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ARTICLE INFO ABSTRACT

Keywords: Placenta accreta spectrum (PAS) disorders refers to a heterogeneous group of anomalies distin-
Placenta accreta spectrum guished by abnormal adhesion or invasion of chorionic villi through the myometrium and uterine
Prenatal

serosa. PAS frequently results in life-threatening complications, including postpartum hemor-
rhage and hysterotomy. The incidence of PAS has increased recently as a result of rising cesarean
section rates. Consequently, prenatal screening for PAS is essential. Despite the need to increase
specificity, ultrasound is still considered a primary adjunct. Given the dangers and adverse effects
of PAS, it is necessary to identify pertinent markers and validate indicators to improve prenatal
diagnosis. This article summarizes the predictors regarding biomarkers, ultrasound indicators,
and magnetic resonance imaging (MRI) features. In addition, we discuss the effectiveness of joint
diagnosis and the most recent research on PAS. In particular, we focus on (a) posterior placental
implantation and (b) accreta after in vitro fertilization-embryo transfer, both of which have low
diagnostic rates. At last, we graphically display the prenatal diagnostic indicators and each
diagnostic performance.

Diagnostic indicators
Updated indicators
Combined markers

1. Introduction

Placenta accreta spectrum (PAS) disorders is divided into placenta accreta (the placental villi attach directly to the surface of the
myometrium without invading), placenta increta (invade into the myometrium), and placenta percreta (invade into the serosa or
surrounding structures) based on the degree of placenta villi invasion. The most popular explanation for the cause of PAS is that defects
in the endometrial-myometrial interface prevent normal decidualization in the cicatricial area of the uterus, thereby permitting
abnormally deep placental anchoring and trophoblast infiltration [1]. The incidence of PAS is rising sharply from 0.01% to 1.1% due to
the increasing rates of cesarean delivery [2,3]. PAS is frequently associated with serious obstetric complications, such as uterine inertia
at the site of implantation and placenta retention after delivery, and the complications could lead to postpartum hemorrhage and
subsequent adverse outcomes including disseminated intravascular coagulation (DIC), local organ damage, and even maternal death
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Table 1

Summary of PAS prenatal diagnostic indicators and predictive performance.”
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Indicator

Explanation

Diagnostic performance

Risk Factor

Biomarker

Ultrasound
sign

MRI Sign

Previous cesarean section
(€s)

Placenta previa (PP)

Placental sites
IVF-ET

Maternal age >35 years
Twin pregnancies

Alpha-fetoprotein (AFP)

Human chorionic
gonadotropin (hCG)

Pregnancy-associated
plasma protein-a (PAPP-A)
Cell-free fetal DNA
(cffDNA)

Cell-free placenta mRNA
Angiogenic factor

Cross-over sign (COS-1)

Placental lacunae

The abnormal

uteroplacental interface

Abnormalities of
uterus-bladder interface

Color Doppler
abnormalities

Placental/uterine bulge

Intraplacental dark T2
bands

Myometrial thinning/
disruption

Loss of low T2
retroplacental line
Bladder wall interruption

Focal exophytic placental
mass

Abnormal vasculature of
the placental bed

Caused by cesarean scar stimulation of implantation of the blastocyst
in the area of the cicatrice and the abnormal adherence or invasion of
villi within the scar tissue.

CS-related uterine scarring most frequently occurs in the thin bottom
part of the uterus.

Lateral and posterior PAS easily be ignored in prenatal diagnosis.
Cause uterine contraction, possibly due to the release of prostaglandins
following mechanical stimulation of the internal cervical os.

Linked to confounding factors, rather than isolated maternal age.
Caused by confounding factors like IVF-ET, PP, and prior uterine
surgery.

AFP has certain predictive efficacy, but it cannot be an early indicator.

Diagnosis has certain limitations.

Diagnosis should be made under the premise of excluding fetal
malformations, even with PP.

May help predict massive blood loss at delivery in the first trimester.
Early diagnosis of pregnancies at high risk of PAS.

cffDNA: still controversial and lacks related reports.

Cell-free placenta mRNA: can reflect abnormal placental formation.

The imbalance of VEGF" PIGF®, and sFlt1¢ may cause placenta
implantation.

Can predicted the ultrasound staging and surgical outcome of PAS.

Irregular, hypoechoic spaces within the placenta containing vascular
flow (which can be seen on grayscale and/or color Doppler imaging).

Include loss of the retroplacental hypoechoic zone, myometrial
thinning, and sub-placental hypervascularity loss of clear zone was
considered the most general ultrasound sign.

Include uterine bladder wall interruption and bridging vessels.

Abnormalities on color Doppler and presence of abnormal vessels
performed best as predictors of disorders of invasive placentation in
high-risk women.

Deviation of the uterine serosa from the expected plane caused by
abnormal bulge of placental tissue toward adjacent organs, typically
toward the bladder and parametrium.

