were mainly polarized toward M2 type, which further promoted the proliferation and metastasis of PDAC.

Conclusions: Our study established a reliable risk score model for PDAC-derived exosomes and M2 macrophages, identified the impor-
tant role of S100A9 in macrophage M2 polarization, which provides a new strategy for the diagnosis and treatment of PDAC, and strength-
ened the understanding of the mechanism of tumor development and metastasis.
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microenvironment (TME) with persistent mild inflammation, 
which leads to the evasion of immune attack, the ineffective-
ness of chemotherapy, and poor prognosis. Among them, 
tumor-associated macrophages (TAMs) are one of the main 
components of the TME, accounting for about 15% to 20% of 
the total cellular tumor mass.7 In general, macrophages can be 
polarized into M1 or M2 macrophages. M1 macrophages are 
induced by proinflammatory cytokines such as interferon-
gamma (IFN-γ), interleukin (IL)-12, and IL-23. In contrast, 
TAMs generally exhibit M2-type macrophages activated by T 
helper 2 (Th2) cytokines such as IL-4, IL-10, and IL-13.8

Tumor-associated macrophages are considered to contrib-
ute to tumor cell proliferation, invasion, and metastasis, and 
previous studies have indicated that high levels of M2 mac-
rophage (CD163+) infiltration are significantly associated 
with poorer prognosis in patients.9,10 Hence, targeting TAMs 
as potential therapeutic targets for tumors has also attracted 
people’s attention and interest. In addition, in recent years, 
extracellular vesicles, especially exosomes, have become increas-
ingly important as involved in communication with the tumor 
stroma. Exosomes are vesicles released by fusion of multivesic-
ular bodies (MVB) with the plasma membrane. The exosomes 
are 30 to 150 nm in diameter, with a circular bilayer structure 
and a density between 1.13 and 1.19 g/mL.11 Under electron 
microscopy, the exosomes are disk-shaped or cup-shaped. The 
exosomes contain proteins, lipids, mRNA, miRNA, lncRNA, 
and other biologically substances, which can participate in 
intercellular communication, regulation of immune response, 
cell differentiation, tissue repair and regeneration, tumor 
growth, and other physiological or pathological processes.12-14 
Exosomes derived from PDAC have been proven to play an 
important role in this cellular communication.15 Exosomes 
derived from tumor cells can induce macrophage polarization, 
which in turn further affects the survival, development, and 
metastasis of tumors. Therefore, it is important to identify key 
molecular targets in the promotion of M2 macrophage polari-
zation by PDAC-derived exosomes and to develop novel and 
reliable signatures that could predict prognosis.

Here, we first compared the mRNA transcriptome expres-
sion in exosomes of PDAC patients with those of healthy 
donors from the exoRbase database and obtained 111 differen-
tially expressed genes (DEGs). Then, we downloaded and 
merged the PDAC sample from The International Cancer 
Genome Consortium (ICGC) and The Cancer Genome Atlas 
(TCGA) database to identify key gene modules highly relevant 
to M2 macrophages. By intermingled DEGs and key module 
genes, we obtained 36 genes that were highly expressed in 
exosomes of PDAC and could induce M2 macrophage polari-
zation. Finally, we developed a risk score model based on 
PDAC-derived exosomes and M2 macrophages and found 
that S100A9 was highly expressed in PDAC tissues and 
exosomes, and was significantly positively correlated with M2 
macrophages (CD163, CD206, CD301, and CD115), which 

may improve the understanding of pathogenesis and provide 
new anti-cancer therapeutic strategies.

Materials and Methods
Data download and processing

ExoRBase 2.0 database.  The transcripts per kilobase million 
(TPM) type expression data from the exosomes of 164 patients 
with PDAC and 118 healthy donors were downloaded through 
the exoRBase 2.0 database (http://www.exorbase.org/) and 
then transformed into log2 (TPM + 1) for subsequent DEG 
analysis.16

TCGA and ICGC database.  Transcript sequencing data of PDAC 
patients with clinical and survival information were downloaded 
from the TCGA database (https://cancergenome.nih.gov/), and 
eventually, 178 tumor samples were obtained, and somatic muta-
tion data of patients with PDAC were also obtained. In addition, 
the Australian cohort (ICGC-PAAD-AU: 90 tumor samples) 
and the Canadian cohort (ICGC-PAAD-CA: 186 tumor sam-
ples) with complete prognostic information were also down-
loaded. The 3 independent cohorts covered gene transcripts from 
diverse populations in Europe and the United States. The TPM 
values were converted to log2 (TPM + 1) for analysis, and the 
above 3 data sets were merged and normalized using the “SVA” R 
package, and finally, the normalization results were verified by 
principal component analysis (PCA).17

Gene Expression Omnibus database.  The gene expression pro-
files of PDAC patients with prognostic information were 
searched in the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). Finally, 4 data sets, 
GSE28735 (45 tumor samples), GSE57495 (63 tumor sam-
ples), GSE62452 (69 tumor samples), and GSE85916 (80 
tumor samples), were selected and standardized to be merged 
in this study. Likewise, the PCA was used to validate the nor-
malized result.

Identif ication of exosome-derived differentially 
expressed genes

To identify exosome-derived DEGs between 164 patients with 
PDAC and 118 healthy donors, we used the “Limma” R pack-
age and set the filter condition to P < .05 and|log2FC| > 0.5.

