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Structural biology comprises a variety of tools to obtain atomic resolution data for
the investigation of macromolecules. Conventional structural methodologies including
crystallography, NMR and electron microscopy often do not provide sufficient details
concerning flexibility and dynamics, even though these aspects are critical for the
physiological functions of the systems under investigation. However, the increasing
complexity of the molecules studied by structural biology (including largemacromolecular
assemblies, integral membrane proteins, intrinsically disordered systems, and folding
intermediates) continuously demands in-depth analyses of the roles of flexibility and
conformational specificity involved in interactions with ligands and inhibitors. The intrinsic
difficulties in capturing often subtle but critical molecular motions in biological systems
have restrained the investigation of flexible molecules into a small niche of structural
biology. Introduction of massive technological developments over the recent years,
which include time-resolved studies, solution X-ray scattering, and new detectors for
cryo-electron microscopy, have pushed the limits of structural investigation of flexible
systems far beyond traditional approaches of NMR analysis. By integrating these
modern methods with powerful biophysical and computational approaches such as
generation of ensembles of molecular models and selective particle picking in electron
microscopy, more feasible investigations of dynamic systems are now possible. Using
some prominent examples from recent literature, we review how current structural biology
methods can contribute useful data to accurately visualize flexibility in macromolecular
structures and understand its important roles in regulation of biological processes.

Keywords: structural biology, molecular recognition, protein flexibility, nuclear magnetic resonance, Small-angle

scattering, X-ray crystallography, ensembles, cryo-electron microscopy

INTRODUCTION

Nearly all known biological processes require precise and often highly regulated interactions
among macromolecules to exert macroscopic events including signal transduction, metabolism,
tissue homeostasis, immune responses, and development. To perform their functions, biomolecules
can adopt a multitude of conformations, including highly dynamic states and excited transition
intermediates essential for enzymatic catalysis, signaling regulation, and protein–protein
interactions (Petsko and Ringe, 1984; Vucetic et al., 2003; Eisenmesser et al., 2005; Lindorff-
Larsen et al., 2005; Levitt, 2009; Motlagh et al., 2014; Chakravarty et al., 2015). The extent of
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the motions enabling these functions ranges from
conformational changes limited to few angstroms displacements
of side-chain rotamers (Fraser et al., 2009), to larger motions
involving flexible stretches of amino acids (Qin et al., 1998;
Williams et al., 2014), to broad subunit rotations involving
molecular rearrangements of several nanometers (Bennett and
Huber, 1984; Korostelev and Noller, 2007; Forneris et al., 2010;
Menting et al., 2013).

A deep understanding of conformational variability in
macromolecules is a fundamental step forward in our knowledge
of key biological processes. Flexible regions are critical elements
for recognition of macromolecular interactions, and acquire
even more fundamental roles when modifications altering the
binding kinetics and/or affinity alter the overall biological
significance of such interactions (Lim, 2002; Ekman et al.,
2005; Levitt, 2009; Forneris et al., 2012). A valuable example is
provided by the molecular recognition displayed in numerous
epigenetic regulators of post-translationally modified histone
tails, frequently resulting in opposite gene expression states
depending on the readout of the specific histone tail reader or
modifier involved (Bowman and Poirier, 2015; DesJarlais and
Tummino, 2016; McGinty and Tan, 2016). Other paradigmatic
examples include the conformational changes displayed by
receptor tyrosine kinases during ligand-mediated activation of
signaling cascades (Menting et al., 2013; Nikolov et al., 2013), or
the flexibility between Fc and Fab regions in immunoglobulins,
critical for antigen recognition (Tainer et al., 1984; Lilyestrom
et al., 2012).

