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The association between solar activity and Asian monsoon (AM) remains unclear. Here we evaluate the
possible connection between them based on a precisely-dated, high-resolution speleothem oxygen isotope
record from Dongge Cave, southwest China during the past 4.2 thousand years (ka). Without being adjusted
chronologically to the solar signal, our record shows a distinct peak-to-peak correlation with cosmogenic
nuclide "*C, total solar irradiance (TSI), and sunspot number (SN) at multi-decadal to centennial timescales.
Further cross-wavelet analyses between our calcite '*0 and atmospheric “C show statistically strong
coherence at three typical periodicities of ~80, 200 and 340 years, suggesting important roles of solar
activities in modulating AM changes at those timescales. Our result has further indicated a better correlation
between our calcite $'°0 record and atmospheric *C than between our record and TSI. This better
correlation may imply that the Sun-monsoon connection is dominated most likely by cosmic rays and
oceanic circulation (both associated to atmospheric '*C), instead of the direct solar heating (TSI).

he decadal to centennial changes in AM during the Holocene are considered to be influenced by a wide range

of factors, such as global surface temperature', ENSO?, ice-rafted events®*, snow cover® and solar activity®’.

Among those factors, the solar influence has been intensively studied because of its relative importance as
compared with other forcing mechanisms. Previous studies have shown that at decadal to centennial timescales,
monsoon changes could be sensitive to relatively weak solar signals (e.g., 0.1-0.3% variations in solar output)>*”.
This conclusion was also supported by modeling results®.

The evidence for solar-monsoon connection, however, remains a subject of debate, primarily due to the
following uncertainties and limitations. First of all, dating uncertainties for proxy monsoon records usually
prevent a precise correlation with tracers of solar activities. A good correlation between the monsoon and solar
activity was often obtained by adjusting the chronologies of monsoon proxies to solar signals (e.g., cosmogenic
nuclides) at decadal to centennial timescales>®”. However, this approach was claimed not to produce effective
evidence for the solar forcing hypothesis, partly because of the dependence of a statistic assessment on the
chronology adjustment’. Secondly, noises in monsoon reconstructions likely conceal the record of solar signals.
For example, different stalagmite 3'*O data from the same cave'’ may contain different signals. Different caves™'!,
although locating on the same moisture transportation pathway'', may produce different stalagmite 5'*O data.
The inconsistence among the cave records may be due to different flow-through times, mixing-up conditions in
the epi-karst, and other contingent factors. Thirdly, the strength of correlation may be dependent on selections of
timescales and/or the proxy data for solar activity. For example, at millennial scales, the similarity between our
Dongge Cave record and TSI' is better than that between our record and atmospheric "“C (ref. 3), at centennial
scales. Finally, other competing forcing factors may dampen solar signals. As suggested in a speleothem record
from Oman’, the influence of the solar forcing on the monsoon did not begin to surpass the influence of the glacial
boundary conditions until after the middle Holocene.

Previously-published records from Dongge Cave, southwest China, have provided some clues to the Sun-
monsoon connection over the period of the Holocene™". The wiggled match of those records indicates that some,
but not all, of the monsoon changes at decadal-to-centennial timescales were associated with solar forcing
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Figure 1| Inter-comparison of stalagmite 3'*O records from Dongge Cave, China during the late Holocene. The DA record is from ref. 3, while the D4
record is from ref. 13. Black dots with horizontal error bars are MC-ICPMS U-Th ages (Table S1). Vertical gray bars denote the periods of weak

monsoon events.

changes. Given the uncertainties in the chronology adjustment of the
calcite data to the solar signal® and other non-climatic signals assoc-
iated with site-specific karstic processes, it is therefore necessary to
use a new speleothem record from the same cave to further study the
Sun-monsoon connection. Here we focus on monsoon changes of
the late Holocene at centennial timescale, which could be an ideal
time window for testing the Sun-monsoon connection. This is
mainly because of the dominated centennial-scale solar cycles in both
the tree-ring "“C (ref. 14) and most of published monsoon records".
In addition, at the centennial timescale, age uncertainties in spe-
leothem records are usually on the order of a few decades, which
have less significant influences on the wiggled match. Finally, during
the late Holocene, the glacial boundary condition was relatively
stable's, which also imposed some minimum influences on the
Sun-monsoon connection.

