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Distinct Roles of Endothelial and Adipocyte Caveolin-1
in Macrophage Infiltration and Adipose Tissue

Metabolic Activity
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OBJECTIVE—Defective caveolin-1 expression is now recognized
as a cause of lipoatrophic diabetes in patients, due to primary
caveolin gene mutations or secondary caveolin deficiency caused
by PTRF/cavin gene defects. The goal of this study was to estab-
lish the relative contribution of endothelial cells and adipocytes,
both highly expressing caveolin-1 to the lipoatrophic phenotype of
mice with global caveolin-1 gene invalidation (Cav1-KO).

RESEARCH DESIGN AND METHODS—We compared adi-
pose tissue development and metabolic phenotype of wild-type
(WT), lipoatrophic Cavl-KO, and a murine model with specific
rescue of caveolin-1 expression in endothelial cells (caveolin-1-
reconstituted [Cav1-RC]).

RESULTS—Defective adipose tissue development, reduced
adipocyte size, and global alteration in adipose tissue gene
expression that characterize lipoatrophic caveolin-1 null mice
were still observed in Cavl-RC, indicating a prominent role of
adipocyte-derived caveolin in lipoatrophy. We also observed that
Cav1-KO adipose tissue contained an increased proportion of
infiltrated macrophages compared with control mice, mostly with
an alternate activation M2 phenotype. In contrast with defective
lipid storage and lipoatrophy, macrophage infiltration was
normalized in Cavl-RC mice, pointing to caveolin-1-dependent
endothelium permeability as the causing factor for adipose tissue
macrophage infiltration in this model.

CONCLUSIONS—This is the first report of a specific role for
adipocyte caveolin expression in lipid storage. Our study also
shows that endothelium caveolin critically participates in the
control of macrophage extravasation from the blood into adipose
tissue, therefore establishing distinct roles depending on topol-
ogy of caveolin expression in different cell types of adipose
tissue. Diabetes 60:448-453, 2011

ipoatrophic diabetes is primarily a result of de-
fective adipose tissue lipid storage resulting in
severe dyslipidemia and insulin resistance. Mul-
tiple alterations can cause lipoatrophic diabetes,
and rare single gene defects have been identified in patients
(1). The recent discovery of mutations in the human
caveolin-1 gene in Berardinelli-Seip congenital lipodys-
trophy, and mutations in polymerase I and transcript re-
lease factor (PTRF)/cavin causing secondary deficiency
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of caveolins and generalized lipodystrophy, brings into
focus caveolin proteins in the pathogeny of lipoatrophic
diabetes in humans (2,3).

Caveolins form a conserved family of membrane-
associated proteins generated from three genes with tissue-
specific expression. Caveolin-1 and -2 are coexpressed
and mostly abundant in endothelial cells, adipocytes, and
type II pneumocytes, whereas caveolin-3 is restricted to
muscle. A striking trait of caveolins is to induce the for-
mation of caveolae, small (560-100 nm) invaginated pits on
the cell surface. Caveolae represent well-defined mem-
brane subdomains with specific lipid composition closely
related to lipid rafts, coated with oligomerized caveolins
on their cytoplasmic face (4). It is no longer accepted
that caveolins are the only specific proteins required for
caveolae formation since an additional group of struc-
turally related proteins, called cavins, was recently iden-
tified (5-7). Despite this recent progress, precise roles of
caveolae still remain unclear. Furthermore, it is not well
established whether caveolins can exert functions outside
of caveolae.

Murine models with targeted gene invalidation for
caveolin-1 and PTRF/cavin are available, and almost re-
capitulate the human phenotype, developing a lipoatrophic
syndrome with only residual fat at higher ages, hyper-
lipidemia, and glucose intolerance (6,8). However, phe-
notypic alterations in caveolin-1 null mice appear more
severe than that observed in patients, since they include
additional vascular abnormalities. Exaggerated vascular
relaxation, related to increased endothelial nitric oxide
synthase activity, that deteriorates toward pulmonary
dysfunction and cardiac hypertrophy has been described
in caveolin-1 null mice (9,10). Noteworthy, all these al-
terations are rescued by cell-specific re-expression of
caveolin-1 in endothelium, underlying a prominent role for
this protein in the physiology of endothelial cells (11).