One or more areas of hypo-intensity on T2-weighted images, which are
usually linear in configuration and often contact the maternal surface
of the placenta

Thinning of the myometrium over the placenta to less than 1 mm or
even invisible.

Loss of a thin dark line behind the placental bed, as seen on T2-
weighted image.

Irregularity or disruption of the normal hypointense bladder wall,
which can be accompanied by blood products in the bladder lumen.

Placental tissue seen protruding through the uterine wall and
extending beyond it.

Associated with placenta percreta.

This can be seen as flow voids on MRI or color Doppler positive
vascularity that extends from the placenta onto the serosa or urinary
bladder wall, also referred to as “bridging vascularity”.

0dds ratio (95% CI)

Any previous Ci

S 8.8 (6.1-12.6) [9]

1 prior CS 6.6 (4.4—9.8)

2 prior CS 17.4
>3 prior CS 55

(9.0-31.4)
.9 (25.0-110.3)

Prior CS not previa 3.7 (2.3—5.8)

292 (196-400)

/
8.7 (3.8-20.3)

4.6 (3.2-6.7) [

[9]

[25]

9]

3.41 (2.57-4.52) [35]

Cut-off value
1.25 MoM [49]

1.25 MoM [46]

1.22 MoM [51]

%Sensitivity
(95%CI)
79.6
(66.5-89.4)
[63]

77.4
(70.1-83.1)
[70]

66.2
(58.3-73.6)
[70]

49.7
(41.4-58.0)
[70]

90.8
(85.2-94.7)
[70]
%Sensitivity
(95%CI)
79.1
(60.3-90.4)
[104]

87.9
(70.9-95.6)
[104]

92.0
(79.2-97.2)
[104]

81 (57-93)
[105]

80.0
(28.0-99.5)
[104]

69.2
(41.8-87.5)
[106]

81.6 [104]

AUC (95% CI)
0.573
(0.515-0.630)
0.662
(0.605-0.715)

%Specificity
(95%CI)
91.0 (84.8-95.3)

95.02

(94.1-95.8)

95.8 (94.9-96.5)

99.8 (99.5-99.8)

87.7 (84.6-90.4)

%Specificity
(95%CI)
90.2 (76.2-96.4)

71.9 (55.6-84.0)

75.6 (50.4-90.4)

81 (57-93)

98.6 (92.2-100)

98.9 (57.8-100)

100

# Adapted from Hobson SR et al. [5] and Jauniaux E et al. [107].
b VEGF, Vascular endothelial growth factor.
¢ PIGF, Placental growth factor.
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4 SFt1, Soluble fms-like tyrosine kinase 1.

[4]. PAS is typically asymptomatic but frequently causes serious complications during surgery, making effective preoperative
screening and prediction crucial [5]. Ultrasound (US) and magnetic resonance imaging (MRI) are the most common prenatal screening
modalities. However, existing studies are compromised by inconsistencies in diagnostic criteria, terminology, and reported outcomes,
undermining the validity of their conclusions. Consequently, a summary of the current prenatal indicators would be of great interest.
This article focuses on an overview of all commonly used prenatal indicators and recent research advancements and concludes with a
discussion of the implications of combining multiple screening tools to improve diagnostic accuracy.

2. Clinical factors
2.1. Previous cesarean delivery

Recent epidemiological research has established a direct link between an increasing rate of cesarean section (CS) and the incidence
of PAS in subsequent pregnancies [6-9]. The exact pathogenesis is still unknown, but the possible mechanism is that scar tissue
stimulation to the blastocyst affects the normal implantation of villi, which leads to abnormal adhesion or invasion of the placenta in
the scar of cicatrice [10]. There was a dose-response relationship between the number of prior cesarean deliveries and PAS when
stratified by that metric [9]. Interestingly, the timing of the initial cesarean delivery also affects the occurrence of PAS in subsequent
pregnancies, and it was found that elective CS was associated with a high risk of subsequent pregnancies with placenta previa com-
bined with PAS (OR 3.0, 95% CI 1.47-6.12) [11-13]. A plausible explanation could be that changes in the structure of the uterus
during labor make the tissue more adaptable to injury, and the activation of immune function also facilitates the repair of the myo-
metrium [14-17]. Interestingly, prior vertical uterine incision also increases the incidence of PAS in the second pregnancy, especially
placenta percreta and uterine rupture [18]. More research is required to better understand the etiology of the association between
vertical hysterotomy and placenta implantation.