Functional annotation analysis

We used the “clusterProfiler” R package to perform functional 
enrichment analysis of the above exosome-derived DEGs, 
focusing on Gene Ontology (GO), biological processes (BP), 
cell components (CC), molecular functions (MF), and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway. To 
screen the enrichment information, P < .05 was considered 
statistically significant.
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Protein-protein interaction analysis

Furthermore, we performed protein-protein interaction (PPI) 
analysis of the exosome-derived DEGs through the Retrieval 
of Interacting Genes Database (STRING) database (http://
string-db.org/) and then calculated the degree of nodes. Finally, 
the “igraph” R package was used to identify and visualize the 
central nodes.18

Identif ication of modules associated with M2 
macrophages using weighted gene co-expression 
network analysis

First, 3 data sets (TCGA-PDAC, ICGC-AU, and ICGC-PA) 
were combined after debating through the “SVA” R package 
to obtain 454 samples with complete prognostic and gene 
expression profiles. The proportion of tumor-infiltrating 
immune cells (TIICs) was counted based on gene expression 
data using the “Xcell” R package. The 454 samples were then 
divided into high and low M2 macrophage infiltration 
according to the median value of the M2 macrophage score, 
which was used as trait data. Then, the gene expression pro-
files in the top 25% of variance were screened as input for 
weighted gene co-expression network analysis (WGCNA). 
The “WGCNA” R package was used to construct XCell-
defined M2 macrophage–related gene coexpression networks. 
The connectivity of the network was estimated by transform-
ing the adjacency matrix into the topological overlap matrix 
(TOM). We used the “sft$powerEstimate” function to auto-
matically calculate the power of β = 12 and set the cut height 
to 0.25 and the minimum module size to 10. After recalculat-
ing the module eigengenes (MEs), a module dendrogram 
describing the relationship between the eigengenes and M2 
macrophage traits was drawn. According to the Pearson cor-
relation between MEs and M2 macrophage traits, the module 
with the highest correlation with M2 macrophage traits was 
determined as the key module.19

Construction of the prognostic signature 
associated with PDAC-derived exosomes and M2 
macrophages

The key module genes related to M2 macrophages identified 
by WGCNA and the exosome-derived DEGs were interleaved 
to obtain candidate genes, and these genes were subjected to 
univariate Cox regression analysis in the 454 PDAC cohort. 
Only genes with P < .05 were subjected to multivariate Cox 
regression analysis to identify key prognostic genes and obtain 
regression coefficients. Risk score = a × gene A × expression 
level of gene A + b × gene B × expression level of gene B +  
····· + x × gene X × expression level of gene X. Here, a, b, and x 
were the regression coefficients in the multivariate Cox regres-
sion analysis.20

Validation of the prognostic signature

All 454 PDAC samples obtained a risk score according to the 
previous risk formula. The median of the risk score was set as 
the cutoff point, and all samples were divided into low- and 
high-risk subgroups. First, Kaplan-Meier (K-M) survival curves 
were plotted using the R package “Survival” to determine prog-
nostic differences. The combined 4 GEO data sets (GSE28735, 
GSE57495, GSE62452, and GSE85916: 257 PDAC samples) 
were then used for external validation of the risk score model. 
The receiver operating characteristic (ROC) curves were also 
performed on the training cohort (454 PDAC samples) and 
the validation cohort (257 PDAC samples) to verify the prog-
nostic value of the risk score model.

Development and validation of nomograms

In the training cohort, the risk score, age, sex, grade, and stage 
were used for Cox multivariate regression analysis, and a nom-
ogram integrating risk score and other clinicopathological 
characteristics were constructed to predict 1-, 3-, and 5-year 
overall survival (OS) of patients with PDAC. Moreover, cali-
bration curves and ROC curves at 1-, 3-, and 5-year OS were 
plotted to evaluate the accuracy of the nomogram.

Correlations between risk score model and 
immunization

In the training cohort (454 PDAC samples), we used the sin-
gle-sample gene set enrichment analysis (ssGSEA) method of 
the R software Gene Set Variation Analysis (GSVA) package 
to calculate 29 immune-related functional analyses between 
the high- and low-risk groups. In addition, we used the 
ESTIMATE algorithm to estimate stromal and immune cells 
in tumor tissues to determine the stromal score, immune cell 
infiltration score, and tumor purity in 454 PDAC samples, and 
used the “pheatmap” R package to create a heat map. Finally, 
the “corrplot” R package was used to analyze the expression 
level of immune checkpoints (eg, PD-L1) between the high- 
and low-risk groups.

Analysis of tumor mutations

Somatic mutation data were obtained from the TCGA GDC 
portal (https://portal.gdc.cancer.gov/). Waterfall plots were 
then drawn using the “maftools” R package to chart the muta-
tional landscape of patients between high- and low-risk 
groups.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was used to determine 
the statistical significance of priori specified gene set and 
consistent heterogeneity between high- and low-risk groups. 
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We set “h.all.v7.4.symbols.gmt” as the reference gene set. An 
adjusted P < .05 was considered statistically significant in the 
enriched information screen.

