
7:7 888–896H Honka, J Koffert et al. Bariatric surgery and liver 
blood dynamics

RESEARCH

Liver blood dynamics after bariatric surgery: 
the effects of mixed-meal test and incretin 
infusions
Henri Honka1,*, Jukka Koffert1,2,*, Saila Kauhanen3, Nobuyuki Kudomi4, Saija Hurme5, Andrea Mari6, 
Andreas Lindqvist7, Nils Wierup7, Riitta Parkkola8, Leif Groop7 and Pirjo Nuutila1,9

1Turku PET Centre, University of Turku, Turku, Finland
2Department of Gastroenterology, Turku University Hospital, Turku, Finland
3Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
4Faculty of Medicine, Kagawa University, Kagawa, Japan
5Department of Biostatistics, University of Turku, Turku, Finland
6Institute of Neuroscience, National Research Council, Padua, Italy
7Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
8Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
9Department of Endocrinology, Turku University Hospital, Turku, Finland

Correspondence should be addressed to P Nuutila: pirjo.nuutila@utu.fi

*(H Honka and J Koffert contributed equally to this work)

Abstract

Aims/hypothesis: The mechanisms for improved glycemic control after bariatric surgery 

in subjects with type 2 diabetes (T2D) are not fully known. We hypothesized that 

dynamic hepatic blood responses to a mixed-meal are changed after bariatric surgery in 

parallel with an improvement in glucose tolerance.

Methods: A total of ten morbidly obese subjects with T2D were recruited to receive 

a mixed-meal and a glucose-dependent insulinotropic polypeptide (GIP) infusion 

before and early after (within a median of less than three months) bariatric surgery, 

and hepatic blood flow and volume (HBV) were measured repeatedly with combined 

positron emission tomography/MRI. Ten lean non-diabetic individuals served as controls.

Results: Bariatric surgery leads to a significant decrease in weight, accompanied with an 

improved β-cell function and glucagon-like peptide 1 (GLP-1) secretion, and a reduction 

in liver volume. Blood flow in portal vein (PV) was increased by 1.65-fold (P = 0.026) in 

response to a mixed-meal in subjects after surgery, while HBV decreased in all groups 

(P < 0.001). When the effect of GIP infusion was tested separately, no change in  

hepatic arterial and PV flow was observed, but HBV decreased as seen during the  

mixed-meal test.

Conclusions/interpretation: Early after bariatric surgery, PV flow response to a mixed-

meal is augmented, improving digestion and nutrient absorption. GIP influences the 

post-prandial reduction in HBV thereby diverting blood to the extrahepatic sites.

Introduction

The liver plays a pivotal role in the regulation of human 
glucose metabolism, and defects in hepatic insulin 
signaling predispose to hyperglycemia and type 2 

diabetes (T2D) (1, 2). Portal delivery of ingested glucose 
and other nutrients and hormones secreted from the gut 
and pancreas elicit a shift in hepatic glucose metabolism 
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toward net uptake (3). However, little is known about 
hepatic blood flow and volume (HBV) responses to a 
mixed-meal after bariatric surgery.

The incretin hormones glucose-dependent 
insulinotropic polypeptide (GIP) and glucagon-
like peptide 1 (GLP-1) account for the gut-derived 
amplification of insulin secretion (4). In addition to the 
effect on pancreatic islets, we (5) and others (6) have 
shown that GIP contributes to the redistribution of 
gastrointestinal blood flow after meal ingestion. Whether 
these extrahepatic splanchnic vascular effects are reflected 
by changes in hepatic blood dynamics is not known.

To address this, we quantitated blood flow in portal 
vein (PV) and hepatic artery (HA), and HBV during a 
mixed-meal test and GIP infusion in morbidly obese 
subjects with T2D and age-matched lean controls with 
positron emission tomography/magnetic resonance 
imaging (PET/MRI). The experiments were repeated in 
subjects early after bariatric surgery to clarify the effects of 
altered gastrointestinal anatomy rather than that of fully 
established weight loss on glucose tolerance and hepatic 
blood dynamics.