2.2. Placental location

The risk of placenta previa (PP), which frequently occurs in conjunction with a prior cesarean section, increases with the number of
prior CS, and it is an independent risk factor for PAS [9]. A systematic review and meta-analysis found that the prevalence of PP
increased from 10/1000 deliveries with 1 prior cesarean delivery to 28/1000 with 3 cesarean deliveries. PP combined with a scarred
uterus has a significantly increased risk of PAS [19,20]. Patients with PAS and PP benefit from effective treatment as a result of
clinician attention. However, 30% of patients who had a hysterotomy for a histologically confirmed PAS did not have a PP at delivery,
and their rates of severe morbidity were comparable to those of patients with PP [21]. For that reason, other medical histories should
be considered in PAS patients without PP, and a large cohort study should be conducted to retrospectively analyze images of these
patients to identify sensitive and stable screening indicators.

We found fewer reports about the effect of placental sites on diagnosis, risk factors, and resultant outcomes in cases of PAS. Limited
studies indicate that PAS with lateral and posterior placental locations is not less likely to have severe maternal morbidity than anterior
PAS. Still, the rate of prenatal diagnosis is significantly lower than theirs [22,23]. These studies base on placental location should alert
us the presence of PAS even if it is not detected by prenatal ultrasound.

2.3. Assisted reproductive technology

In vitro fertilization-embryo transfer (IVF-ET) has recently been demonstrated to be a significant independent risk factor for PAS,
with an adjusted OR (aOR) of 8.7 (95% CI 3.8-20.3) [24-26]. Embryos were inserted into the uterine cavity via a catheter through the
cervix during IVF-ET. This process may cause uterine contractions, possibly due to the release of prostaglandins by mechanical
stimulation of the internal cervix os. It is possible that these mechanically generated irregular uterine contractions could result in an
increase in the frequency of implantation in the lower uterine segment, hence increasing the risk of placenta previa [27,28]. In
addition, it has been suggested that PAS can arise following IVF-ET regardless of placental position; however, the pathophysiology
underpinning this association has yet to be determined [24].

Different types of blastocyst transfer and endometrial preparation also impacted the risk of PAS, with frozen-thawed embryo
transfer (FET) and hormone replacement cycles (HRC) increasing the risk of PAS. The risk of PAS in FET was reported to be higher than
that in fresh embryo transfer (OR 4.60, 95% CI 3.42-6.18) [24]. Notably, women with FET on hormone replacement cycles had a
significantly higher prevalence of PAS than women with FET on natural ovulatory cycles (aOR 6.91, 95% CI 2.87-16.66) [29]. Women
on hormone replacement cycles had less mean endometrial thickness than those on regular ovulatory cycles or fresh ET [30,31].
Therefore, PAS may be caused by thin endometrium, and more research is needed to find out if the endometrial thickness and PAS are
linked.

2.4. Other etiologies

Impairment of endometrial integrity is not only the result of CS, but other procedures such as dilatation and curettage,
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myomectomy, and endometrial resection are associated with PAS in subsequent pregnancies (Table 1) [32]. In recent years, factors like
advanced maternal age and twin pregnancies have been considered risk factors for PAS. However, rather than being directly caused by
those factors, this association is most likely the result of confounding variables like IVF-ET, PP, and risk of prior uterine surgery
[33-36].

The above discussion of clinical factors has deepened our understanding of PAS. As stated by the American College of Obstetricians
and Gynecologists (ACOG), the absence of ultrasound findings does not preclude the diagnosis of PAS [37]. Consequently, clinical risk
factors remain equally important as ultrasound finding predictors, especially in economically backward areas or areas with limited
prenatal ultrasound expertise.

3. Biomarkers
3.1. Alpha-fetoprotein

Maternal serum alpha-fetoprotein (MSAFP) is produced in the yolk sac and fetal liver after 6 weeks of gestation in the first trimester
and is transported to maternal serum through the placenta or diffusion across the fetal membranes, reaching a robust stage in the
second trimester and returning to the average within 2 weeks postpartum [38-40]. Over the past 30 years, MSAFP has been used as a
serum marker for first-trimester aneuploidy screening and has been effective in identifying pregnant women at high risk for additional
adverse perinatal outcomes such as pre-eclampsia, fetal loss, and preterm delivery, leading many researchers to gradually focus on the
association of MSAFP with pathological placentation [41-45]. More reports have shown that elevated MSAFP levels are associated
with a higher risk of PAS, possibly due to disruption of the maternal-fetal interface for placental implantation [46,47]. Above the
diagnostic threshold of AFP concentration (1.64 MoM), women with uterine scarring have a 2.5-fold elevated risk of placental im-
plantation (RR 2.5, 95% CI 1.17-5.36, P = 0.0185) [47]. Recently, it has been suggested that increased MSAFP is associated with
hysterotomy in patients with PAS and is considered a complementary factor to more complex procedures, but this conclusion is
controversial [48,49].

