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Abstract

Background: The initial phase of sepsis is characterized by hyperinflammation.
Levels of thrombospondin-1 (TSP-1) rise rapidly during acute inflammation. The
purpose of this clinical study was to study the association between plasma TSP-1
levels and mortality in patients with sepsis on the intensive care unit.

Methods: Critically ill adult patients with sepsis, severe sepsis, or septic shock were
included. They were further divided into tertiles based on their baseline plasma TSP-1
concentrations. Primary outcome measure was 28-day mortality. Furthermore,
associations with severity of sepsis and platelet counts were studied.

Results: Two hundred thirty-five patients were included. Median plasma TSP-1
concentrations of the tertiles were 194, 463 and 874 ng/mL, respectively. There were
no baseline differences. Mortality rates (26.6, 16.7, and 16.7%, p = 0.20) and cumulative
survival curves (p = 0.22) were not statistically different between the tertiles. There was
no association of baseline TSP-1 with severity of sepsis (p = 0.08). TSP-1 and platelet
counts were positively correlated (159, 198, and 295 × 109/L, p = 0.04).

Conclusions: Baseline plasma levels of TSP-1 were not associated with mortality and
severity of sepsis in mixed population of septic ICU patients. Further research is needed
to clarify the expression of TSP-1 and to unravel the potential prognostic value of this
biomarker in human sepsis.
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Background
Despite improvements in intensive care medicine, sepsis still has an unacceptably

high mortality rate (18–36%) [1]. Swift recognition of sepsis and proper distinction

of the clinical symptoms from non-infectious inflammation are crucial. Sepsis

should be treated promptly with antibiotics while inflammation does not benefit

from this treatment. In both sepsis and inflammation, the immune system plays an

important role. Its response can be characterized by hyperinflammation initially,

with a subsequent immunosuppressive phase. Immunomodulatory proteins could

therefore serve as biomarkers of both inflammation and sepsis.
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Thrombospondin-1 (TSP-1) is a glycoprotein which is mainly found in the alpha granules

of platelets but is also secreted by many other cells, including endothelial cells, leukocytes,

smooth muscle cells, monocytes, and macrophages, upon stimulation by cytokines, growth

factors, and stress [2–5]. After secretion, it binds with proteins on the cell membrane and

extracellular matrix and is involved in endothelial cell adhesion, motility, and growth, contrib-

uting to platelet aggregation, angiogenesis, wound healing, and the immune response [6, 7].

During acute inflammation, TSP-1 is transiently released and has various effects on the

immune system: it activates transforming growth factor β1 (TGF-β1), induces intense

chemotaxis, negatively regulates T cell activation, induces apoptosis in endothelial cells,

activates neutrophils, and regulates nitric oxide (NO) influencing vasodilatation and chemo-

taxis [4, 8–11]. TSP-1 was identified as an element of gene expression signatures predictive

of poor outcome in pediatric sepsis and in trauma patients [12, 13]. Increased expression of

TSP-1 on platelets in sepsis presumably contributes to sequestration of platelets and thus the

development of the multiple organ dysfunction syndrome [14]. In several animal studies,

TSP-1-deficient mice showed increased survival in Escherichia coli peritoneal sepsis, systemic

candidiasis, and Klebsiella pneumonia, compared to wild type mice [15–17]. Therefore, high

levels of TSP-1 could be associated with poorer outcome in human sepsis. To our know-

ledge, the potential prognostic value of this biomarker has not been studied in human sepsis.

Our hypothesis was that higher levels of TSP-1 were associated with poorer outcome in

septic intensive care unit (ICU) patients. We therefore conducted an analysis on a mixed

cohort of septic patients in the ICU.

Methods
Study design and selection criteria

This cohort study is a retrospective analysis of prospectively collected data in a

6-month period in 2009 in the ICU of the University Medical Center of the Uni-

versity of Utrecht (UMCU) in the Netherlands, an academic hospital with 1042

beds. Our mixed ICU receives admissions from all specialties (surgical, medical,

transplant, cardiosurgical, neurosurgical, trauma, etc.) except burns. The entire

ICU consists of 30 beds and receives over 2200 admissions annually.