Materials and methods

Participants

Ten morbidly obese non-smoking subjects with T2D 
(age = 47 (interquartile range 46–59)  years; weight = 121 
(95.3–130) kg; HbA1c = 40.5 (37.8–42.8) mmol/mol) 
participated in the study. A total of nine subjects received 
antidiabetic therapy, whereas one subject was managed 
by diet only. In addition, ten lean non-diabetic controls 
(age = 50 (46–52)  years, P = 0.569) were recruited. The 
study protocol was approved by the Ethical Committee 
of the Hospital District of Southwestern Finland 
(ClinicalTrials.gov Identifier NCT01880827) and written 
informed consent was obtained from all participants prior 
to enrollment.

Study design

Study design and PET experimentation have previously 
been described (7). During the screening visit, a 2-h 
oral glucose tolerance test (OGTT) was performed on all 
participants, and the diagnosis of diabetes was confirmed 
in obese subjects. Thereafter, each participant underwent 
a mixed-meal testing and GIP infusion followed by a PET 
acquisition on two separate days (8). Controls were also 

studied during GLP-1 infusion on a third day. Subjects 
had a drug wash-out period (72 h for metformin and 
dipeptidyl peptidase IV inhibitors, 10  weeks for GLP-1 
receptor agonists and 24 h for antihypertensives) prior to 
the experiments.

Participants reported to the Turku PET Centre 
after an overnight fast. Peripheral catheters were 
placed in both cubital veins, one for blood sampling 
and other for radiotracer and incretin administration. 
Splanchnic blood flow and volume were measured with 
positron emitting 15O-water and 15O-carbon monoxide, 
respectively. The former is a freely-diffusible tracer 
used to evaluate blood flow through tissues, while 
the latter tracer is bound to hemoglobin with high 
affinity. After the whole-body T2-weighted MR imaging, 
baseline 15O-water (median dose 483 (467–507) mBq, IV 
injection) and 15O-carbon monoxide (median dose 769 
(699–800) MBq, inhalation) PET scans of the abdomen 
were obtained (Fig. 1A and B). During the experiments, 
blood was sampled at time points 0, 15, 30, 45, 60 and 
90 min to measure glucose, insulin, C-peptide, glucagon, 
total GIP and active GLP-1.

Bariatric surgery

Surgical procedures (either Roux-en-Y gastric bypass 
(RYGB) or vertical sleeve gastrectomy (VSG), both n = 5) 
were performed after a very-low-calorie diet, as previously 
described (9). Mixed-meal testing and GIP infusion were 
repeated 69 (55–97) and 80 (47–92) days after the surgery, 
respectively.

Mixed-meal test

Participants ingested a 250 kcal liquid meal solution 
(Nutridrink, Nutricia Advanced Medical Nutrition, 
Amsterdam, Netherlands), consisting of 40 g of 
carbohydrates, 6 g of fat and 9 g protein, in 10 min. PET 
scans were repeated twice post ingestion: at 20 and 
50 min for 15O-water, and at 40 and 70 min for 15O-carbon 
monoxide, respectively. These time points were chosen to 
cover accelerated gastric emptying rate, intestinal transit 
and peak GIP and GLP-1 concentrations in the post-
bariatric state.

GIP and GLP-1 infusions

Incretins were supplied by Bachem Holding AG 
(Bubendorf, Switzerland), and prepared in the hospital 
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pharmacy in sterilized water added with 2% human  
serum albumin. GIP infusion was primed at the rate 
of 4.0 pmol/kg/min and after 15 min the rate was 
halved, as previously described (10). On a separate day, 
controls received GLP-1 infusion at the constant rate of  
0.75 pmol/kg/min. PET scans were repeated twice after 
the start of the infusions: at 20 and 50 min for 15O-water, 
and at 40 and 70 min for 15O-carbon monoxide, 
respectively, followed by the discontinuation of the 
infusions.

PET image processing

Raw data were corrected for dead time, decay and tissue 
attenuation with MR-based attenuation correction 
(MRAC) and reconstructed in a 144 × 144 matrix. Hepatic 
regions-of-interests (ROI) were extracted manually 
using GPETView (courtesy of Prof. Hiroshi Watabe, 
downloadable at http://www.rim.cyric.tohoku.ac.jp/
software/gpetview/gpetview.html) and Carimas 2 (Turku 
PET Centre, downloadable at http://turkupetcentre.fi) to 
obtain dynamic 15O-water time-activity curves and static 
15O-carbon monoxide data.