3.2. Human chorionic gonadotropin

Human chorionic gonadotropin (hCG), a glycoprotein hormone with alpha (a) and beta () subunits, is primarily produced by the
syncytiotrophoblast and maintains pregnancy by stimulating the corpus luteum to produce progesterone [38]. Free p-hCG also in-
creases angiogenesis, cytotrophoblast differentiation, immunosuppression, and prevents the phagocytosis from invading trophoblast
cells, indicating that it can reflect the activity of trophoblast cells [50]. The levels of free $-hCG in maternal serum varied between the
PP, PAS, and control groups. The median free $-hCG MoM was 1.04 in the control group, 1.08 in the PP group (P = 0.859), and 0.81 in
the PAS group (P = 0.06) [51]. However, Berezowsky et al. reported that patients with PAS had higher statistically f-hCG MoM than
normal pregnancy (1.42 vs. 0.93, P = 0.042). Additionally, in the second trimester, p-hCG also predicted PAS with an area under the
ROC (AUC) of 0.662 (95% CI 0.605-0.715) and a cut-off value of 1.25 MoM demonstrated a sensitivity and specificity of 58% and 68%,
respectively [46]. It can be seen that there is a correlation between hCG and PAS, but its correlation may be affected by factors such as
race, gestational age, and sampling time.

The function of hyperglycosylated hCG (hCG-H) in gestational trophoblastic disease has been described as preventing apoptosis and
thereby promoting placental invasion [52]. In assessing the function of hCG-H in predicting PAS, Einason et al. discovered that patients
with PAS had lower hCG-H values than controls and that the threshold was 7.6 pg/L, which had the optimal predictive value [53].
However, these findings are limited to single-center studies, and the conclusions are controversial and cannot be widely generalized.

3.3. Pregnancy-associated plasma protein-A

Pregnancy-associated plasma protein-a (PAPP-A) is produced by syncytiotrophoblasts and deciduas and secreted into the maternal
blood [38,54]. PAPP-A may play a significant role in regulating trophoblast invasion via the thrombin protease-activated receptor
(TPAR) signal, and its levels should increase as trophoblast invasion increases [51]. PAPP-A was positively associated with PAS and
showed promise for PAS risk stratification in high-risk pregnancies, with a median PAPP-A MoM of 1.01 in the control group and 1.05
in the PP group (P = 0.83) compared with 1.22 (P = 0.16) in PAS cases [51]. Additionally, PAPP-A levels demonstrated a trend toward
higher distribution in the group that underwent hysterotomy [54,55], but this index is influenced by gestational characteristics like
gestational age, race, and mode of conception in early pregnancy, and there are insufficient studies to evaluate it scientifically [55].

3.4. Others

Using cell-free fetal DNA (cffDNA) and cell-free placental mRNA to screen for PAS is a new topic. Maternal serum cffDNA originates
from the apoptosis of cytotrophoblast and syncytiotrophoblast cells. Maternal immune responses to myometrial invasion during
placental implantation can lead to the destruction of the cellular trophectoderm and an increase in maternal cffDNA [56]. Circulating
cell-free placental mRNA has emerged as a possible marker due to its ability to be extracted and quantified from maternal plasma, and
its results potentially indicate aberrant placental formation [57]. The association between the two metrics and PAS has only been
reported in small sample studies, and larger clinical cohort trials are expected in the future.

Researchers have also identified other biomarkers associated with PAS (Table 1). In early pregnancy, an imbalance of angiogenic
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factors is thought to be associated with placenta accreta [58]. MicroRNAs have been shown to be closely associated with the occur-
rence and development of placental implantation [59-61]. As the pathogenesis of PAS is investigated, more biochemical factors are
expected to provide a basis for clinical diagnosis when confirmed by large-scale studies.

4, Ultrasound
4.1. First trimester

Transvaginal ultrasound detection of implantation of a gestational sac in the lower uterine segment is one of the most common
indicators of PAS in early pregnancy. Cali et al. predicted the ultrasound staging and surgical outcome of PAS based on assessing of the
relationship between the gestational sac and the endometrial line in cesarean scar pregnancy (called the cross-over sign; COS) [62,63].
Bhatia et al. discovered that the presence of placental implantation on an exposed lower uterine scar appeared to be a significant
predictor of PAS risk in women with a history of CS, with an excellent negative predictive value [64]. Early pregnancy ultrasound relies
on the position of the gestational sac about the uterine scar, a strategy that allows the assignment of high-risk women to the appropriate
management pathway to optimize pregnancy outcomes. However, this screening protocol only identifies women at high risk of
developing anterior or central placenta accreta, as posterior and lateral PAS cases are more difficult to predict and diagnose prenatally.

Loss of the clear zone, placental lacunae, bladder wall interruption, and myometrial thinning, typically described in the second and
third trimesters, have been identified in the first trimester and are associated with PAS with PP to varying degrees. When at least one of
these ultrasound images was used for prenatal diagnosis during early pregnancy, the sensitivity was 84.3% (95% CI, 74.7-91.4%) and
the specificity was 61.9% (95% CI, 51.9-71.2%). The sensitivity is best for loss of the clear zone, and the specificity is highest for
bladder wall interruption. Moreover, when combining the two ultrasound signs above, both sensitivity and specificity were optimal
[65,66].