Expression of genes derived from the risk score 
model

Through the exoRbase 2.0 database, we compared the expres-
sion of S100A9, RDX, and AFF3 in PDAC-derived exosomes 
and healthy donor-derived exosomes, and also compared the 
expression differences in tissues between patients with PDAC 
and healthy donors through The Gene Expression Profiling 
Interactive Analysis 2 (GEPIA2) (http://gepia.cancer-pku.cn/
index.html) database. The correlation between S100A9 and 
M2 macrophage–specific markers (CD163, CD206, CD301, 
and CD115) was analyzed according to the GEPIA2 database. 
In addition, The scRNA-seq data of S100A9 in pancreatic 
cancer were analyzed using the TISCH2 database (http://
tisch.comp-genomics.org/home/).

Cell culture

Human pancreatic cancer cell lines Panc-1, Capna-2, BxPC-3, 
Miapaca-2, CFPAC-1, human pancreatic ductal cell lines 
HPNE, and human monocytic cell line THP-1 were pur-
chased from the Cell Bank of Chinese Academy of Sciences, 
Shanghai, China. THP-1 cell line was cultured in 1640 
medium (Gibco, Invitrogen, USA). Other cell lines were cul-
tured in DMEM (Gibco, Invitrogen, USA) supplemented with 
10% fetal bovine serum (FBS, Lonsera) and 1% penicillin/
streptomycin, and incubated in a constant temperature cell cul-
ture incubator (CO2 concentration 5%) at 37°C. THP-1 cells 
(1 × 106) were induced into macrophages using 100 ng/mL 
phorbol 12-myristate 13-acetate (PMA; Abcam, UK) treat-
ment for 48 hours.

Cell-derived exosome isolation

Cells were cultured in DMEM medium containing 10% FBS, 
and when cell density reached about 80%, the cells were 
changed to FBS-free DMEM medium and cultured for 
24 hours. The cell culture supernatant was collected by cen-
trifugation at 500 g for 10 minutes at 4°C. The supernatant was 
collected and centrifuged at 4°C 12000 g for 20 minutes, and 
200 000 g and resuspend the precipitate with 20 mL of phos-
phate-buffered saline (PBS). Finally, exosomes were obtained 

by ultracentrifugation at 200 000 g for 2 hours. The collected 
exosomes were used for subsequent experiments.21

Transmission electron microscopy

Samples dissolved in PBS buffer were dropped into a carbon-
coated copper grid and then stained with 2% uranyl-oxalate 
solution for 5 minutes, and 2% methylcellulose and 4% uranyl 
acetate for 10 minutes. The image was captured by transmis-
sion electron microscopy (TEM) (Hitachi, Japan).22

Nanoparticle tracking analysis

Exosome size and concentration were assessed by nanoparticle 
tracking analysis (NTA) using the Nanosight NS300 (Malvern 
Panalytical). Exosomes were homogenized by vortex and then 
diluted 1:500 in filtered phosphate saline buffer and analyzed by 
NS300. Each sample analysis was performed for 60 seconds. 
Data were analyzed by Nanosight NTA 3.2 analysis software, 
with detection thresholds optimized for each sample and a 
screen gain of 10 to track as many particles as possible with min-
imal background. Blank 0.1 μm filtered 1× PBS was also used as 
a negative control. Each sample was analyzed at least 3 times.

Quantitative reverse transcription polymerase 
chain reaction

Total RNA was extracted using the MiPure Cell/Tissue 
miRNA Kit (Vazyme, Nanjing) according to the manufactur-
er’s instructions. RNA sample concentration and purity were 
measured by Colibri Spectrometer (Germany). The extracted 
RNA was reverse transcribed to obtain cDNA using SweScript 
RT I First Strand cDNA Synthesis Kit (Servicebio, Wuhan). 
Quantitative expression was performed using 2× SYBR Green 
qPCR Master Mix (High ROX) (Servicebio, Wuhan) on a 
LineGene 9600 Plus PCR Assay System (Bioer Technology, 
Hangzhou). GAPDH was used as an internal reference for 
mRNA. The primer sequences are shown in Table 1.

Western blot

RIPA lysate (Servicebio, Wuhan) was added with 50× Cocktail 
protease inhibitor, PMSF, and phosphorylated protease inhibi-
tor for extraction of total cellular protein. Protein concentra-
tion was measured using the BCA Protein Assay Kit (Beyotime, 
Shanghai). 5× Loading Buffer (Servicebio, Wuhan) was added 
1:4 to the total protein solution and boiled at 95°C for 

Table 1.  Primers were used for this study.

Primers Sequence (5′-3′) forward Sequence (3′-5′) reverse

S100A9 ACACATCATGGAGGACCTGGACAC GGTTAGCCTCGCCATCAGCATG

GAPDH TGACATCAAGAAGGTGGTGAAGCAG GTGTCGCTGTTGAAGTCAGAGGAG
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10 minutes according to the reagent instruction manual. In 
total, 20 μg of total protein was added to the loading wells of 
SDS-PAGE gels (Epizyme, Shanghai, China) and transferred 
to PVDF membranes (Millipore, USA) after completion of 
electrophoresis. About 5% skim milk was used to seal the whole 
PVDF. TBST was washed 3 times and incubated with primary 
antibody at 4°C overnight. The PVDF membrane was removed 
the next day, washed 3 times with TBST, and incubated with 
secondary antibody for 1 hour at room temperature before 
exposure. The antibodies are listed in Table 2.

Flow cytometry

PMA-treated THP-1 cells and exosome-treated macrophages 
were suspended in ice-cold PBS (with 10% FCS and 1% 
sodium azide) and then incubated with CD68 and CD163 
(See Table3) for 30 minutes at 4°C in darkness. Wash the cells 
by centrifugation at 1000 r for 5 minutes and incubated with 
FITC-labeled secondary antibody (Servicebio, Wuhan) for 
30 minutes at 4°C in the dark. Cells were washed after incuba-
tion and analyzed using the flow cytometer Invitrogen 
AttuneNxt (Thermo Fisher Scientific, USA).