Results

Dongge Cave (25°17'N, 108°5E, Elevation 680 M; Supplementary
Fig. S1), as previously reported by Wang et al. (2005)°, is climatically
influenced by the AM system, featuring warm and humid summer,
and cold and dry winter. The average annual precipitation is

1753 mm, 80% of which occurs during the rainy season (May-
October). The annual mean temperature and relative humidity
inside the cave are 15.6°C and >90%, respectively. Our new stal-
agmite (marked as DAS), growing close to previous stalagmite DA?,
is 590 mm long, and consists of less contaminated calcite.

Twenty-four ***Th dates are established in a stratigraphic order
within uncertainties (20) ranging from 8-97 yr (Supplementary
Table S1). The age model is determined using the StalAge algo-
rithm', which has a mean systematic uncertainty of ~40 yr
(Supplementary Fig. S2). As shown in Figure 1, the stalagmite grew
from 4,200 to 70 yr before present (before AD 1950). A total of 1,178
oxygen isotope analyses were carried out, with an average temporal
resolution of 3.5 yr. Chinese stalagmite 6O time series was sug-
gested to be either related to the strength of summer monsoon cir-
culation®, or to indicate changes in the area-averaged monsoon
precipitation'®. Normally, the smaller stalagmite 6'°O values corre-
spond to stronger monsoon, and vice versa. Although recently being
argued widely'>?, this interpretation was supported strongly by a
recent modeling study®'.

The DAS 8"0O record varies from —8.51%o to —6.94%o, with an
average value of —7.69%o (Fig. 1). The §'®O time-series shows a
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long-term increasing trend, broadly following the Northern Hemi-
sphere summer insolation (Supplementary Fig. S2). The monsoon
indicated by the DAS record has intensified significantly during the
last 0.5 ka, which is also in good agreement with other records from
the same cave’ and from caves located in southwestern China and
southern Oman®’. Superimposed on the long-term trend are a series
of multi-decadal to centennial timescale monsoon events that are
reflected by a substantial variation of 6'*O of more than 0.5%o.
However, all these events do not show a strong correlation with those
among the DA® and D4" records from the same cave (Fig. 1). Based
on a combination of our high resolution DA and DAS records, we
have identified six joint major intervals of the weakest summer mon-
soon at ~0.4, 1.5, 2.1, 2.3, 2.9 and 3.3 ka, considering their age
uncertainties (gray bars in Fig. 1). For example, the events at 2.1
and 2.9 ka in the DA are ~100 yr younger than those in the DAS,
while the event at 2.3 kais ~100 yr older in the DA than in the DAS.
This discrepancy may be due to two potential factors: 1) different age
constraints and dating uncertainties between the two records, and 2)
different noise levels, which may be caused by a wide range of hydro-
logical processes (e.g., different moisture transport pathways, res-
idence times of seepage water). For the D4 record, substantially
varying growth rates and generally low temporal resolution may be
the most important factors responsible for its significant mismatch
from the DA and DAS records. Currently, there are few completely
identical speleothem 8'*O time series varying at multi-decadal to
centennial timescales during the Holocene. Therefore, it is necessary
for us to understand to what extent the two high-resolution §'*0O
records vary in the same manner at those timescales. This evaluation
is of great importance to our following study of the Sun-monsoon
connection.