The question of whether lipoatrophy could be related to
disrupted endothelial and/or adipocyte caveolin expres-
sion is presently unanswered. Adipocytes as well as en-
dothelial cells highly express caveolin-1, and a close
interconnection with vascular network is of crucial im-
portance for adipose tissue metabolic function, particu-
larly nutrient storage. In this study, we took advantage of
a murine model with tissue-specific caveolin deficiency to
dissect the roles of caveolin in fat and endothelium and
their respective contribution to the lipoatrophic phenotype
seen in the total absence of caveolin.

We show that a lack of caveolin in adipocytes but not in
endothelial cells accounts for lipoatrophy. Interestingly,
we also observed that endothelial caveolin regulate mac-
rophage infiltration and extravasation of immune cells into
adipose tissue, thus unraveling distinct roles of endothelial
and adipocyte caveolins.
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RESEARCH DESIGN AND METHODS

Animal studies were conducted according to French guidelines. Caveolin-1
reconstituted (Cav1-RC) mice (11) were generated on the caveolin-1 KO genetic
background (10). Mice were killed at 6 months of age by cervical dislocation.
Serum cytokines and insulin were measured using a milliplex kit (Millipore).

Adipose tissues were processed for immunohistochemistry as described
(12). For immunohistofluorescence, adipose tissue sections were incubated in
antigen retrieval solution (Dako) and perilipin antibody (Progen) in PBS 2%
FCS and 1% BSA. Fluorescein isothiocyanate (FITC)-coupled guinea pig an-
tibody (Jacksonlmmunoresearch) was used, and slides were mounted in
Fluoromount-G (SouthernBiotech).

Adipose and stroma-vascular fractions were isolated as described pre-
viously (13). Briefly, fat depots were digested in Krebs-Ringer bicarbonate
(pH 7.4) containing 1% BSA and 1 mg/mL collagenase A (Roche). After fil-
tration (180-pm nylon mesh), adipocyte fraction was washed twice in DMEM
(GIBCO, Invitrogen). Adipocyte diameters were measured using Perfect Image
6.10 (Clara Vision).

Total RNA was extracted from frozen adipose tissue by cesium chloride
centrifugation and analyzed by real-time PCR using MyiQ real-time thermal
cycler (Bio-Rad) with Mesa green qPCR kit (Eurogentec) as described pre-
viously (14). Melt curve analysis was conducted to check single products, and
18 S mRNA was used for normalization.

mRNA preparations (six mice/group) were used to obtain labeled cRNA and
hybridized on Agilent microarrays at the Functional Genomics Center of Zurich
(ETH, Zurich). Expression values were imported into Gene-spring 7.3 (Agilent
Technologies).

Results are presented as means *= SE. The data were statistically analyzed
by ANOVA or Student ¢ test.

RESULTS

Caveolin rescue in endothelium does not reverse
lipoatrophy. It is not known whether the lipoatrophic
phenotype described in Cav1-KO mice (11), and also found
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in human patients with caveolin deficiency (2,3), can be
alleviated by endothelium caveolin re-expression. In murine
adipose tissue extracts, caveolin is expressed in both ma-
ture adipocyte and endothelial containing stroma-vascular
cell fractions, whereas it is found exclusively in the stroma-
vascular fraction in endothelium-specific Cavl-RC mice
(Fig. 1A). Caveolin-1 distribution in adipose tissue sections
indicated Cavl labeling of both blood vessel endothelium
and surrounding adipocytes in wild-type (WT) mice and
a complete absence of signal in Cav1-KO adipose tissue. As
expected, Cavl labeling was restricted to blood vessels
and absent from adipocytes in Cavl-RC (Fig. 1B). Blood
levels of glucose, insulin, and free fatty acids were not
different between Cav1-KO and Cav1-RC mice (Fig. 1C), and
the three groups of mice have comparable body weight at
6 months of age (data not shown). However, subcutaneous
and perigenital fat in Cavl-KO and Cav1-RC is drastically
decreased compared with controls, in both males and
females (Fig. 2A). Poor adipose tissue development in
Cav1-KO and Cavl1-RC is associated with a decreased size
of adipocytes on adipose tissue sections (Fig. 2B), con-
firmed by direct measurement of adipocyte diameters after
collagenase digestion of fat pads (Fig. 2C). Thus persistent
reduction of adipocyte fat storage in Cavl-RC and Cav1-KO
mice compared with WT controls indicates that specific
endothelium caveolin-1 rescue is ineffective to normalize
adipose tissue growth.