Cell transfection

The siRNA (See Table4) to inhibit S100A9 expression was 
purchased from GenePharma (Shanghai, China). Following 

the instructions of siRNA-mate (GenePharma, Shanghai, 
China), cells were seeded in 6-well plates (2 × 105 well) for 
24 hours and then transfected with 100 pmol siRNA for 48 to 
72 hours.

Transwell assay

Following manufacturer’s protocol, cell migration and invasion 
assays were performed using a Transwell 24-well Boyden 
chamber (Corning, USA) with an 8.0 μm polycarbonate mem-
brane. Matrigel is required for the invasion assay, while the 
migration assay does not. 3 × 104 tumor cells were suspended 
in 200 µL of serum-free medium in the upper chamber, and 
600 µL of macrophage culture supernatant was added to the 
lower chamber. After 24 hours in the incubator, the cells were 
fixed in methanol and stained with crystalline violet.

CCK-8 assay

Cell proliferation was detected using the CCK-8 assay. Based 
on CCK-8 kit protocol (KeyGEN BioTECH, Nanjing, 
China), the 96-well plate was added with 1000 cells/well and 
incubated in the cell culture incubator for 24 hours. Macrophage 
supernatant was added 100 µL/well. Remove the supernatant 
at 0, 24, 48, 72, and 96 hours, respectively, add 10 µL/well 
CCK-8 assay solution, incubate at 37°C for 2 hours, and detect 
the absorbance at 450 nm by zymography.

Statistical analysis

The Wilcoxon test was performed to compare whether there 
were statistically significant differences between 2 groups. The 
differences in OS between 2 groups were analyzed by the log-
rank test. Correlation coefficients were calculated by Spearman 
analysis. All statistical analyses were performed using the R soft-
ware (version 4.1.0). P < .05 indicates statistical significance.

All experiments were statistically analyzed using SPSS (ver-
sion 26.0). Plotting was done using GraphPad Prism 9. Data 
were expressed as mean ± standard deviation (SD). Statistical 
significance was compared using t test. One-way analysis of 
variance (ANOVA) was used to compare data from 2 or more 
groups. The significance level was set as P < .05.

Results
Identifying exosome-derived DEGs and functional 
annotation

We obtained the transcriptome data of 164 PDAC-derived 
exosomes and 118 healthy donor-derived exosomes from 
exoRbase 2.0 database (Figure 1A). Differentially expressed 
gene analysis between groups obtained 111 DEGs, of which 35 
were upregulated and 76 were down-regulated in patients with 
PDAC compared with healthy donors (Figure 1B). 
Subsequently, we performed the pathway enrichment analysis 
of 111 DEGs, and we identified pathways associated with 
immunity (eg, GO:1903131: mononuclear cell differentiation, 

Table 2.  Antibodies used in western blot.

Antibody name Manufacturer (item number)

TSG101 Abcam (ab125011)

CD63 Abcam (ab134045)

CD81 Abcam (ab109201)

Calnexin Abcam (ab92573)

S100A9 Abcam (ab92507)

GAPDH Proteintech (60004-1-Ig)

Table 3.  Antibodies used in flow cytometry.

Antibody name Manufacturer (item number)

CD68 Abcam (ab201340)

CD163 Abcam (ab182422)

Table 4.  siRNA sequences were used for this study.

Name Sequence

siRNA-S100A9-1 5′-CCTGGACACAAATGCAGACAA-3′

siRNA-S100A9-2 5′-GTCATAGAACACATCATGGAG-3′
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GO:0019882: antigen processing and presentation, GO:MHC 
class II protein complex, and has:Th1 and Th2 cell differentia-
tion) (Figure 1C). Moreover, we constructed the PPI network 
of DEGs through the STRING database, and the gene net-
works with threshold weights greater than 0.4 were displayed 
in Figure 1D.

Identif ication of M2 macrophage–associated 
exosome-derived key module genes

A total of 454 PDAC samples from the TCGA-PDAC, 
PACA-AU, and PACA-CA cohorts were merged through the 
“SVA” R package, and PCA indicated that the cross-platform 
batch effect was successfully removed (Figure 2A). We then 

used the Xcell algorithm to calculate M2 macrophage propor-
tion for 454 patients with PDAC and divided patients with 
PDAC into high and low macrophage infiltration groups 
according to a median M2 macrophage proportion score 
(0.025) (Figure 2B and C). To assess the potential value of M2 
macrophages, we performed WGCNA. First, no outlier sam-
ples were found through the “Hclust” function (Supplemental 
Figure 1). The soft threshold β was set to 12 according to the 
“sft$powerEstimate” function. After constructing the TOM 
network and setting the height to 0.25, 19 modules were iden-
tified by clustering dendrograms, among which the brown 
module had close correlation strength with M2 macrophage 
traits (r = 0.42, P = 3e−20), and this module included 2309 
genes (Figure 2D and E). In addition, there was a significant 

Figure 1.  Identifying exosome-derived DEGs and functional annotation. (A) The transcriptome data of 164 PDAC-derived exosomes and 118 healthy 

donor-derived exosomes were downloaded through the exoRBase 2.0 database. (B) Volcano plot of exosome DEGs between patients with PDAC and 

healthy donors. (C) Functional annotation of 111 exosome DEGs (GO: BP, CC, MF; KEGG). (D) The network of the genes in 111 exosome DEGs.