1D 4.18cm
2D2.26cm

Fig. 1. Abnormal placental lacunae (a,b) and bladder wall interruption (b) on grayscale ultrasound.
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4.2. Second and third trimesters

Transabdominal ultrasound is usually performed during pregnancy to determine placenta position and to assess those at high risk
for PAS. However, the current standard mid-pregnancy obstetric ultrasound screening reveals a low PP and PAS detection rate [67].
This is a result of pregnancy-related placental migration, growth toward better blood flow, and development of the lower uterine
segment. In a recent study, Jansen et al. reported lowering the internal cervical os threshold from 20 mm to 5 mm for monitoring the
anterior low-lying placenta. This recommendation may reduce the number of unnecessary follow-ups without excluding any women at
high risk [68].

According to the proposal of the European Working Group on Abnormally Invasive Placenta (EW-AIP), late pregnancy obstetric
ultrasound compiled a list of 11 PAS ultrasound markers based on ultrasound modalities (Figs. 1-3) [69]. Generally, diagnosing of PAS
relies on typical ultrasound findings, such as placental lacunae and loss of the retroplacental clear zone (Table 1) [70], and color
Doppler is considered a promising tool for good visualization of uteroplacental vascularization. Several recent retrospective studies
have also verified these classical signs in recent years. Placental lacunae are defined as irregular, hypoechoic spaces within the placenta
containing vascular flow. With negative predictive values for PAS ranging from 88% to 100%, the absence of lacunae in pregnancies
with placenta previa and previous cesarean delivery is a reassuring sign [71,72]. A review evaluated the value of various ultrasound
signs and found that in placenta accreta and increta, loss of clear zone was considered the most general ultrasound sign, with an odds of
71.4% and 84.6%, respectively [73].

According to a multicenter prospective study, Fratelli et al. found that grayscale ultrasound findings in the third trimester have
good negative predictive values for clinically relevant PAS [74]. However, in a systematic evaluation and meta-analysis involving 3707
patients at risk for PAS, color Doppler had the best combination of sensitivity and specificity among the various ultrasound signs [70].
The differences are attributed to the heterogeneity of the same markers across studies, and operator subjectivity that can influence the
conclusions.

4.3. Updated markers

Recently, several new flags have been used to improve forecasting efficiency. A “rail sign” was described as two parallel neo-
vascularizations across the bladder mucosa and uterovesical junction that were shown on color Doppler sonography and had bridging
arteries linking them that were perpendicular to both. Patients with rail sign had a significantly increased risk of PAS (83.3% vs.
27.9%) and a higher risk of adverse clinical outcomes, according to research [75,76]. The “intracervical lakes” is defined as the
anechoic space of the endocervical tortuosity that appears to be a hypervascular space on color Doppler, using a pulse rate frequency
<1.3 kHz. In women with suspected PAS on antenatal sonography, it may serve as a marker of deep villus invasion and signal
impending serious maternal morbidity [77]. “Jellyfish” is defined as lacking the usual linear demarcation between placenta previa and
cervix, which helps predict increased maternal morbidity (Table 2) [78]. However, the above findings should be verified in larger
prospective studies.

Prenatal ultrasound is a promising screening and diagnostic tool for PAS in current obstetric practice, but it is still limited by
subjectivity. It is hoped that future studies will come up with uniform definitions and standardized ultrasonography methods to make it
easier to compare data and improve the outcomes for PAS patients.

Fig. 2. Subplacentals hypervascularity and bridging vessels on color Doppler imaging.
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Fig. 3. Intraplacental hypervascularity on three-dimensional power Doppler.

Table 2
Recent ultrasound and MRI update signs in PAS.
Sign/Approach Definition
® Us
Rail sign 2 parallel neovascularization depicted by color Doppler over the uterovesical junction and bladder mucosa, with
interconnecting bridging vessels perpendicular to both.
Intracervical lakes The anechoic space of the endocervical tortuosity that appears to be a hyper-vascular space on color Doppler.
Jellyfish Lacking the usual linear demarcation between placenta previa and cervix.
Separation sign [108] Detects different rates of rebound after an ultrasound probe is used to apply pressure over the uteroplacental interface
® MRI
Intraplacental fetal vessel Enlarged subchorionic and dry vascular trunks that origin from the umbilical cord and penetrate the placental parenchyma,
diameter [109] often reaching its maternal surface.
Gadolinium Producing better contrast between the placenta and the myometrium, but it is not recommended.
Functional MRI Includes arterial spin labeling (ASL), blood oxygen level dependent (BOLD), diffusion weighted imaging (DWI), intravoxel
incoherent motion (IVIM), MR spectroscopy (MRS), and dynamic contrast enhanced (DCE) MRI.
Radiomics Overcame the problem of low agreement between observers.
Textural analyses Identify an algorithm to predict PAS and intraoperative complications in placental MRI.
Three-dimensional (3D) models An accurate 3D models of MRI images can help understand the depth and pattern of placental invasion, the location of defects,
[110] and bladder involvement.