Biochemical analyses and hormone assays

Plasma glucose was measured with the glucose oxidase 
method using a GM9 Analyzer (Analox Instruments, 
London, UK), and plasma insulin and C-peptide were 
determined by the immunochemiluminescent assays 
in the hospital laboratory. Plasma total GIP and active 
GLP-1 concentrations were measured with an ELISA 
kit (EMD Millipore, St. Charles, MO, USA). Glucagon 
was measured using a radioimmunoassay from EMD 
Millipore.

Mathematical modeling

PV and HA flow were estimated using a model dual-input 
functions, as previously described (11). The quantitation 
of HBV was performed using the following formula:

V C CB Liver Blood Liver SV LVHCT HCT= × × ×( / )ρ −1

where VB is the blood volume in liver tissue (in mL/g), 
CLiver and CBlood are radioactivity in liver ROI and 
abdominal aorta ROI (in Bq/mL), respectively, ρLiver is 
liver volumetric density of 1.04 g/mL, and HCTSV/HCTLV 
represent the small-to-large vessel hematocrit ratio of 
0.85 (12, 13). Liver volumes were manually determined 
and used to normalize hepatic blood perfusion and 
volume rates. Insulin sensitivity index (2-h OGIS) and 
model parameters of β-cell function were calculated from 
the OGTT-based data as previously described (14, 15). 
The C-peptide deconvolution method (16) was used to 
estimate insulin secretion rate (ISR) during the mixed-
meal test and infusions. Insulin clearance was calculated 
as the ratio of ISR-to-insulin concentration.

Statistical analysis

Variables have been described using medians with 
interquartile range (IQR). Changes over time and between 
groups were analyzed using repeated-measurements 
ANOVA, and the Tukey–Kramer’s method was used 
to adjust the P values of pairwise comparisons. The 
normality of the residuals was checked for justification 
of the analyses and transformations were used for non-
normally distributed variables. Pearson’s correlation 
coefficient was calculated to explore the correlations 
between variables. Two-sided P < 0.05 was considered 

Figure 1
An example of an abdominal 15O-water PET image (A) during the mixed-meal test in lean non-diabetic control. Experimental study design (B). Arrows 
indicate radiotracer administration and black bars abdominal PET scan, respectively. 15O-CO, 15O-carbon monoxide.
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statistically significant. Statistical analyses were 
performed using SAS System for Windows, version 9.4 
(SAS Institute, Cary, NC, USA).

Results

Subject characteristics

Detailed anthropometric and biochemical data are shown 
in Table  1. Before surgery, obese subjects were insulin-
resistant and hyperglycemic, had higher liver volumes 
and lower rates of insulin clearance when compared 
with controls. Early after surgery weight was decreased 
by a median of 14.7 (12.2–20.4) kg, accompanied with a 
significant reduction in liver volume and improvements 
in glucose sensitivity, insulin clearance and sensitivity, 
and glycemic control, with no difference between RYGB 
and VSG groups (Supplementary Table 1, see section on 
supplementary data given at the end of this article). After 
surgery, five subjects had normal glucose tolerance and 
only two subjects still needed oral antidiabetic medication. 
No further reductions in weight and glycated hemoglobin 
(HbA1c) (Fig. 2A and B) were observed during the 2-year 
follow-up.

Glucose, pancreatic and gut hormones during the 
mixed-meal test

Incremental glucose response to a mixed-meal was 
similar in obese subjects and controls (Fig.  3A).  

After surgery, fasting and 2-h glucose were decreased, 
although incremental glucose response was markedly 
larger and the post-prandial peak in plasma glucose levels 
occurred earlier than before surgery. A similar pattern 
was observed for C-peptide and for ISR (Fig. 3B and C). 
Consequently, insulin clearance was lower during the 

Table 1 Participant characteristics.