Figure 2.  Identification of M2 macrophage–associated exosome-derived key module genes. (A) PCA of the transcript sequencing data from TCGA-

PDAC, PACA-AU, and PACA-CA cohorts. (B) Box plot of M2 macrophage proportion. (C) Heat map of macrophage proportion between the 2 groups. (D) 

Dendrogram of M2 macrophage–related genes clustered. (E) Heat map of correlation between the MEs and M2 macrophages. (F) Scatterplot between 

gene salience and module members in brown. (G) Venn plot of 111 exosome-derived DEGs and 2309 brown module genes.



Tan et al	 7

relationship between module membership (MM) and gene 
significance (GS) in brown module (Cor = 0.72, P < 1e−200) 
(Figure 2F). To explore the mechanism of macrophage M2 
polarization mediated by PDAC-derived exosomes, we inte-
grated 111 exosome-derived DEGs and 2309 genes in brown 
module and finally obtained 36 genes (Figure 2G).

Establishment of prognostic characteristics related to 
PDAC exosomes and M2 macrophages

The 36 genes above were analyzed by Cox univariate regression 
analysis, and we identified 4 genes that were significantly asso-
ciated with prognosis of 454 patients with PDAC (CD44: HR: 
1.198, P = .004; RDX: HR: 1.190, P = .001; AFF3: HR: 0.826, 
P = .009; S100A9: HR: 1.14, P < .001) (Figure 3A and B). 
Then, Cox multivariate regression analysis was performed on 
these 4 genes, and RDX, AFF3, and S100A9 were identified as 
pivotal genes involved in the construction of prognostic signa-
ture, and risk score was calculated: risk score = (0.1742 × expres-
sion value of RDX) + (−0.2544 × expression value of 
AFF3) + (0.1028 × expression value of S100A9). Patients with 

PDAC were divided into high- and low-risk groups according to 
the median cutoff value of the risk score, and the K-M survival 
curve showed that the OS of patients in the high-risk group was 
significantly lower than that in the low-risk group (P < .001; 
Figure 3C). The point distribution of survival status and risk 
scores indicated that OS time was also lower in the high-risk 
group compared with the low-risk group (Figure 3D).

External cohort validation of risk score model

We then downloaded and merged 4 PDAC gene expression 
data sets (GSE28735, GSE57495, GSE62452, and GSE85916: 
257 patients with PDAC) with prognostic information from 
the GEO database, also using the “SVA” R package to remove 
batch effect of different data sets (Supplemental Figure 1). We 
applied the above risk score model to 257 PDAC GEO cohort 
to validate the external prognostic prediction performance, 
which also found that the OS of the high-risk group was sig-
nificantly lower than that of low-risk group (Figure 4A). The 
point distribution of survival status and risk scores indicated 
that patients with high-risk score also had lower OS (Figure 

Figure 3.  Establishment of prognostic characteristics related to PDAC exosomes and M2 macrophages. (A) Forest plot of univariate Cox regression 

analysis of prognosis in 454 patients with PDAC. (B) Kaplan-Meier survival curves of high and low gene expression groups (CD44, RDX, AFF3, and 

S100A9) (C) Kaplan-Meier survival curves between high-and low-risk groups. (D) Distribution of risk score and OS of 454 patients with PDAC.
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4B). The area under the curves (AUCs) of the risk score model 
for 1-, 3-, and 5-year OS were 0.641, 0.638, and 0.650 in train-
ing cohort (454 patients with PDAC) (Figure 4C). In the vali-
dation cohort (257 patients with PDAC), the AUCs of the risk 
score model for 1-, 3-, and 5-year OS were 0.626, 0.661, and 
0.556 (Figure 4D). To further explore the prognostic value of 
the risk score model, age, sex, grade, stage, and risk score model 
were included in the ROC analysis of 1-, 3-, and 5-year OS, 
respectively, and we found that risk score model had the highest 
AUC value (Figure 4E-G). Furthermore, we included these 
above variables (age, sex, grade, stage, and risk score model) in 
Cox univariate and multivariate regression analysis, and found 
that risk score model was an independent prognostic factor for 
OS (HR = 2.606, P < .001; Figure 4H). Finally, we included 
these variables together to establish nomogram for prognostic 
prediction (Figure 4I). The calibration curves indicated that the 
nomogram has excellent prognostic performance (Figure 4J).

Correlations between risk score model and 
immunization

The ESTIMATE scores demonstrated higher stromal and 
immune scores in the high-risk group than in the low-risk 
group, while tumor purity was lower than in the low-risk group 
(all P < .05) (Figure 5A-E). According to 29 immune-related 
functional analyses, some parameters were significantly differ-
ent between high- and low-risk groups, such as aDCs, 
Parainflammation, MHC_class_I, DCs, APC_co_stimulation, 
Check-point, T_cell_co-inhibition, Th1_cells, CCR, Treg, 
Macrophages, T_helper_cells, Th2_cells, and inflammation 
promoting (all P < .05; Figure 5A). Finally, the heat map of 
expression of common immune checkpoints between high- 
and low-risk groups indicated significant differences in the 
expression of CD274, POLE2, FEN1, MCM6, MSH6, 
MSH2, FAP, and LOXL2 between high- and low-risk groups 
(all P < .05; Figure 5F).