5. Magnetic resonance imaging
5.1. Routine MRI signs

The Society of Abdominal Radiology (SAR) and European Society of Urogenital Radiology (ESUR) joint consensus statement
recommends 7 MRI features, namely uterine/placental bulge, intraplacental dark T2 bands, myometrial thinning/disruption, loss of
low T2 retroplacental line, bladder wall interruption, focal exophytic placental mass, and abnormal vasculature of the placental bed
(Figs. 4-6) [79]. The first three are widely used in prenatal PAS diagnosis (Table 1). An abnormal uterine bulge appears to have the
strongest performance in diagnosing severe PAS on both ultrasound and MRI. Thiravit et al. evaluated the performance of ultrasound
and MRI features for predicting PAS, with an emphasis on placental bulge signs, and found that on ultrasound, the finding with the
highest accuracy for severe PAS was placental bulge (85.5%), which was associated with sensitivity of 91.7% and specificity of 76.9%;
on MR, the finding with the highest accuracy was also placental bulge (90.3%), which was associated with sensitivity of 94.4% and
specificity of 84.6% [80]. These findings suggest the efficacy of placental bulge has potentially relatively more robust performance on
MRI. Intraplacental dark T2 bands are thought to represent areas of fibrin deposition due to repetitive intraplacental hemorrhage or
infarcts. A retrospective study showed that the most relevant MRI features of PAS were the placental bulge, followed by the dark
intraplacental bands on T2W (sensitivity 0.83/specificity 0.80) [81]. Myometrial thinning/disruption has been described as an early
sign suggesting placenta accreta. When the myometrium is well demonstrated, focal wall interruptions are seen at invasion sites with
placental tissue extending through the breach in case of percreta. In the study by Romeo et al. only the intraplacental dark T2 bands
and myometrium focal interruption were independently associated with PAS after multivariate analysis [82].

MRI was formerly thought to have the advantage of multiplanar imaging and excellent soft tissue resolution, and has demonstrated
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Fig. 4. The uterine/placental bulge sign on MRIL

Fig. 5. The intraplacental dark T2 bands sign on MRIL
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Fig. 6. The myometrial thinning/disruption sign on MRI.

outstanding performance in defining the topography and depth of abnormal placentae [83]. Consequently, MRI is frequently used as a
complementary diagnostic tool to ultrasound in the diagnostic system, and expert opinion recommends its use when ultrasound
evaluation is uncertain [84]. Nonetheless, several recent studies have demonstrated that the diagnostic efficacy of ultrasound and MRI
is comparable [85,86]. MRI does not provide identifiable benefit either in cases of severe PAS suspected by ultrasound or in the
application of posterior and lateral placenta locations [87,88]. The reason for this discrepancy is not only the lack of independent
studies of MRI, which is only used as an adjunct to ultrasound for highly suspected PAS. What’s more, there is a lack of consensus on
standardized reporting of US and MRI for PAS, and the predictive performance of both imaging modalities still heavily depends on the
experience and expertise of the physician.

5.2. Advances in MRI imaging techniques

Admittedly, the use of contrast agents such as gadolinium can improve the conspicuity of MRI and has been shown to compensate
for the lack of experience of radiologists [89]. Gadolinium can enter fetal circulation through the placenta and is discharged into the
amniotic fluid by the fetal kidneys, restricting its use during pregnancy [90]. Thanks to the development of functional MRI techniques,
the prenatal diagnosis accuracy of PAS is significantly improved, and it will not cause adverse effects on fetal development. For
example, diffusion weighted imaging (DWI) intravoxel incoherent motion (IVIM), MR spectroscopy (MRS), blood oxygen level
dependent (BOLD) and others can distinguish heterogeneous placental signals from abnormal vascular signals, making them more
useful for observing the uteroplacental interface and clinical classification (Table 2) [91]. The emergence of radiomics and its
application in medical imaging have overcome the problem of low operator consistency. Peng et al. developed an
MRI-radiomics-clinical-feature-based nomogram for prenatal prediction of PAS, yielding a robust performance both in the training
cohort and external validation cohort [92]. In addition, using machine learning algorithms to analyze the texture features of MRI
images to forecast the incidence of PAS and surgical outcomes is another hot topic in current research [93,94]. Both radiomics and
machine learning algorithms have problems of poor data stability and openness, and there is still a long way to go for their application
in clinical transformation.