We have employed three solar parameters: atmospheric “C (ref.
14), SN, and TSI'% to evaluate the Sun—-monsoon connection. The
SN and TSI data were derived, respectively, from "“C reconstruction
from tree rings, and a combination of the tree-ring '*C and '°Be data
from ice cores. Nevertheless, the time series of atmospheric '“C, SN
and TSI differ significantly at centennial timescales, representing
different aspects of solar activities**. The variations in TSI are regu-
lated by the combined effect of dark sunspots and bright faculae,
accounting for the bulk of the Sun’s total magnetic flux. On the other
hand, the variations in atmospheric *C are produced by terrestrial
fluxes of cosmic rays that are governed by a relatively small fraction
of the Sun’s total magnetic flux extending into the heliosphere. Using
these inherently different solar proxies, we can examine how the Sun
exerts its influences on the monsoon changes.

In order to compare centennial-scale changes between time series
of our monsoonal proxies and solar activities, all data were detrended
using singular spectrum analysis. The detrended and 11-point
smoothed DAS 8'*0O anomaly (A'*O) shows strong correlations to
the time series of the detrended atmospheric *C anomaly (A*C)",
ASN* and ATSI at centennial timescales (Fig. 2). The Pearson
correlation coefficients between them are 0.41, —0.36 and —0.28
(n = 153), respectively. Compared with previous studies for the
Holocene solar-monsoon connection®*”'?, our new data provide
additional and robust evidence for the solar forcing. Firstly, without
any chronological tuning, the majority of A'®O variations show a
peak-to-peak correspondence with those in the solar data.
Secondly, there is a striking similarity in both pattern and transition
of major events between the monsoon and the Sun, indicating a
dominated control of solar forcing in centennial-scale monsoon
changes. Thirdly, our A™O record mirrors the A™C record generally
over the whole time series, suggesting a broadly linear response of
monsoons to changes in the solar forcing.

A further wavelet analysis of our AO data produces three
statistically significant periodicities (>95% confidence level) at
~80 yr (Gleissberg cycle'), ~200 yr (Suess or deVries cycle'),
and ~340 yr (unnamed') (Fig. 3a). The Gleissberg cycle is per-

sistent in the entire record. The Suess cycle is pronounced over the
episode from 1.8 to 2.8 ka, while the periodicity of ~340 yr is
dominated over the episodes from 2.9 to 3.5 ka and from 1.2 to
1.5 ka. These cycles correspond to those well-known from "*C (ref.
25, Fig. 3b), '“Be (ref. 25), and TSI'”. The feature of these three
common cycles is demonstrated also by a cross-wavelet spectrum
analysis between our A0 data and A™C records (Fig. 3c).
However, the distribution of these periodicities is not completely
identical to that of the A™C (Fig. 3b). We suggest that this dis-
crepancy could be mainly due to the different age models, and
other factors that may influence the AM changes.

Generally, our new and previous® Dongge Cave records show
pronounced correlations to solar tracers at multi-decadal to cent-
ennial scales during the late Holocene. However, some minor mis-
matches are found between each of the two calcite records and the
solar tracers in a few episodes. Given the high temporal resolution
and intensive age constraint of our two records, we could afford to
make some detailed inter-comparison between them during those
mismatching periods. This inter-comparison may help us confirm
the Sun-monsoon connection. Figure 2a shows the discrepancies
between our two A'*O time series (marked by gray bars). Our DAS
A™O shows two substantially downward shifts relative to the pre-
vious DA record at 2.55 and 1.10 ka. Also, a lead-lag relationship is
observed over the periods centered at 3.36, 1.60, 1.36 and 0.60 ka
(Fig. 2a). However, at those periods of discrepancy, either the DAS or
DA record shows a good correspondence to three solar tracers. For
example, a good resemblance to solar records is observed in the DA,
but not in the DAS record during the aforementioned four periods.
In contrast, at 2.55 and 1.10 ka, a good resemblance to solar records
is observed in the DAS, but not in the DA. Therefore, a combination
of our DA and DAS records could compensate the discrepancy and
support our study of Sun-monsoon connection. On the other hand,
the uncertainties in solar parameters should be considered for evalu-
ating the Sun-monsoon connection. The uncertainties in "*C (ref. 14)
and SN* are so small that their records of solar activities are quite
reliable. Notable are the substantial uncertainties in the TSI™.
However, its good overall resemblance to the DA record reveals its
potential to measure the solar radiation confidentially'>. Taken
together, a combination of the reliable solar tracer and repeatedly-
calibrated Dongge record provides convincing evidence for the Sun-
monsoon connection.