Figure 4.  External cohort validation of risk score model. (A) OS curves of GEO cohort (257 patients with PDAC). (B) Distribution of risk score and OS of 

257 patients with PDAC. (C) ROC analysis to estimate the prediction value of the risk score model in ICGC and TCGA cohort (454 patients with PDAC). 

(D) ROC analysis to estimate the prediction value of the risk score model in GEO cohort (257 patients with PDAC). (E-G) The prognostic value of the risk 

score model, age, sex, grade, stage, and risk score model was included in the ROC analysis of 1-, 3-, and 5-year OS, respectively. (H) Forest plot of 

univariate and multivariate Cox regression analysis of prognosis in 454 patients with PDAC. (I) Nomogram predicting OS for patients with PDAC. (J) 

Calibration curve of nomogram for OS.
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Analysis of tumor mutations and GESA between 
high- and low-risk groups

An oncoplot revealed the top 20 genes with the highest muta-
tion frequency in the high- and low-risk groups (Figure 6A 
and B). The tumor mutational burden (TMB) was signifi-
cantly higher in the high-risk group compared with the 
low-risk score (87.64% vs 76.71%). Furthermore, PDAC-
related mutated genes KRAS, TP53, and CDKN2A were 
more frequently mutated in the high-risk group, while 
KRAS, TP53, and SMAD4 were more frequently mutated 
in the low-risk group (Figure 6A and B). Gene set enrich-
ment analysis was carried out in training cohort (454 
patients with PDAC) between high- and low-risk groups. 
The gene sets of the high-risk group were enriched in tumor 
proliferation, metabolism, and metastasis-related pathways 
(eg, E2F_TARGETS,     EPITHELIAL_MESENCHYMAL_
TRANSITION, G2M_CHECKPOINT, HYPOXIA, and 
INFLAMMATORY_RESPONSE) (Figure 6C), while the 
gene sets of the low-risk group were enriched in pancreas beta 
cells PANCREAS_BETA_CELLS (Figure 6D).

Expression analysis of genes for the construction of 
risk score model

In the exoRbase 2.0 database, expression of S100A9 and RDX 
was significantly higher in exosomes from patients with PDAC 
than in exosomes from healthy donors, while AFF3 was sig-
nificantly lower than in exosomes from healthy donors (all 
P < .05; Figure 7A). Through the GEPIA2 database, only 
S100A9 was found to be significantly higher in PDAC tissues 

than in healthy tissues (AFF3: P > .05; RDX: P > .05; and 
S100A9: P < .05) (Figure 7B-D). Furthermore, the protein 
expression level of S100A9 in pancreatic cancer tissues was also 
significantly higher than that in non-tumor tissues using the 
HPA database (Figure 7E). Finally, we found a significant pos-
itive correlation between S100A9 and the specific markers 
(CD163, CD206, CD301, and CD115) of M2 macrophages 
through the GEPIA2 database (Figure 7F). Finally, through 
scRNA-seq data sets (PAAD_CRA001160), we discovered 
that S100A9 is highly expressed in both cancer tissues and 
mono/macrophage cells (Figure 7G-I). Moreover, compared 
with adjacent non-cancerous tissues and corresponding mac-
rophages, cancer tissues and macrophages within the cancer 
tissue exhibit significantly elevated expression of S100A9, 
respectively (Figure 7J).

Identif ication of pancreatic cancer cell–derived 
exosome extraction and S100A9 expression

The cell culture supernatant without FBS was collected. 
Exosomes were extracted from the cell supernatant by differ-
ential and ultra-high speed centrifugation, and typical cup-
shaped (Figure 8A) vesicles of approximately 50 to 150 nm in 
size (Figure 8B) were visible under TEM. Meanwhile, the 
exosome markers TSG101, CD81, and CD63 were positively 
expressed (Figure 8C and Supplemental Figure 2), and cal-
nexin was negatively expressed in exosomes and positively 
expressed in cells (Figure 8C and D). Western blot (Wb) 
results also showed that S100A9 protein expression in pancre-
atic cancer cells and their secreted exosomes was higher than 

Figure 5.  Correlations between risk score model and immunization. (A) Heat map of 29 immune-related functional and ESTIMATE score between 

high- and low-risk groups. (B-E) Differences in the distribution of tumor purity, immune score, stromal score, and ESTIMATE score between high- and 

low-risk groups. (F) The heat map of expression of immune checkpoints between high- and low-risk groups.
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that in normal pancreatic ductal epithelial cells (Figure 8C 
and D). The results of quantitative reverse transcription poly-
merase chain reaction (qRT-PCR) also showed increased 
expression of S100A9 in pancreatic cancer cells and their 
secreted exosomes (Figure 8E and F).

Pancreatic cancer cell–derived exosome S100A9 
induces macrophage polarization and promotes 
pancreatic cancer cell proliferation, migration, and 
invasion

To further verify whether exosome could induce macrophage 
polarization and the effect of polarization on pancreatic can-
cer cell function. We co-cultured the extracted exosomes with 
macrophages and then cultured pancreatic cancer cells using 
macrophage culture supernatants from the co-cultured cells 
(Figure 9A). Macrophages were obtained by PMA-induced 
THP-1 and detected by flow cytometry for CD68 (Figure 
9B). Co-culture of exosomes with macrophages resulted in 
increased expression of CD163 (Figure 9C), indicating that 

exosomes from pancreatic cancer cells induced M2 polariza-
tion of macrophages. M2 macrophages further promoted pan-
creatic cancer cell proliferation, migration, and invasion 
(Figure 9D and E).