Given their elusive nature, dynamic processes are amongst
the most difficult to characterize. Molecular flexibility often
remains obscured in structural biology research, as demonstrated
by our limited structural knowledge of events such as protein
folding, allosteric mechanisms, as well as the difficulties in the
characterization of intrinsically disordered proteins (Vucetic
et al., 2003; Wright and Dyson, 2009; de Amorim et al.,
2010; Motlagh et al., 2014; Kachala et al., 2015). Nevertheless,
the importance of understanding the precise contributions of
flexibility in macromolecular systems has long been recognized
by the structural biology community (Petsko and Ringe, 1984;
Rejto and Freer, 1996; Wilson and Brunger, 2000; Levitt, 2009;
Tompa et al., 2014; Woldeyes et al., 2014).

Contemporary methods can provide very useful, but still
limited, concepts regarding dynamically random systems such
as intrinsically disordered proteins (Vucetic et al., 2003;
Bernadó and Svergun, 2012; Kachala et al., 2015). On the
other hand, the investigation of flexibility associated to
conformational changes can highly benefit from the latest
methodological advances in structural biology. For example, very
recent studies using cryo-EM are now providing descriptions
of molecular architectures and functions that were barely
imaginable a few years ago (Kühlbrandt, 2014; Bai et al.,
2015a; Callaway, 2015; Merk et al., 2015). Next to the
advances in cryo-EM, characterizations of transiently interacting
systems using crystallography and solution techniques also
contribute crucial details on how conformational changes often
enable unpredictable intermolecular contacts, generating specific
binding platforms for ligand binding and/or catalysis (for recent

examples, see Forneris et al., 2010; Rasmussen et al., 2011;
Menting et al., 2013; Dong et al., 2016; Thach et al., 2016).
Analysis of these results often highlights how our current
understanding of biological mechanisms suffers the limitations of
conventional “single model” structural characterizations, lacking
fundamental regulation aspects frequently mediated by allostery
or conformational dynamics.

The outcome of a successful structural biology study is a
resolution-dependent three-dimensional representation of the
molecular architecture of the system of interest, accurately
reconstructed from the experimental data with the help of
computational tools. In general, the investigation focuses on well-
folded macromolecules, usually homogeneously purified in non-
native conditions. The resulting characterization (and the related
investigation of molecular flexibility) is necessarily influenced by
the technique of choice. Depending on the approach, sample
preparations include a variety of buffer solutions, crystals,
vitreous ice, or heavy atom staining, which may severely impact
on the nature of the intrinsic dynamics and interactions displayed
by macromolecules. Furthermore, using techniques such as
crystallography or cryo-EM, interpretation artifacts may arise
from trapping the molecules inside three-dimensional crystal
lattices or vitreous ice, respectively (Isenman et al., 2010; van
den Elsen and Isenman, 2011). Sample preparation conditions
for solution studies are usually more gentle, however techniques
such as biological NMR require isotope labeling and high sample
concentrations, which are anything but physiological and may be
as prone to artifacts as crystallography or cryo-EM (Clore et al.,
1994, 1995).

In many cases, structural models only implicitly include data
about protein dynamics and conformational heterogeneity. Such
information is often inferred by the absence of interpretable
electron density from X-ray diffraction and electron microscopy
data, by a limited number of distance/orientational restraints
in nuclear magnetic resonance (NMR), or by lack of detailed
features in small-angle X-ray scattering (SAXS) curves, usually
indicating multiple co-existing conformations or oligomeric
states in solution (Pelikan et al., 2009; Bernadó, 2010; Fenwick
et al., 2014; Lang et al., 2014; Rawson et al., 2016). Despite
providing clear indications for the presence of molecular
flexibility, these implicit information do not enable visualization
and understanding of the physiological roles of dynamics in the
biological system of choice, or their possible contributions to
molecular recognition (Burnley et al., 2012; Lang et al., 2014;
Woldeyes et al., 2014). Furthermore, even when detailed time-
resolved studies are achievable (Schmidt et al., 2004; Doerr,
2016), understanding the physiological time correlation between
the various recorded states remains a challenge (Schmidt et al.,
2004; Woldeyes et al., 2014; Correy et al., 2016). For example,
mapping the allosteric continuum of functional conformations
involved in ligand binding and downstream signaling in highly
dynamic G protein-coupled receptors is still experimentally
unreachable (Westfield et al., 2011). It’s like watching isolated
frames of a movie without knowing exactly how to connect the
various scenes.