The minimum age for inclusion was 18 years. Patients were included whenever they

had a clinical suspicion of sepsis. Sepsis was defined as a combination of a systemic

inflammatory response syndrome (SIRS) on admission and a suspicion of having infec-

tion. SIRS means two or more of the following symptoms: fever (>38.0 °C or <36.0 °C),

white blood cell count (>12 × 109/L or <4 × 109/L), tachypnoea (respiratory rate >20/

min or PaCO2 <4.3 kPa), or tachycardia (heart frequency >90 beats per minute). How-

ever, patients who were anticipated to stay less than 24 hours in the ICU (e.g., planned,

uncomplicated surgical patients) were excluded.

The primary outcome measure was 28-day mortality. The secondary outcome meas-

ure was severity of sepsis. Furthermore, the association of baseline TSP-1 levels with

platelet counts and the use of antiplatelet drugs and heparins were studied.

Procedures and definitions

During the period of research, each newly admitted patient in the ICU was either in-

or excluded based on the abovementioned criteria. Furthermore, patients developing
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SIRS and being suspected of having an infection while in the ICU were also included.

At the time of study inclusion, blood was withdrawn for analysis. On a daily basis,

research nurses collected the patient data (like maximum temperature, heart rate,

leukocyte count, etc.) during a maximum period of 10 days or until discharge or

death. TSP-1 values were not part of the normal clinical routine and were not

made available for attending physicians during the study, and therefore, they did

not influence decision making.

Levels of TSP-1 were measured using a semiautomated ELISA on a Tecan Freedom

EVO robot (Tecan, Switzerland). First, blood was collected in heparin tubes. Before

thawing, 3.2% citrate solution was added in a 1:9 solution:plasma ratio. Samples were

diluted by the Tecan Freedom EVO ELISA robot, using 1% bovine plasma albumin in

phosphate-buffered salt. Captured antibodies R&D mouse antihuman thrombospondin-1

[Catalog DY3074] (0.5 ng/mL) and R&D goat antihuman thrombospondin-1; biotin-

labelled [Catalog DY3074] (100 ng/mL) DAKO streptavidin; and HRP-coupled antibody

[Catalog P0379] (0.71 μg/mL) were coated overnight at 4 °C. Antigens were measured

on separate 384 well Nunc MaxiSorp ELISA plates (Nunc, Denmark). The procedure

is described more in detail in another study [18].

The Centers of Disease Control have published algorithms for “proven infection” of

health care-associated infection and criteria for specific types of infections in the acute

care setting [19]. We adhered to these definitions to classify “possible” versus “proven”

infection. The definitions of sepsis, severe sepsis, and septic shock were in agreement

with a previous publication [20], although an infection did not need to be proven;

suspicion of infection was enough. Patients, who turned out to have no infection, were

subsequently excluded from the analysis.

Statistical analysis

Categorical variables are presented as counts with proportions and continuous variables

as means (with standard deviation) or as medians (with interquartile range), based on

the normality of distribution, determined by the Kolmogorov–Smirnov test. Compari-

sons between tertiles of TSP-1 were made using Pearson’s chi-square test for catego-

rical variables and with the analysis of variance or the non-parametric Kruskal–Wallis

test for continuous variables. The cumulative survival was calculated by applying the

Kaplan–Meier method, and differences in mortality were compared with the log-rank

test. A two-tailed p < 0.05 was considered to indicate statistical significance. Receiver

operating characteristic (ROC) curve is presented, with its area under the curve (AUC)

and 95% confidence interval.

All statistical analyses were performed with SPSS Statistics 21.0 (SPSS Inc., Chicago,

IL, USA).

Results
Patient characteristics

Of the 275 patients in the cohort study [18], 30 patients were excluded because they

were not suspected of having an infection; nine patients were excluded because the

TSP-1 measurements were missing, and one patient with an outlying TSP-1 level on

day 1 was excluded. In total, 235 could be included for analysis. The patients were
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divided into tertiles based on their baseline TSP-1 level. There were no significant

differences in clinical characteristics between the patient groups (Table 1). The distribu-

tions of C-reactive protein (CRP), procalcitonin (PCT) levels, and APACHE IV scores

were not statistically different between the three tertiles of TSP-1.

Mortality

Of the 235 patients, 47 (20.0%) patients died within 28 days. In tertile 1, the mortality

rate during the study period was 26.6% (n = 21), in tertile 2 16.7% (n = 13), and in tertile

3 16.7% (n = 13), which was not statistically significant (p = 0.20). Survival analysis

showed no differences in cumulative survival (p = 0.22) (Fig. 1).

In Fig. 2, the ROC curve is presented, showing the ability of TSP-1 to predict 28-day

mortality, with AUC of 0.58 (95% confidence interval, 0.48–0.67).