  
Controls

Obese  
P*

 
P†

 
P‡Pre-surgery Post-surgery

n (male/female) 10 (2/8) 10 (2/8)
Weight (kg) 61.5 (59.3–66.5) 121 (95.3–130) 103 (81–111) <0.001 <0.001 <0.001
BMI (kg/m2) 23.2 (21.8–24.1) 38.9 (37.4–44.8) 34.4 (30.1–39.3) <0.001 <0.001 <0.001
Body fat (%) 26.0 (23.8–29.9) 49.9 (47.3–51.8) 46.8 (40.0–5.03) 0.005 0.03 0.009
Liver volume (L) 1.3 (1.2–1.4) 2.3 (2.1–2.3) 1.9 (1.6–2.1) <0.001 0.012 <0.001
HbA1c (mmol/mol) 33.2 (32.3–35.2) 40.5 (37.8–42.8) 36.5 (34.0–37.8) <0.001 0.251 0.013
Fasting glucose (mM) 5.0 (4.7–5.2) 7.1 (6.4–7.4) 5.4 (5.1–6.2) <0.001 0.096 <0.001
Fasting insulin (U/L) 3.0 (2.0–6.0) 23.5 (15.5–28.5) 11.0 (8.0–13.5) <0.001 0.007 0.002
Basal ISR (pmol/min/m2) 63.9 (54.1–76.9) 141 (124–167) 108 (99.5–147) <0.001 0.002 0.070
VLDL-TAG (mM) 0.35 (0.30–0.57) 0.77 (0.66–1.04) 0.68 (0.60–0.86) 0.041 0.116 0.505
2-h OGIS (mL/min/m2) 451 (429–481) 306 (272–358) 365 (337–382) <0.001 0.004 0.067
HOMAIR (fraction) 0.9 (0.7–1.3) 4.6 (4.2–7.9) 2.7 (2.0–4.1) <0.001 0.006 0.001
Glucose sensitivity (pmol/min/m2/mM) 75.9 (63.1–91.8) 49.4 (36.2–59.4) 69.5 (59.0–89.6) 0.241 0.999 0.048
Rate sensitivity (pmol/m2/mM) 546 (411–938) 523 (337–807) 796 (621–1014) 0.871 0.763 0.392
Insulin clearance (L/min/m2) 2.8 (2.2–3.2) 1.3 (1.1–1.5) 1.7 (1.6–2.2) 0.002 0.166 0.004

Data are presented as median (IQR).
*P for obese patients pre-surgery vs controls; †P for obese patients post-surgery vs controls; ‡P for obese patients post- vs pre-surgery.
HbA1c, glycated hemoglobin; HOMAIR, homeostatic model assessment of insulin resistance; ISR, insulin secretion rate; OGIS, oral glucose insulin 
sensitivity index; VLDL-TAG, very-low density lipoprotein-triacylglycerol.

Figure 2
Box-plots of study subjects weight (A) and HbA1c (B) during the 2-year 
follow-up. *P < 0.05 vs baseline in linear mixed model with  
Tukey–Kramer’s correction. HbA1c, glycated hemoglobin.
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mixed-meal test than at baseline in all groups (P < 0.001). 
Plasma GIP increased similarly in all groups, whereas 
plasma GLP-1 levels were increased only in subjects 
after having undergone surgery (Fig.  3D and E). Plasma 
glucagon levels were unchanged in controls and increased 
in obese subjects, especially after surgery (Fig. 3F).

Bariatric surgery enhances PV flow response to a 
mixed meal

Basal blood flow in PV and HA were similar in obese 
subjects before surgery and controls, while HBV was 
higher (516 (482–684) vs 398 (373–420) mL, P = 0.046) 
in the former group due to difference in liver volume. 
Mixed-meal did not alter hepatic blood flow at 20- and 
50-min post ingestion, whereas HBV was slightly reduced 
(by 10.3 (3.5–15.0) %, P < 0.001) in both obese subjects 
before surgery and controls (Fig. 4A, B and C). Bariatric 
surgery decreased basal blood flow in HA (P = 0.046 
compared to pre-surgery value) without affecting blood 
flow in PV or HBV (both NS). The effect of mixed-meal 
on HBV (reduction) and blood flow in HA (no change) 

was similar after than before surgery. In contrast, blood 
flow in PV increased rapidly by 1.65-fold from baseline 
(P = 0.026) in both post-surgical groups (Supplementary 
Fig. 1A and B); however, VSG-treated subjects tended to 
have steeper increase in PV blood flow post-prandially 
than subjects in the RYGB group.