Here, we review the most recent developments in
experimental investigation of dynamics and flexibility using
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structural biology, focusing on examples related to molecular
recognition. Given the very large number of outstanding three-
dimensional structures published every week, we do not aim
to provide a comprehensive overview of the literature. Instead,
we try to shed light on a few recent cases that, in our opinion,
effectively illustrate the usage of conventional and modern
structural biology techniques to visualize molecular flexibility
and understand its biological functions. By also increasing the
appetite toward incoming near-future developments of structural
biology investigation, we hope that our work will inspire more
researchers to consider this relatively poorly explored field.

CRYSTAL STRUCTURES OFFER MORE
THAN ISOLATED STATIC
CONFORMATIONS

Crystal Structures and Flexibility: Is B
Factor Analysis Sufficient?
Over the last half-century, X-ray crystallography has been
the most used and useful methodology to elucidate three-
dimensional structures of biological macromolecules. The
investigation of protein dynamics using X-ray diffraction is
not novel (Petsko and Ringe, 1984); however, for studies
involving molecular flexibility, crystallography is likely one of
the least considered approaches to tackle such challenges. Most
entries in the Protein Data Bank (PDB) (Berman et al., 2003)
derived from X-ray diffraction data are presented as static,
conformationally averaged structural models regularly trapped in
a three-dimensional lattice. However, even in crystal structures
proteins are all but rigid, and constantly sample conformational
substates that may be highly relevant for their biological
functions (Frauenfelder et al., 1991; Fenwick et al., 2014; Xue
and Skrynnikov, 2014; Ma et al., 2015). This is confirmed
by exploring dynamics in X-ray diffraction datasets collected
at different temperatures (i.e., from crystals frozen in liquid
nitrogen and at room temperature (RT)). RT crystallography
experiments, although much more sensitive to radiation damage,
can indeed provide extensive information about molecular
motions in a nearer physiological environment than at liquid
nitrogen temperatures (Fenwick et al., 2014; Woldeyes et al.,
2014).

Information about molecular motions is incorporated inside
X-ray crystal structures through B factors, which represent
temperature-dependent vibrations from average atomic positions
(García et al., 1997). Depending on the resolution, B factors
may parameterize thermal motions associated to individual
atoms, isotropically or anisotropically. B factors essentially
quantitate the uncertainty of atomic positions, and include
convoluted information about molecular flexibility, crystalline
disorder, discrepancies between model and data, as well as
the quality of structural refinement. However, dissecting the
individual contributions of these elements to B factors is not
possible (Vitkup et al., 2002; Kuzmanic et al., 2014). Pure
B factor analysis may thus lead to inaccurate interpretation
of molecular flexibility, particularly when the end users are
non-crystallographers (Wlodawer et al., 2008). A translation,

libration and screw (TLS) model can additionally account for
anisotropic deviations for groups of atoms identified based on
their involvement in molecular motions. Each atom of the
group is approximated as part of an ideal rigid body that is
displaced normally about a mean position (Winn et al., 2001;
Urzhumtsev et al., 2015). Analysis of anisotropy of the various
TLS groups in a PDB file can provide an additional layer
of information about molecular flexibility, complementing the
atomic B factors. TLS analysis often highlights domain motions
in large systems (Mouilleron and Golinelli-Pimpaneau, 2007),
or local rearrangements of highly flexible motifs inside enzyme
catalytic sites (Tanner et al., 1993), or highly flexible solvent-
exposed regions of macromolecules (Van Benschoten et al.,
2015).