Lipoatrophic phenotype in caveolin-1 null mice is
therefore linked to specific failure within adipocytes. To
further investigate adipocyte function, we assess global
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FIG. 1. Topology of caveolin-1 expression in WT mice, Cavl-KO, and Cavl-RC. A: Western blot analysis of caveolin-1 expression after collagenase
digestion of adipose tissue and fractionation according to cell density. SVF and floating adipocytes were considered. Three independent cell
preparations are shown, each obtained from adipose tissues of four pooled mice. Time exposure is different for WT (30 s) and Cavl-RC samples
(5 min). Incomplete recovery of Cavl expression in Cavl-RC SVF is likely because of the fact that in WT SVF, Cavl expression is not restricted to
endothelial cells (macrophages, fibroblasts). B: Immunostaining of subcutaneous inguinal adipose tissue. Caveolin-1 labeling was revealed with
a polyclonal antibody (BD Transduction Laboratories). Scale bar is 20 pm. C, capillary lumen; Ad, adipocyte. C: Glycemia, insulinemia, and free
fatty acids levels were assessed in the postabsorptive state (fed) or after an overnight fast in 6-month-old mice. In each group, 5-9 mice were
measured. (A high-quality digital representation of this figure is available in the online issue.)
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FIG. 2. Persistence of lipoatrophic phenotype in Cavl-RC mice. A: Adipose tissue weights in perigenital (fop) and subcutaneous (bottom) locations
in 6-month-old male and female mice. Bars represent mean values = SE, with at least eight individual mice in each group. WT mice were signifi-
cantly different from other groups by ANOVA, P < 0.01. B: Hemalun staining of subcutaneaous adipose tissue sections from sex-matched 6-month-
old mice. Scale bar is 20 pm. Adipocyte area quantification was performed using ImageJ software. Values are means = SE obtained from at least
five different mice in each group. *Indicates a significant difference (P < 0.05) vs. WT by Student ¢ test. C: Measurements of isolated adipocyte
diameters from sex-matched 6-month-old mice. The size of at least 200 individual adipocytes was determined from scaled images using Perfect
Image 6.10 (Clara Vision software). Each plot represents a distribution of an individual adipocyte population in diameter classes. Each distribution
was obtained from pooled perigenital adipose tissues of three mice in each group. (A high-quality color representation of this figure is available in

the online issue.)

changes in gene expression by microarray experiments
on epididymal adipose tissue of Cavl-RC and WT mice.
Classification of differentially expressed genes was based
on gene ontology (GO) annotation using FunNet software
(15). Relevant biological themes, annotating differentially
expressed genes, are indicated by significantly overrepre-
sented categories from the GO Biological Process ontolo-
gies (Supplementary Fig. 1 and Supplementary Table 1).
The genes upregulated in Cavl-RC adipose tissue were
annotated mainly by functional themes associated with the
cellular membrane and cell signaling (cell surface linked
receptor signal transduction, cell adhesion). Not surpris-
ingly, these pathways connect to a well-established role of
caveolin as a general suppressor of signal transduction.
More interestingly, downregulated genes were annotated
mostly by themes related to intracellular metabolism such
as transport, metabolic process, generation of precursor
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metabolites and energy, and carbohydrate and lipid met-
abolic process. Thus caveolin absence in adipocytes is
shown here to profoundly affect gene expression toward
reduced metabolic activity, which fits with the persistence
of lipoatrophic phenotype in Cav1-RC mice.