Secondary outcomes

In the sepsis group (n = 136), there was a mortality rate of 16.2% (n = 22), in the severe

sepsis (n = 49) 16.3% (n = 8), and the septic shock (n = 50) 34.0% (n = 17, p = 0.02).

Median concentrations of baseline TSP-1 were not significantly different between

patients with sepsis, severe sepsis, and septic shock. In Fig. 3, the interquartile ranges

are shown. Within the tertiles, severity of sepsis was equally distributed (Table 1).

There were statistically significant differences in platelet counts and thrombocytopenia

(<150 × 109/L) between the TSP-1 tertiles (Fig. 4). Thrombocytopenia (n = 70), analyzed

in the total cohort, was associated with mortality (33% versus 14%, p < 0.01). The use of

acetylsalicylic acid (ASA), low molecular weight heparin (LMWH), and unfractionated

heparin (UFH) was not different between the tertiles, as shown in Table 2.

Table 1 Clinical characteristics according to tertiles of baseline thrombospondin-1 concentration

Tertile 1 Tertile 2 Tertile 3 p

n (%) 79 (33.6) 78 (33.2) 78 (33.2)

TSP-1 (ng/mL), median (IQRb) 194 (102–258) 463(399–571) 874 (765–1174)

Men, n (%) 57 (72.2) 50 (64.1) 44 (56.4) 0.12

Age (years), median (IQR) 65 (52–75) 60 (45–70) 62 (52–74) 0.11

BMI (kg/m2), median (IQR) 24.5 (22.6–27.0) 24.8 (22.0–27.0) 23.9 (22.0–27.8) 0.97

Admission via OR, n (%) 20 (25.3) 18 (23.1) 20 (25.3) 0.95

APACHE IV (score), median (IQR) 74 (54–95) 81 (60–97) 72 (55–86) 0.56

CRP (mg/L), median (IQR) 172 (90–285) 215 (145–298) 200 (127–299) 0.19

PCT (ug/L), median (IQR) 1.69 (0.49–7.19) 1.45 (0.37–7.58) 1.82 (0.64–5.07) 0.89

Severity of sepsis

Sepsis, n (%) 43 (31.6) 54 (39.7) 39 (28.7) 0.08

Severe sepsis, n (%) 15 (30.6) 12 (24.5) 22 (44.9)

Septic shock, n (%) 21 (42) 12 (24) 17 (34)

Data are presented as numbers with proportions and medians with IQR (TSP-1, age, BMI, APACHE IV score, CRP, and PCT
are not normally distributed)
TSP-1 thrombospondin-1, IQR interquartile range, BMI body mass index, OR operation room, APACHE Acute Physiology
and Chronic Health Evaluation, CRP c-reactive protein, PCT procalcitonin
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Discussion
The purpose of this clinical study was to study the association between TSP-1 levels

and mortality within 28 days in ICU patients with sepsis. Patients were divided into

tertiles based upon their plasma TSP-1 level at baseline. Values in the lowest tertile

(median, IQR 194, 102–258 ng/mL) were comparable with the range found in healthy

humans (40–250 ng/mL). [21]. In this study, no association between TSP-1 levels and

mortality was found.

Fig. 1 a Mortality (absolute numbers) in different tertiles of TSP-1 do not differ statistically. b Kaplan–Meier
28-day survival plots for the three tertiles, including number of patients at risk

Fig. 2 Receiver operating curve for TSP-1 and 28-day mortality
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There are several hypotheses why high TSP-1 levels are associated with poor

outcome. TSP-1 is secreted upon acute inflammation, cytokine release, and stress.

Furthermore, several comorbidities, such as diabetes, chronic renal failure, chronic

liver failure, and acute myocardial infarction, are associated with higher TSP-1 levels

[21, 22]. Moreover, in animal studies, TSP-1-deficient mice were found to have

lower mortality rates in E. coli peritoneal sepsis, systemic candidiasis, and Klebsiella

pneumonia, and TSP-1 seemed to inhibit inflammatory leukocytes [15–17]. How-

ever, TSP-1-deficient mice might not be comparable with clinical patients with low

plasma levels, given the extensive binding capacity of TSP-1 and its concomitant

multifunctional nature [23]. On the other hand, TSP-1-deficient mice were demon-

strated to have an only slightly different phenotype than their control group, pos-

sibly due to compensation by genetic adaption [24, 25]. In two of these mice

studies, the results were explained by inhibition of macrophages by TSP-1 [15, 16].