To further explore the role of exosomal S100A9, we used 
siRNA to interfere with the expression of S100A9 in the high-
est-expressing BxPC-3 cells (Figure 8C and F). Quantitative 
reverse transcription polymerase chain reaction and WB results 
showed that the levels of S100A9 were down-regulated in both 
the cells and their secreted exosomes (Figure 9F and G). 
Macrophage M2 polarization was reduced after knockdown of 
exosome S100A9 (Figure 9H). In addition, the proliferation, 
migration, and invasion ability of pancreatic cancer cells were 
diminished (Figure 9I and J). In conclusion, exosome S100A9 
induces macrophages to undergo M2 polarization promoting a 
malignant phenotype in pancreatic cancer cells.

Discussion
Pancreatic ductal adenocarcinoma is highly aggressive and 
metastatic and has immune escape and chemo-resistant 

Figure 6.  Analysis of tumor mutations and GESA between high- and low-risk groups. Correlation between the high-risk group (A) and the low-risk group 

(B) with tumor mutations. GESA between the high-risk group (C) and the low-risk group (D).
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Figure 7.  Expression analysis of genes for the construction of risk score model. (A) The transcriptome expression levels of S100A9, RDX, and AFF3 in 

exosomes between patient with PDAC and healthy donors from exoRbase 2.0 database. (B-D) The transcriptome expression levels of AFF3, RDX, and 

S100A9 in tissues between patient with PDAC and healthy donors from the GEPIA2 database. (E) The protein expression levels of S100A9 in tissues from 

the HPA database. (F) The correlation between S100A9 and M2 macrophage markers (CD163, CD206, CD301, and CD115). (G, H) Cell clustering 

annotations of UMAP plot in PAAD_CRA001160 data set. (I, J) UMAP and violin plots of S100A9 in PAAD_CRA001160 data set.
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properties, in which the tumor stroma plays a key role. 
Macrophages are an important component of the stroma in 
PDAC, and the M2 phenotype macrophages are more associ-
ated with poor clinical outcomes in PDAC, which contribute 
to tumor progression and metastasis.23The mechanism regard-
ing the polarization and infiltration of M2 macrophages into 
pancreatic cancer is unclear. However, the role of exosomes in 
intercellular communication in cancer development is being 
extensively studied in recent years. Exosomes released by tumor 

cells have the effects of anti-apoptosis, promoting blood vessel 
growth, changing the blood-brain barrier, and changing cell 
metabolism, which is conducive to tumor growth and metasta-
sis.24-27 Previous studies have found that macrophages phago-
cytizing exosomes released by pancreatic cancer cells can be 
polarized into M2 macrophages, thereby promoting tumor cell 
growth and metastasis.28 As exosomes belong to a class of 
extracellular vesicles, which can carry a variety of mRNA, pro-
teins, and nucleic acids.29 It is of great significance to identify 

Figure 8.  Extraction and identification of exosomes of pancreatic cancer cell and pancreatic ductal epithelial cell origin with S100A9 expression analysis. 

(A) TEM showing pictures of exosomes (scale bar: 100 nm). (B) NTA analysis of the particle size of exosomes. (C) WB analysis of exosome marker 

proteins and S100A9 proteins. (D) WB analysis of S100A9 proteins in cellular secretory exosomes. (E) qRT-PCR detection of S100A9 expression in 

pancreatic cancer cell lines and normal pancreatic ductal epithelial cells (**P < .05). (F) qRT-PCR detection of S100A9 expression in cellular secretory 

exosomes (**P < .01; *P < .05).
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Figure 9.  Pancreatic cancer cell–derived exosome S100A9 induces macrophage polarization and promotes pancreatic cancer cell proliferation, 

migration, and invasion. (A) Protocol of tumor cell–derived exosomes induces macrophage polarization to promote a malignant tumor phenotype. (B) 

Induction of macrophages. (C) Detection of macrophage M2 polarization by flow cytometry. (D) CCK-8 assay detects cell proliferation (****P < .0001; 

***P < .001). (E) Transwell assay detects cell migration, invasion (*P < .05). (F, G) qRT-PCR and WB detection of mRNA and protein expression after 

S100A9 knockdown. (H) Effect on macrophage polarization after knockdown of S100A9 in exosomes. (I, J) Effect of S100A9 knockdown on cell 

proliferation and migration invasion (**P < .001; ****P < .0001).
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the key targets in PDAC exosomes that could induce M2 
polarization of macrophages, which could provide a novel and 
reliable therapeutic target.