HBV response to a mixed-meal is reproduced by 
GIP infusion

During the GIP infusion, supra-physiological GIP 
levels (17) were achieved in all groups, and this was 
accompanied by an increase in ISR (Fig.  5A and B) and 
glucagon (P < 0.001). Plasma glucose decreased in subjects 
before surgery but remained unchanged in controls 
and subjects after surgery (Fig.  5C). Insulin clearance 
decreased by 0.2 (0.0–0.5) L/min/m2 (P = 0.002) from 
baseline during the infusion in all groups. GIP affected 
neither PV nor HA flow (Fig. 5D and E) in any group; HBV 
was decreased in all subjects after surgery by a median of 
89.1 (61.3–119) mL (P < 0.001), but it was less pronounced 
and nonsignificant in controls and subjects before surgery 

Figure 3
Plasma glucose (A), C-peptide (B), insulin 
secretion rate (ISR) (C), total GIP (D), active GLP-1 
(E) and glucagon (F) during the mixed-meal test 
in controls (white balls) and subjects before (black 
balls) and after bariatric surgery (grey balls). Data 
are presented as median (IQR). *P < 0.05 vs 
baseline in linear mixed model with Tukey–
Kramer’s correction.

Figure 4
Portal vein flow (A), hepatic artery flow (B), and 
hepatic blood volume (C) responses to a 
mixed-meal in controls (white balls) and subjects 
before (black balls) and after bariatric surgery 
(grey balls). Values are expressed as blood flow or 
volume per whole liver. The relative contributions 
of portal vein and hepatic artery to the total 
hepatic blood flow were approximately 90 and 
10%, respectively. Data are presented as median 
(IQR). Note the difference in time axis. *P < 0.05 vs 
baseline in linear mixed model with  
Tukey–Kramer’s correction.
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(Fig. 5F). Pancreatic or gut blood flow responses were not 
associated with HBV response in any group.

An opposite effect of GLP-1 was seen on liver blood 
flow in lean controls

Active GLP-1 levels were raised to post-prandial levels in all 
controls, although the response was clearly augmented in 
three subjects (Fig. 6A and Supplementary Fig. 2). ISR was 
increased early after the onset of infusion and decreased 
thereafter to sub-basal levels, and glucose was decreased 
by 1.0 (0.7–1.3) mM despite basal normoglycemia (Fig. 6B 
and C). PV flow decreased whereas HA flow increased late 
after the start of infusion (Fig. 6D and E). In contrast, HBV 
was stable throughout the experiment (Fig. 6F).

Discussion

Bariatric surgery leads to rapid gastric emptying, enhanced 
effect of incretin hormones and reduced liver fat content 
(18, 19, 20, 21, 22), whereas little is known about 
splanchnic blood dynamics after surgical gastrointestinal 
anatomical change. To shed some light on these issues, 
we utilized PET/MRI technology to quantify hepatic 
blood perfusion and volume during a mixed-meal test 
in morbidly obese subjects with T2D before and after 
bariatric surgery, as well as in lean non-diabetic controls.

The most salient finding of our study was that PV 
flow was enhanced post-prandially only in subjects after 
bariatric surgery without significant difference between 
RYGB and VSG groups. This result is in line with our 

previous report (7) showing markedly increased blood 
flow in the gastrointestinal tissues after bariatric surgery. 
Even though both of these surgeries lead to increased 
gastric emptying rate and comparable hormonal 
responses to meal ingestion (19), VSG lacks the foregut 
exclusion (of RYGB) and leaves the pyloric sphincter 
intact; therefore, the dynamics of glycemic response to 
meal and mechanisms of weight loss/diabetes remission 
differ between the two bariatric procedures. This was 
evidenced by the steeper rise in PV flow in VSG-treated 
subjects of the present cohort, which is likely the result of 
the jejunal hyperemia in this group (7). Collectively, these 
data suggest that rapid gastric emptying and intestinal 
nutrient transit elicit a general stimulation in splanchnic 
circulation after bariatric surgery, possibly resulting in 
improved nutrient absorption and post-prandial glucose 
tolerance.

The role of incretins in the regulation of splanchnic 
blood flow is not well characterized. Previous studies in 
dogs have shown that frequent GIP injections lead to 
a dose-dependent increase in PV flow and decrease in 
HA flow, respectively, whereas GLP-1 administration 
induces vasodilation in rat mesenteric arteries (23, 24). 
In the present study, we showed that supraphysiologic 
GLP-1 levels during fasting state actually decrease PV 
flow in lean controls, similarly as in pancreas (5). This 
finding is in concert with a study by Trahair et al. (25), 
who observed a modest reduction in superior mesenteric 
artery (SMA) flow in healthy older fasted subjects. As 
pancreatic islet flow is largely dependent on plasma 
glucose levels (26), we hypothesize that the decrease in 
splanchnic flow observed during GLP-1 administration is 