However, this inhibition was in vitro, whereas in vivo TSP-1 was found to promote

phagocytosis in atherosclerotic lesions by macrophages and to mediate increased

phagocytosis during hypoxia [26, 27]. Caution should be taken in extrapolating in

vitro observations to in vivo situations, because the influence of TSP-1 on the

inflammation response is complex and depends on multiple factors, including

peroxisome proliferator-activated receptor expression on leukocytes [4] and the

expression of CD36 and CD47. Both pro- and anti-inflammatory activities of TSP-1

have been described, and the effect of TSP-1 seems to be context-related and

cofactor-dependent.

Vice versa, there are also reasons to assume that lower TSP-1 levels are associated

with poor outcome. Platelets are the main source of TSP-1 secretion, and

thrombocytopenia was associated with increased 28-day mortality [28]. Therefore,

thrombocytopenia might lead to lower levels of TSP-1 and yet to higher mortality.

Indeed, in the present study, in the highest TSP-1 tertile, the median platelet counts

Fig. 3 Median levels of baseline TSP-1 plasma levels in sepsis, severe sepsis, and septic shock
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were higher and the incidence of thrombocytopenia was significantly lower than in the

other tertiles. However, the relationship with lower levels of TSP-1 (despite lower

platelet counts) and mortality could not be decerned in this study population.

The use of unfractioned heparin and low molecular weight heparin is associated with

decreased levels of TSP-1 [29, 30]. Aspirin therapy, however, did not influence plasma

levels of TSP-1 in women with breast cancer [31]. We could not find a significant

difference in the use of such medications between the three tertiles. Therefore, the use

of these medications was not a definite confounder in the relationship between TSP-1

and outcome.

A possible explanation for our results is that patients were in different phases of their

course of sepsis at study inclusion. TSP-1 at inclusion of the study do not necessarily

reflect TSP-1 levels at the start of infection. This might also explain why other

biomarkers, such as CRP and PCT, were not different between the tertiles. There are

several limitations that need to be addressed. First, our study population is heteroge-

neous in source and severity of sepsis. For example, in surgical patients, TSP-1 is

Fig. 4 Median platelet counts in the different tertiles of TSP-1

Table 2 Platelets and use of antiplatelet drugs and heparin in the tertiles

Tertile 1 Tertile 2 Tertile 3 p

Platelet count (×109/L), median (IQR) 159 (93–245) 198 (137–272) 295 (201–438) 0.04

Thrombocytopenia (<150 × 109/L), n (%) 35 (47) 23 (32) 12 (16) 0.00

ASA use, n (%) 12 (15) 14 (18) 16 (21) 0.68

Heparin, n (%) None 8 (10) 4 (5) 5 (6) 0.35

LMWH, prophylactic 53 (67) 49 (64) 58 (74)

LMWH, therapeutic 12 (15) 20 (26) 10 (13)

UFH 6 (8) 4 (5) 5 (6)

Data are presented as numbers with proportions and medians with IQR (platelet counts are not normally distributed)
ASA acetylsalicylic acid, LMWH low molecular weight heparin, UFH unfractionated heparin

van der Wekken et al. Intensive Care Medicine Experimental  (2017) 5:7 Page 7 of 10



known to be increased particularly in the first 24 hours after incisional wounds [32].

However, the numbers of surgical patients in the tertiles were comparable. On the

other hand, in a mouse cecal ligation and puncture model, TSP-1 was found to rise in

the first 2 hours and remained high for 72 hours [33]. Second, tissue levels of TSP-1

rise while aging [34]; however, demographic characteristics like age were not different

at baseline. Third, the fact that ICU sepsis is a clinical diagnosis could cause sampling

bias, compromising the external validity of this study. Fourth, the use of suspicion of

infection as inclusion criterion could dilute the discriminative effect of TSP-1, because

patients who turn out to have no infection will be excluded, whereas people with an

infection could have been missed. Last, as with many cohort studies in the ICU,

mortality is not always the direct consequence of the initial problem.

Future research should explore the expression of TSP-1 in human sepsis, while focus-

ing on the influence of pre-sepsis TSP-1 concentrations, its trend during the course of

sepsis, and its association with outcome.

Conclusions
In conclusion, baseline plasma levels of TSP-1 were not associated with mortality and

severity of sepsis in mixed population of septic ICU patients. Further research is needed

to clarify the expression of TSP-1 and unravel the potential prognostic value of TSP-1

in human sepsis.
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