Regions with weak or non-interpretable experimental electron
density due to high flexibility are usually modeled with a
single conformer with elevated B factors, or not modeled
at all (Schneidman-Duhovny et al., 2014; van den Bedem
and Fraser, 2015). Besides the complexity associated to the
significance of B factors and TLS components in measuring
flexibility in crystal structures, it is now broadly accepted
that B factors per se overall underestimate molecular motions
(Vitkup et al., 2002; Fenwick et al., 2014; Kuzmanic et al.,
2014; Woldeyes et al., 2014). Such underestimation becomes
particularly critical in highly dynamic regions (Janowski et al.,
2013; Kuzmanic et al., 2014). Recently, it has been suggested
that TLS models used during structural refinement may have
the potential to highlight correlated motions in crystal structures
(Urzhumtsev et al., 2013, 2015). However, as during refinement
TLS groups do not correlate with each other, there may be
several different combinations of TLS groups equally well fitting
the electron density. For this reason, analysis of TLS groups
used in structural refinement to detect correlated molecular
motions is far from immediate and reliable (Urzhumtsev et al.,
2015; Van Benschoten et al., 2015). Accurate determination
of experimental diffuse X-ray scattering from macromolecular
crystals may facilitate motion analysis using TLS, because
different TLS models yield markedly different computationally
predicted diffuse patterns (Pérez et al., 1996; Héry et al.,
1998). Thus, accurate comparison of computed and experimental
diffuse scattering patterns could allow discriminating between
correlated and non-correlated variations in the electron density
distributions, enabling identification of a TLS configuration
representative of true molecular motions. The first tools to
perform these computational analyses are nowadays available
(Van Benschoten et al., 2015).

Numerous studies have emphasized the signatures of
dynamics in crystallographic data, suggesting that the molecular
motion details can be extrapolated from weak experimental
electron densities much further than using simple thermal
motion analysis (Lang et al., 2014; Woldeyes et al., 2014; Van
Benschoten et al., 2015). Indeed, the presence of extensive
disorder resulting from conformational heterogeneity and
crystal-lattice distortions is frequently detectable (Kruschel and
Zagrovic, 2009; Burnley et al., 2012; Ma et al., 2015). The
weaker electron density regions include noise from experimental
and model errors, but also convoluted details compatible with
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populations of alternative polypeptide and side-chain rotamers,
and low-occupancy ligands. These multiple conformations are
averaged across unit cells in space, and also within unit cells in
time during the X-ray diffraction experiment (Levin et al., 2007;
Terwilliger et al., 2007; Lang et al., 2014; Woldeyes et al., 2014;
Van Benschoten et al., 2015). Separating the information about
molecular flexibility in electron density maps from the noise due
to experimental error and crystal lattice distortions holds massive
potential, as it will facilitate enzyme inhibitor development and
drug discovery, connect macromolecular motions to biological
functions, and provide a visual support to molecular flexibility
(Burnley et al., 2012; Lang et al., 2014).