Endothelium caveolin deficiency promotes infiltration
of noninflammatory M2 macrophages in adipose
tissue. Careful inspection of histological images revealed
that additional changes in cellular composition of the ad-
ipose tissue were also present in these mice. DAPI and
perilipin staining indicated increased nuclei-to-adipocytes
ratio specifically in totally deficient animals (Cav1-KO) and
not in Cavl-RC or WT (Fig. 3A). Because macrophage in-
filtration in adipose tissue is now well-established as a
process related to changes in fat mass (12,16), we sought
to examine adipose tissue sections for macrophage
markers. F4/80 or Mac2 labeling revealed few positive cells

diabetes.diabetesjournals.org
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FIG. 3. Altered cellular composition of adipose tissue in Cavl-KO but not Cavl-RC mice. Inguinal adipose tissue sections of WT mice, Cavl-KO, and
Cavl-RC (at least five mice/group) were labeled for nuclei with DAPI and for lipid droplet-associated protein perilipin (A) or with macrophage
surface markers (B). Ratios of DAPI positive nuclei to perilipin positive adipocytes are quantified. Significant differences by Student ¢ test are
noted (*). (A high-quality digital representation of this figure is available in the online issue.)

in WT, reflecting the presence of a small proportion of
resident macrophages (Fig. 3B). F4/80 or Mac2 positive
cells increased in Cavl-KO, indicating that caveolin-
deficient adipose tissue was infiltrated by macrophages. On
the contrary, specific endothelium caveolin re-expression in
adipose tissue limited macrophage presence with identical
F4/80 or Mac2 staining between Cav1-RC and WT (Fig. 3B).
Therefore, these data suggest a critical role for endothelial
caveolin-1 in the control of adipose tissue macrophage
infiltration.

We also compared gene expression of macrophage
markers in adipose tissue of the three mice strains.
Emrl (F4/80) and cd68 expression increased threefold in
Cav1-KO adipose tissue in comparison with WT (Fig. 4A4).
Both Emrl and cd68 mRNA expression are normalized in
Cavl-RC. All together, mRNA expression and immuno-
staining confirm the increased presence of macrophages
in adipose tissue of Cavl-KO mice, which can be re-
versed by specific re-expression of caveolin-1 in endothelial
cells.

Adipose tissue is normally hosting a small number of
resident macrophages, which display a reparative pheno-
type (M2 or alternative activation) (17), characterized by
the expression of proteins implicated in tissue remodeling
as arginase-1 (Arg-1), mannose receptor C type 2 (Mrc-2),
or macrophage galactose N-acetyl-galactosamine-specific
lectins (Mgl-1). Upon obesity, adipose tissue macrophage
infiltration increases, and they switch to a proinflam-
matory phenotype (M1 or classical activation) leading to
production of proinflammatory cytokines like monocyte
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chemoattractant protein-1 (Mcp-1), tumor necrosis factor-«
(TNF-o), or interleukin (IL)-6. Relative mRNA expression
(Fig. 4B) and blood levels (Fig. 4C) of macrophage mark-
ers defining M1 and M2 states (Fig. 4F) indicated no
change for M1 markers in WT, Cav1-KO, and Cavl-RC,
whereas M2 markers were increased in Cavl-KO mice
compared with WT and normalized by specific endothelial
caveolin re-expression (Cavl-RC). A noticeable exception
to this scheme is plasminogen activator inhibitor 1 (PAI-1)
mRNA and blood levels (Fig. 4D), which remained ele-
vated in Cavl-KO and Cavl-RC mice, possibly because
PAI-1 mRNA is mainly expressed in mature adipocytes
(data not shown), both lacking caveolin in Cavl-KO and
Cavl-RC mice. Altogether, these data demonstrate that
endothelium caveolin-1 specifically regulates extravasa-
tion of macrophages into adipose tissue.