6. Combined markers

Assessment of PAS by ultrasound alone has limited sensitivity and may be missed in patients with atypical ultrasound signs. To
improve the accuracy of PAS prediction, researchers developed the placental accreta index (PAI), a predictive equation based on
ultrasound parameters and clinical features in a cohort of women at increased risk of placental invasion. PAI score was generated based
on placental position, number of CS, and a few ultrasonography signals, resulting in an AUC of 0.87 (95% CI 0.80-0.95) [95]. This
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model is often used in pregnancies with a history of CS and PP or low-lying placenta in the third trimester. In addition, PAI holds
promise as a predictor of high-risk pregnant women requiring hysterotomy (Table 3) [96].

Furthermore, Tovbin et al. established a scoring system based on placental position, number of previous CS, and ultrasound signs.
The scoring system is capable of performing risk stratification for pathologically adherent placenta, with 0.9%, 29.4%, and 84.2% in
the low, medium, and high probability groups, respectively (P < 0.0001) (Table 3) [97]. These scoring systems incorporate placental
lacunae and uteroplacental demarcation into the ultrasound criteria. Previous studies have described the relationship between
placental lacunae, obliteration of the uteroplacental interface, and placenta implantation, and the PAI is a more detailed stratification
of postplacental myometrial thickness.

As with the ultrasound PAI, scholars have also proposed a scoring model using six MRI features (intraplacental T2 dark bands,
intraplacental abnormal vascularity, placental bulge, heterogeneous placenta, myometrial thinning, and placental protrusion sign) to
improve diagnostic performance (Table 3) [98]. In addition, Zou et al. constructed an MRI scoring system based on 10 MRI signs and 2
clinical features (number of previous CS, placenta location) that not only assessed the type of pernicious placenta previa, but also
predicted the risk of bleeding [99]. Although these scoring models are somewhat helpful for clinical diagnosis, their acceptance and
validation in clinical practice have yet to be realized.

7. Special types of PAS

The posterior PAS and PAS after IVF-ET (IVF-PAS) are gradually gaining attention because of their low prenatal diagnosis rate and
severe postpartum hemorrhage during surgery. Given this, we specifically overview the current research progress of these two types of
PAS.

A recent meta-analysis of 2619 PAS pregnancies revealed that PP, past uterine surgery (mostly CS or curettage), and multiparity
were related to posterior PAS, and only 52.4% of them could be identified preoperatively on ultrasound [100]. Similarly, Morgan et al.
found that posterior PAS was often associated with assisted reproductive technologies [23]. When exploring the outcomes of posterior
PAS, placenta percreta was present 19%, lower than anterior PAS (47%, P = 0.055), and the ureteral injury was the common surgical
complication (P = 0.037) [23]. Regarding prenatal diagnosis, the US image of placental lacunae, loss of the clear zone, and bladder
wall interruption were observed in the posterior PAS, but the sensitivity was poor. The performance of MRI is better than in the US,
with 73.5% confirmed cases could be detected. However, the distribution of the different signs was less reported [100].

As mentioned above, IVF has been identified as an essential risk factor for PAS. However, the risk factors, pregnancy outcome and
prenatal diagnosis of IVF-PAS have been less explored. A recent study by Yu et al. noted that those with PAS and IVF conception were
less likely to develop PP, previous CS, and the antenatal diagnosis of PAS, with only one-quarter of cases being detected [101,102]. The
incidence of serious maternal complications in the IVF-PAS group did not differ from that of PAS with spontaneous conception [101].
Meanwhile, prenatal ultrasound has a low diagnostic rate for IVF-PAS(<12.9% vs. 46.9%) [102]. Similarly, the prenatal MRI diag-
nostic rate was lower than that of PAS with spontaneous conception, with a sensitivity of 22.2%, specificity of 93.3%, and AUC of 0.578
[103].

Due to the low incidence, these studies were limited by the small sample size. However, considering the severe impact of PAS on the
maternal and fetus, these two particular types of PAS also deserve our vigilance.

8. Conclusion

Due to the high degree of prenatal diagnosis variability, PAS remains one of the most challenging obstetrical disorders. Therefore, it
is crucial to standardize the management of patients with PAS. Risk factors are useful in identifying and categorizing high-risk groups
of people; biomarkers are anticipated to be early screening indicators, and ultrasound is still a first-line aid. In particular, improve-
ments in ultrasound technology and new symptoms have facilitated the classification of PAS and the stratified management of patients.
MRI is still used as an additional diagnostic tool for patients with suspected PAS and to assess the degree of preoperative implantation,
but its true performance needs to be confirmed by independent studies. The prenatal detection rate can be significantly increased by
combining several indications.

Funding statement

This research was funded by the National Key Research and Development Program of China (2022YFC2704500) and the Intelligent
Medicine Research Project of Chongqing Medical University (No. YJSZHYX202117).