Discussion

Processes for the solar-monsoon connection could be inferred from
the spatial and temporal features of worldwide geological data
recording solar activities. The three centennial-scale solar cycles
(80, 200 and 340 yr) derived from our DAS record were also
observed in many other monsoon proxies, such as two other stalag-
mites from the Dongge Cave®", and other paleoclimatic records far
away from our cave*”'>*>?***’_ Therefore we may consider these solar
cycles to be ubiquitous® . On the other hand, these solar cycles were
also found during the last deglaciation, including the Allered inter-
stadial’ and Younger Dryas stadial®*, the marine isotope stage 3 (ref.
33), and earlier epochs up to hundreds of millions years ago®. The
persistent presence of these solar cycles and their connections with
monsoon records over a wide range of regions highlight the domi-
nated solar control of the monsoon at centennial timescales. The
persistence of these different periodicities also indicates that the
influence of the low-frequency solar activity on the AM is independ-
ent of other climate backgrounds, such as ice volumes, orbital con-
figurations, and concentrations of major greenhouse gases. The
pronounced influence of the centennial-scale solar activities may,
therefore, be amplified by some mechanism that has a global influ-
ence. The centennial-scale cycles have been suggested to be related to
changes in the ocean component of the Earth’s climate system® .
The small solar variations could be amplified by ocean salinity
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Figure 2 | Inter-comparison between Dongge Cave A'*O isotopic data and solar activity proxies. The DAS A'®O record (green) is plotted against

the records of DA A'O (grey, A), A"C (orange, B), ASN (pink, C) and ATSI (purple, D). For the best correlation of two datasets, the chronology for the
DAS record has been shifted older by 40 years and the one for the DA record younger by 47 years. Intensive solar activity (smaller A"C, larger ASN and
ATSI) corresponds to a strong AM (smaller A'™O). Vertical yellow bars indicate the weakest solar activity.

changes in the North Atlantic, which then transmit the signals
globally through the North Atlantic deep water formation and ther-
mobhaline circulation. The importance of centennial solar cycles
in the North Atlantic is supported by a close correlation between
"“C and 'Be, and the amount of ice-rafted debris in deep-sea
sediment cores®. Additional evidence for the solar influence on
ocean circulations is that a quasi-periodicity of 1,470 yr for the

successive Dansgaard-Oeschger events may result from the super-
position of the two cycles of 87 and 210 yr (ref. 39). In our DAS
record (Fig. 1), the three weak monsoon events (at 0.4, 1.5 and
2.8 ka) are, within dating errors, in phase with the ice-rafting
events in the North Atlantic. This suggests that these monsoon
failures may be related to the cold episodes in the northern high
latitude. Other weak monsoon events, not strongly correlated to
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Figure 3 | Continuous transform wavelet spectra for the DAS A'*O (A) and A'*C (B) data, and cross-wavelet spectrum between them (C). Spectral
power (variance) is shown by colors ranging from deep blue (weak) to deep red (strong). Gleissberg cycle at ~80 yr, Suess cycle at ~200 yr and unnamed
cycle at ~340 yr are marked using horizontal, gray dashed lines. Black boundaries mark 95% significance level.

the ice-rafting events, are probably produced by other internal
feedbacks of the climate system.