In this study, we identified 111 DEGS in serum exosomes 
from patients with PDAC and health donors by exoRbase 
database. Then, by combining mRNA expression data of 454 
PDAC from TCGA and ICGC databases, we classified 
patients with PDAC into high and low M2 macrophage groups 
by Xcell algorithm, followed by WGCNA to identify M2 mac-
rophage phenotypes with highly associated brown modules. To 
integrate the expression information of PDAC-derived 
exosomes and M2 macrophages, we intersected the DEGs and 
brown module and finally obtained 36 genes. Then, we per-
formed Cox regression analysis based on TCGA and ICGC 
cohorts and identified 3 signature genes (AFF3, RDX, and 
S100A9) which were used to construct a prognostic risk score 
model associated with PDAC exosomes and M2 macrophages, 
and the high- and low-risk score groups could well differenti-
ate the OS of PDAC. In addition, external verification was 
performed through 4 GEO data sets. Then, it was also found 
that the risk score model had a better AUC value than other 
clinical variables, and the risk score was included with the clin-
ical variables to establish a nomogram, which had a good abil-
ity to predict 1-, 3-, and 5-year OS, which may enable clinicians 
to determine the prognosis of individual patients. As far as we 
know, this is the first risk score model for prognostic features 
constructed from the PDAC exosome, M2 macrophage polar-
ization-associated gene set. In addition, in our risk score model, 
we found that the immune score and stromal score of the high-
risk group were significantly higher than those of the low-risk 
group, and there were also significant differences between the 2 
groups in the analysis of immune-related functions and the 
expression of immune checkpoints (CD274), which is helpful 
in identifying immunotherapy-sensitive patients, guiding 
patient treatment regimens, and improving the therapeutic 
benefits of clinical PD-L1 inhibitors (atalizumab and divaliru-
din). There are also differences in tumor mutation and func-
tional enrichment between the high- and low-risk groups. 
Although our risk score model ultimately did not include 
CD44, CD44 plays an important role in tumor invasion and 
metastasis. CD44 has been shown to increase the activity of 
c-Met and inhibit the Hippo signaling pathway, which is asso-
ciated with proliferation, invasion, metastasis, differentiation, 
and drug resistance in pancreatic cancer.30-32 Then, we com-
pared the expression levels of 3 signature genes (AFF3, RDX, 
and S100A9) in exosomes and tissues, and interestingly, only 
S100A9 was found to be highly expressed in exosomes and 
tumor tissues, and the HPA data also showed that S100A9 was 
also higher in cancer tissues than in paracancerous tissues at 
the protein level. Finally, we compared the mRNA expression 
levels of 3 signature genes (AFF3, RDX, and S100A9) in 
exosomes and tissues. Interestingly, only S100A9 was found to 
be highly expressed in exosomes and tumor tissues, and the 
protein level of S100A9 was also higher in cancer tissues than 

in adjacent tissues according to HPA database. Furthermore, 
we analyzed the correlation between S100A9 and M2 mac-
rophage marker (CD306 and CD163) expression based on the 
TCGA cohort and explored the expression pattern of S100A9 
in scRNA-seq data. The results showed a significant positive 
correlation between S100A9 and M2 macrophage markers, 
and S100A9 was mainly expressed in pancreatic cancer cells 
and mono/macrophage cells, suggesting that S100A9 is an 
important factor in promoting macrophage M2 polarization. 
In vitro, we found that S100A9 expression was significantly 
higher in pancreatic cancer cells (PANC-1, CAPAN-2, BXPC-
3, MIPACA-2, and CFPAC-1) than in normal pancreatic cells 
(HPNE), both in exosomes and cells.

Finally, we co-cultured macrophages using exosomes derived 
from the highest S100A9-expressing BxPC-3 cell line and 
found that macrophages were predominantly polarized toward 
the M2 type. M2 macrophages have been shown to promote 
tumor progression.33 This is consistent with our results, where 
cell proliferation, migration, and invasion assays revealed that 
macrophage M2 polarization promoted a malignant pheno-
type in PDAC cells. However, this procedure was attenuated 
with the knockdown of S100A9 in exosomes. Therefore, we 
believe that pancreatic cancer exosomes as carriers carrying 
S100A9 were phagocytosed by macrophages, which induced 
M2 polarization of macrophages and accelerated tumor pro-
gression. Similarly, Wang et al34 had found that exosome 
S100A9 could promote stemness and growth of CRC cells. 
Zhu et al35 found that exosome S100A9 could be used as a 
diagnostic marker for hepatocellular carcinoma.

S100A9 is a calcium-binding protein, which could exist in 
the form of homodimer or heterodimer with S100A8.36,37 
S100A9 is also upregulated in many other cancers, including 
breast, colon, hepatocellular, gastric, colorectal, non-small-cell 
lung, and cervical cancers. S100A9 can bind to cell surface 
receptors to trigger signaling pathways associated with many 
cellular processes, including proliferation, differentiation, and 
migration. In addition, S100A9 expression can be detected in 
infiltrating macrophages in rheumatoid arthritis and other 
inflammatory diseases.38 The secreted S100A9 protein has 
been reported to play a role in establishing an environment 
conducive to cancer growth.39,40 This is in line with our finding 
that this study also identified that S100A9 in tumor cell–
derived exosomes can be involved in M2 macrophage polariza-
tion as cellular communication, ultimately leading to poor 
prognosis of PADC. Our study for the first time suggested that 
S100A9 contributes to M2 macrophage polarization and inva-
sion through tumor cell–derived exosomes pathway, which 
provided a new strategy for the treatment of PDAC and 
strengthened the understanding of the mechanism of PDAC 
developmental metastasis.

Conclusions
In this study, 3 signature genes (AFF3, RDX, and S100A9) 
were identified to establish a risk score model associated with 
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PDAC exosomes and M2 macrophages, which has a good abil-
ity to predict OS. In addition, the potential role of tumor cell–
derived S100A9 on macrophage M2 polarization was explored. 
Nevertheless, further experimental and clinical validation in 
different centers and larger cohorts is needed.
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