Figure 5
Plasma total GIP (A), insulin secretion rate (ISR) 
(B), glucose (C), and hepatic blood dynamic 
parameters (D, E and F) during GIP infusion in 
controls (white balls) and subjects before (black 
balls) and after bariatric surgery (grey balls). Data 
are presented as median (IQR). Note the 
difference in time axis. *P < 0.05 vs baseline in 
linear mixed model with Tukey–Kramer’s 
correction.
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caused by hypoglycemia rather than GLP-1 directly. This 
is supported by the fact that the reduction in PV flow 
in our data was observed only when glucose levels had 
fallen significantly when compared with baseline. On the 
contrary, GIP infusion did not affect PV or HA flow in 
any of the studied groups. In our previous report (7), we 
showed that GIP administration increases gut flow and 
decreases pancreatic flow, suggesting that these opposite 
vascular effects are compensated for in the liver.

Post-prandial blood drainage to extrahepatic sites, 
such as skeletal muscle, may improve peripheral glucose 
uptake and reduce glucose excursions (27). Here, we 
showed that a mixed-meal decreased HBV to a similar 
extent in all groups demonstrating a preserved liver blood 
reservoir function in morbidly obese subjects with no 
changes after bariatric surgery. We also show that GIP 
causes a rapid decrease in HBV similar to that observed 
during the mixed-meal test, independent of the changes 
in gastrointestinal blood flow. While the reduced HBV 
response to GIP infusion was most pronounced in obese 
subjects after bariatric surgery, there was a tendency 
towards a decrease in all groups. Given that fractional 
hepatic extraction of GIP is minimal (28), it is likely that 
the reduction in HBV during incretin infusion is secondary 
to the redistribution of blood between gastrointestinal 
(gut and pancreas) and peripheral tissues.

GIP acts as a physiological blood glucose stabilizer 
associated with stimulation of insulin and glucagon 
secretion during hyper- and hypoglycemia, respectively, 
in healthy subjects and in patients with T2D (10, 29). 
Despite transient upregulation of insulin secretion by GIP 
infusion in all groups, plasma glucose was decreased to 

a normoglycemic range only in (hyperglycemic) subjects 
before surgery, suggesting preserved GIP action in the 
pancreatic islets of T2D subjects.

The strengths of our study include the use of PET and 
validated models to estimate hepatic blood dynamics, 
providing detailed information in vivo in humans. 
Additionally, our study subjects were demographically 
similar to previous studies (19, 20) investigating the effects 
of bariatric surgery on whole-body metabolism in subjects 
with T2D. Conversely, we appreciate that this study had 
a few limitations: (1) Our sample size was rather small 
and consisted of surgical subjects who had heterogenous 
operations (although there was no significant difference 
between surgical groups). Furthermore, BMI-matched 
controls were excluded to gain insight on the physiological 
regulation of splanchnic blood flow in normal-weighted 
individuals. (2) The infusion provoked nearly three-
fold higher GIP levels than what was seen during the 
mixed-meal test. (3) In the lack of magnetic resonance 
spectroscopy or liver biopsies, it was not possible to 
quantitate hepatic fat content. However, in another study 
from our group (30), liver fat content was decreased by 
76% six months after bariatric surgery in similar subjects 
as in the present study. These data suggest that a decrease 
in hepatic fat may have occurred in our subjects in 
response to bariatric surgery. (4) GLP-1 was not infused in 
obese subjects due to radiation dose limits.

In conclusion, we have shown that blood flow 
response in portal vein to a mixed-meal is enhanced and 
GLP-1 secretion is stimulated early after bariatric surgery 
in morbidly obese subjects with T2D, suggesting that 
the altered gastrointestinal anatomy in the post-bariatric 

Figure 6
Plasma active GLP-1 (A), insulin secretion rate 
(ISR) (B), glucose (C), and hepatic blood dynamic 
parameters (D, E and F) during GLP-1 infusion in 
controls. Data are presented as median (IQR). 
Note the difference in time axis. *P < 0.05 vs 
baseline in linear mixed model with  
Tukey–Kramer’s correction.
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state improves digestion and nutrient absorption also by 
influencing splanchnic blood flow. On the other hand, 
HBV response to a mixed-meal is influenced by GIP 
thereby diverting blood to extrahepatic sites. These data 
would suggest that incretins are important regulators of 
splanchnic metabolism and blood dynamics, with effects 
extending beyond the pancreatic islets.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
EC-18-0234.
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