Physical mechanisms of solar forcing on the Earth’s climate
involve: 1) direct heating of the Earth by the TSI*, 2) solar ultraviolet
radiation mechanism through stratosphere-troposphere inter-
action®, and 3) galactic cosmic rays mechanism via feedbacks of
cloud formation*'~**. Despite the general resemblance between the
A™O and ATSI records, large downward shifts in the ATSI record,
relative to the A™C and ASN records, appear significantly incoherent
with the calcite A™O record at ~1.2, 2.3 and 2.7 ka (Fig. 2d). At the
three mismatches, the A™C shifts by ~10%o at 1.2 ka and 20%o at 2.3
and 2.7 ka, much larger than the data uncertainties of 1.3-2.3%o (1.2
and 2.3 ka) and 1.6-2.7%o (2.7 ka) (ref. 14). However, the ATSI shifts
by ~0.9 W/m® (1.2 ka) and 1.2 W/m? (2.3 and 2.7 ka) (ref. 12), only
two to three times larger than the uncertainties of 0.38-0.41, 0.40-
0.50 and 0.38-0.48 W/m?>. If the TSI shifts with an amplitude of ~0.4
at ~1.2, 2.3 and 2.7 ka (the box in Fig. 2) are not induced by the
uncertainties, solar influence on the monsoon may be not through
the direct heating but the other processes. The better correlation
between the A'™O and the atmospheric A“C than between the
A™0O and the ATSI record supports the forcing mechanism of cosmic
rays. Generally, an increase of cosmic ray flux could increase the
global low cloud amount and therefore decrease atmospheric tem-
perature and moisture*, and the monsoon intensity. Alterna-
tively, if the variation in cloud cover is greater at higher latitudes*,
the cloud influence on the AM is likely also associated with the ocean
circulation, because the high sensitivity of the sea ice at high latitudes

to the Earth’s radiation budget is influenced by the cloud cover®.
The link between cosmic rays, cloud and climate in East Asia is
further supported by a tree-ring 8'®0 record in Japan during the
Maunder Minimum®, which shows that minima of decadal solar
cycles correlate to increase in relative humidity in East Asia, rapid
cooling in Greenland and decrease in Northern Hemisphere mean
temperature.

In conclusion, without chronological tuning, our newly obtained
Dongge data confirm the importance of the solar influence on the
AM, and provide direct and robust evidence for the Sun-monsoon
connection at centennial timescales. The strong connection high-
lights the importance of solar forcing in predicting future AM
changes, which will affect almost two thirds of the world population.
Despite the pronounced correlation between the AM changes and
global warming since the 1600s (refs. 47, 48), it is still unclear
whether the greenhouse gas forcing has taken over the solar forcing
as the major driver of AM changes, especially since AD 1950. We
must wait for more sophisticated climate models, involving the ocean
circulation*” and cloud feedbacks™.

Methods

U-Th dating was carried out at the Minnesota Isotope Laboratory, University of
Minnesota, and at the High-Precision Mass Spectrometry and Environment Change
Laboratory (HISPEC), Department of Geosciences, National Taiwan University. A
total of twenty-four sub-samples were collected for the dating. About 0.1-0.2 g
samples of powder were taken by milling along the growth axis with a hand-held
carbide dental drill. Procedures for chemical separation and purification of uranium
and thorium are similar to those described in refs. 51 and 52. Measurements were
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made on a Finnigan ELEMENT inductively coupled plasma mass spectrometer (ICP-
MS) equipped with a double-focusing sector magnet and energy filter in reversed
Nier-Johnson geometry and a single MasCom multiplier in Minnesota, following
procedures modified from ref. 53. In Taiwan, U-Th isotopic compositions and con-
centrations were determined on a Thermo-Fisher NEPTUNE multi-collection
inductively coupled plasma mass spectrometer (MC-ICP-MS) (ref. 54).

For 3'°0 analyses, a total of 1178 sub-samples of 50-100 pig powder were obtained.
The sub-samples were collected with a dental drill bit of 0.3 mm in diameter from the
polished surface at an interval of 0.5 mm. All of the measurements were performed in
the Isotope Laboratory of Nanjing Normal University on a Finnigan MAT-253 mass
spectrometer. The precision of 3'°0 is 0.06%o at the 1-sigma level.

Programs for continuous wavelet transform and cross wavelet transform are
downloaded from Grinsted et al. (2004)>° (available at http://noc.ac.uk/using-science/
crosswavelet- wavelet-coherence).
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