DISCUSSION

We show here that defective adipose tissue growth and
lipoatrophy in mice with global caveolin gene invalidation
cannot be rescued by specific re-expression of caveolin in
endothelial cells. Among multiple alterations described so
far in caveolin-deficient mice, like cardiac and pulmonary
defects, lipoatrophy is the first phenotype that cannot be
ameliorated by endothelial caveolin rescue. Even a com-
plex phenotype such as progression of atherosclerosis,
potentially involving interactions between multiple cell
types within the vessel wall, was recently shown to criti-
cally depend on endothelial caveolin expression (18). Thus
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FIG. 4. Macrophage marker analysis in WT mice, Cavl-KO, and Cavl-RC. A, B, and E: mRNA were extracted from frozen individual perigenital
adipose tissues (at least five mice in each group) and used as templates for cDNA synthesis. mRNA were measured by real-time RT-PCR using
primers validated for PCR efficiency and single product amplification. For each gene, mRNA levels were normalized to 18S, and values obtained in
WT mice were set to 1. C and D: Circulating IL6, MCP-1, and PAI-1 in 6-month-old mice were measured in serum (5-8 mice/group). Statistically

significant differences are indicated (*P < 0.05).

our present observation is the first evidence for a func-
tional role of caveolin adipocyte, and not endothelial
caveolin in a metabolic phenotype.

The reasons why adipocytes remain atrophic in the total
absence of caveolin-l have not been related to overt
alterations in food intake, nutrient absorption, or energy
expenditure (8,19). They might be linked to global re-
duction in adipocyte metabolic activity revealed here by
gene expression defects in microarray analysis. Accord-
ingly, autophagic degradation was recently reported in
caveolin-deficient adipocytes (20), as well as compromised
lipid droplet growth and maturation defects (21).

A second interesting finding is the implication of endo-
thelial caveolin in adipose tissue infiltration by macro-
phages. Indeed, it has been shown that both transcellular
and paracellular pathways, which participate in endothe-
lial barrier function, implicate caveolins (9,22,23).
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Macrophage infiltration of adipose tissue is linked to
obesity (12,16) and could play a major role in insulin re-
sistance through proinflammatory cytokine production.
Previous reports show that macrophage polarity in obesity
is mainly M1 proinflammatory, whereas alternatively acti-
vated M2 macrophages are usually found in lean (24). In
agreement with a previous report on a different lipo-
dystrophic murine model (25), we show an increased
number of macrophages in caveolin-1-deficient mice adi-
pose tissue mostly resembling a M2 state. In the com-
plex cascade leading to macrophage recruitment, rescue of
adipose tissue macrophage content in Cavl-RC, despite
persistent lipoatrophy, suggests a regulatory role for endo-
thelium. In this context, endothelial caveolin-1 thus appears
as a new actor for macrophage entry into adipose tissue.
This highlights endothelium permeability as a potential
target to control obesity-related macrophage infiltration.

diabetes.diabetesjournals.org
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In conclusion, our present study identifies distinct roles
for caveolin-1, linked to its presence in different cell types
within adipose tissue. Adipocyte-derived caveolin is shown
here to play a crucial role in lipid storage and global fat
cell function, whereas endothelium-derived caveolin can
modulate tissue cell composition and macrophage in-
filtration.

ACKNOWLEDGMENTS

This work has received funding from the European
Community’s Seventh Framework Programme FP7/2007-
2013 under Grant Agreement No. 202272. N.B. is supported
by the French Ministry of Research.

No potential conflicts of interest relevant to this article
were reported.

N.B. researched data, reviewed and edited the article,
and contributed to discussion. S.L.L. researched data and
wrote the article. W.C.S. and P.F. reviewed and edited the
article and contributed to discussion. I.D. researched data
and wrote the article.

The authors thank Abdelhamid Benkouhi from the
Biochemistry and Metabolism Facility for crucial technical
assistance with the Luminex system.