Author’s contribution

Xiafei Wu drafted the manuscript, which was then edited by Huan Yang, Xinyang Yu, and Jing Zeng. Juan Qiao contributed to the
creation of the images. Hongbo Qi and Hongbing Xu revised the final version of this manuscript. Xinyang Yu provided financial support
for this project and also served as a guarantor for this paper together with Hongbing Xu.
Ethical review statement

Informed consent was obtained from patients for the ultrasound images cited in this article. The Institutional Review Board of the

10



X. Wuetal

Heliyon 9 (2023) e16241

Table 3

Summary of studies on a scoring system for predicting PAS based on ultrasound and MRI parameters.
Author Combined markers Imaging signs Population characteristics ~ Value
Ultrasound signs
Rac et al. (2015) [95] Placental location; number of (1) loss of retroplacental clear zone; >1 prior CS and PP" or AUC": 0.87

Tovbin et al. (2016)
[971

Tanimura et al.
(2018) [111]

Luo et al. (2019)
[112]

Boroomand Fard et al.

(2020) [113]

Romeo et al. (2021)
[82]

MRI signs
Ueno et al. (2016)
[98]

Chu et al. (2019)
[114]

Delli Pizzi et al.
(2019) [115]

Yan G et al. (2022)
[116]

Zou L et al. (2022)
[99]

Peng L et al. (2022)
[92]

cs?

Placental location; number of
CS

Surgical abortion and/or
uterine surgery; number of CS;
MRI: adherent placenta
suspected

Number of CS;

Smoking; number of CS;

number of CS;
abortion;
placenta previa;

/

dMRI-based feature of
myometrial fiber discontinuity

CS;
Placental location;

PP; history of uterine surgery;

(2) irregularity and width of uterine-
bladder interface;

(3) smallest myometrial thickness;

(4) presence of lacunar spaces;

(5) bridging vessels

(1) placental lacunae;

(2) obliteration of the demarcation between
the uterus and placenta;

(3) color Doppler signals within placental
lacunae;

(4) hypervascularity of the placenta-bladder
and/or uteroplacental interface zone;

(1) lacunae;

(2) Loss of clear zone;

(3) Turbulent blood flow;

(4) Irregular signs;

(1) placental lacunas;

(2) vascularity at the uterus-bladder
interface;

(3) myometrial thickness and loss of
hypoechoic retroplacental zone;

(4) bladder line;

(1) utero-vesical; hypervascularity;

(2) bladder interruption;

(3) new lacunae;

(1) loss of the retroplacental clear space;
(2) myometrial thinning <1 mm,;

(3) placental lacunae;

(4) intraplacental dark bands (IDB);

(5) focal interruption of myometrial border
(FIMB);

(6) abnormal vascularity;

(1) dark band on T2-weighted images;

(2) intraplacental abnormal vascularity;
(3) placental bulge;

(4) heterogeneous placenta;

(5) myometrial thinning;

(6) placental protrusion sign;
placenta-myometrial interface interruption

(1) abnormal vascularity;
(2) percretism signs;

(1) presence of dark band;

(2) discontinuous myometrium;

(3) bladder wall interruption

(1) placental/uterine bulges;

(2) placental heterogeneity;

(3) T2-dark bands in placenta;

(4) abnormal intraplacental vascularity;
(5) abnormal vascularization of the
placental bed;

(6) loss of T2 hypointense interface;

(7) bladder wall interruption;

(8) penetrating implantation;

(9) myometrial thinning and interruption;
(1) uterine/placental bulge;

(2) abnormal vasculature of the placental
bed;

low-lying placenta;

Suspected PAS;
>1 previous CS;

PP;

PP;

>1 previous CS;

PP;

Pathologic-proved PAS;

Pathologic-proved PAS;

PP;

Suspected PAS;

Pernicious placenta
previa;

Pathologic-proved PAS;

High or moderate
probability score:
SEN‘: 91.3%
SPE®: 93.6%

Sen: 91.3%
SPE: 98%

Predicting PAS
severity;

PPV": 96.68%
NPV®: 95.44%

ACC": 100%

AUC: 0.97

AUC: 0.92
ACC: 91.4%

Combined one risk
factor with MRI sign:
ACC: 83.5%

SEN: 92.9%

AUC: 0.833

SEN: 67%

SPE: 100%

AUC: 0.885
SEN: 80.21%
SPE: 86.94%

AUC: 0.91
SEN: 68.8%
SPE: 96%

2 CS, Cesarean section.
b pp, Placenta previa.

¢ AUC, Area under the ROC curve.

4 SEN, Sensitivity.
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¢ SPE, Specificity.

f PPV, Positive predictive value.
8 NPV, Negative predictive value.
b Acc, Accuracy.
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