REFERENCES

1. Capeau J, Magré J, Lascols O, et al. Diseases of adipose tissue: genetic and
acquired lipodystrophies. Biochem Soc Trans 2005;33:1073-1077

2. Kim CA, Delépine M, Boutet E, et al. Association of a homozygous non-
sense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy.
J Clin Endocrinol Metab 2008;93:1129-1134

3. Hayashi YK, Matsuda C, Ogawa M, et al. Human PTRF mutations cause
secondary deficiency of caveolins resulting in muscular dystrophy with
generalized lipodystrophy. J Clin Invest 2009;119:2623-2633

4. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell
Biol 2007;8:185-194

5. Hill MM, Bastiani M, Luetterforst R, et al. PTRF-Cavin, a conserved cyto-
plasmic protein required for caveola formation and function. Cell 2008;132:
113-124

6. Liu L, Brown D, McKee M, et al. Deletion of Cavin/PTRF causes global loss
of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 2008;8:310—
317

7. Briand N, Dugail I, Le Lay S. Cavin proteins: new players in the caveolae
field. Biochimie 2011;93:71-77

8. Razani B, Combs TP, Wang XB, et al. Caveolin-1-deficient mice are lean,
resistant to diet-induced obesity, and show hypertriglyceridemia with ad-
ipocyte abnormalities. J Biol Chem 2002;277:8635-8647

diabetes.diabetesjournals.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Razani B, Engelman JA, Wang XB, et al. Caveolin-1 null mice are viable but

show evidence of hyperproliferative and vascular abnormalities. J Biol
Chem 2001;276:38121-38138

Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction,
and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001;
293:2449-2452

Murata T, Lin MI, Huang Y, et al. Reexpression of caveolin-1 in endothelium
rescues the vascular, cardiac, and pulmonary defects in global caveolin-1
knockout mice. J Exp Med 2007;204:2373-2382

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr.
Obesity is associated with macrophage accumulation in adipose tissue. J Clin
Invest 2003;112:1796-1808

Briquet-Laugier V, Dugail I, Ardouin B, Le Liepvre X, Lavau M, Quignard-
Boulangé A. Evidence for a sustained genetic effect on fat storage capacity
in cultured adipose cells from Zucker rats. Am J Physiol 1994;267:E439—
E446

Le Lay S, Lefrere I, Trautwein C, Dugail I, Krief S. Insulin and sterol-regulatory
element-binding protein-1c (SREBP-1C) regulation of gene expression in
3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta
as an SREBP-1C target. J Biol Chem 2002;277:35625-35634

Prifti E, Zucker JD, Clement K, Henegar C. FunNet: an integrative tool
for exploring transcriptional interactions. Bioinformatics 2008;24:2636—
2638

Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial
role in the development of obesity-related insulin resistance. J Clin Invest
2003;112:1821-1830

Mantovani A, Sica A, Locati M. Macrophage polarization comes of age.
Immunity 2005;23:344-346

Fernandez-Hernando C, Yu J, Suarez Y, et al. Genetic evidence supporting
a critical role of endothelial caveolin-1 during the progression of athero-
sclerosis. Cell Metab 2009;10:48-54

Mattsson CL, Csikasz RI, Shabalina IG, Nedergaard J, Cannon B. Caveolin-
l-ablated mice survive in cold by nonshivering thermogenesis despite
desensitized adrenergic responsiveness. Am J Physiol Endocrinol Metab
2010;299:E374-E383

Le Lay S, Briand N, Blouin CM, et al. The lipoatrophic caveolin-1 deficient
mouse model reveals autophagy in mature adipocytes. Autophagy 2010;6:
754-763

Blouin CM, Le Lay S, Eberl A, et al. Lipid droplet analysis in caveolin-
deficient adipocytes: alterations in surface phospholipid composition and
maturation defects. J Lipid Res 2010;51:945-956

Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP. Caveolae-
deficient endothelial cells show defects in the uptake and transport of al-
bumin in vivo. J Biol Chem 2001;276:48619-48622

Millan J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ. Lymphocyte
transcellular migration occurs through recruitment of endothelial ICAM-1
to caveola- and F-actin-rich domains. Nat Cell Biol 2006;8:113-123
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in
adipose tissue macrophage polarization. J Clin Invest 2007;117:175-184
Herrero L, Shapiro H, Nayer A, Lee J, Shoelson SE. Inflammation and
adipose tissue macrophages in lipodystrophic mice. Proc Natl Acad Sci
USA 2010;107:240-245

DIABETES, VOL. 60, FEBRUARY 2011 453