Dissecting Molecular Flexibility in Crystal
Structures Using Ensemble Refinement
How can we accurately extrapolate the true structural diversity
of biomolecules from X-ray diffraction data, without the risk
of misleading interpretations? Multiple strategies have been
developed over the last 20 years, but due to technical complexity,
limitations in applicability, and initial methodological failures,
they never spread broadly throughout the structural biology
community. The common theme of these methods is that
distributions of molecular conformations (similar to NMR
ensembles) may provide more accurate and complete
representations of a protein’s native state also in crystal
structures (Best et al., 2006; Levin et al., 2007; Terwilliger
et al., 2007; van den Bedem et al., 2009; Tyka et al., 2011;
Burnley et al., 2012; Woldeyes et al., 2014; Xue and Skrynnikov,
2014; Clark et al., 2015). Two main strategies allow generation
of molecular ensembles from X-ray datasets, time-averaged
(Burnley et al., 2012) and multiconformer (van den Bedem
et al., 2009) ensemble refinement (ER). Both methods fit the
experimental electron density better than a single structural
model, without overfitting the data as occurred with original
developments of time-averaged ER (for a recent review on ER
methods, please see Woldeyes et al., 2014). In time-averaged
ER, generation of multiple conformers is assisted through
X-ray data-restrained molecular dynamics (MD) simulations,
which generate optimal superpositions of a subset of structural
models that fit the electron density. The procedure automatically
restricts the final number of conformations in the ensemble
models by running short MD simulations (0.25–2 ps), preventing
data overfitting. Critical parameters for ensemble refinement
are the relaxation time of the simulation (which depends on
data resolution) and the percentage of atoms used for TLS
grouping (Burnley et al., 2012). Usually, these two parameters are
determined empirically through parallel ER runs, by selecting
the combination which yields the best refinement statistics
(based on Rwork/Rfree values; Burnley et al., 2012; Burnley and
Gros, 2013). In multiconformer ER, the selection of the optimal
number of conformations for each segment of the molecule is
based on how well each segment fits the experimental density
(van den Bedem et al., 2009). Therefore, time-averaged ER
structures include multiple models with the same number of
states throughout the entire macromolecular sequence, whereas
multiconformer ER models display a variable number of states

within specific regions of the crystal structure, depending on the
quality of the experimental electron density (Woldeyes et al.,
2014). The result of ER is, therefore, a set of superimposed
molecular models, more similar to the final output of an NMR
structural investigation than a crystal structure, with increasing
deviations from the average conformation for the highly flexible
regions and nearly perfectly superimposed conformations in
the more rigid portions of macromolecules (Figure 1). Flexible
elements are shown with a “bouquet” of conformations, each one
representing just a fraction of the total population that fits the
poorly defined electron density of the highly dynamic region.
However, when considered altogether, structural ensembles
capture the multiple conformations displayed by various regions
of the crystallized macromolecules, poorly represented and hard
to understand by B factor analysis (Lang et al., 2014; Woldeyes
et al., 2014). Even though these methods are not recent, their
diffusion has so far been very limited, mostly due to the heavy
computational resources that are needed to generate reliable
ensembles (Burnley and Gros, 2013; van den Bedem and Fraser,
2015). However, there is strong interest about their potential as
standalone methods for the investigation of structural dynamics,
as demonstrated by the increasing number of publications
making use of these strategies for the analysis of conformational
flexibility (Fenwick et al., 2011; Forneris et al., 2014; Bianchetti
et al., 2015; Weerth et al., 2015; Cao et al., 2016; Langan et al.,
2016).

Examples of successful application of ER include the accurate
analysis of flexibility in proline isomerase in diffraction datasets
collected at different temperatures (Fraser et al., 2009; Burnley
et al., 2012), ubiquitin (Fenwick et al., 2011; Burnley et al., 2012),
dihydrofolate reductase (Fenwick et al., 2014) and thrombin
allostery (Forneris et al., 2014), revealing functional features
consistent with experimental biophysical characterizations in
solution (Eisenmesser et al., 2005; Huntington, 2008; de Amorim
et al., 2010; Lechtenberg et al., 2010; Fenwick et al., 2014). Using
time-averaged ER on high resolution data collected from protease
complement factor D (FD) crystals, it was possible to highlight
dramatic conformational dynamics in regions where the electron
density was poorly defined after conventional refinement. In this
case, the ER analysis revealed an unprecedented aspect of FD
biology, showing that this protease undergoes a highly flexible
intermediate state during recognition and interaction with
its macromolecular substrate. Such dynamics, purely observed
inside a crystal structure (with fluctuations reaching 5–6 Å
from average atomic positions in the most flexible areas), is
reminiscent of thrombin allostery associated to ligand binding.
However, in FD this flexible state is constrained between a
remarkably rigid inactive state and a likewise rigid substrate-
bound conformation, as observed in free and substrate-bound
crystal structures (Narayana et al., 1994; Forneris et al., 2010,
2012, 2014).

It should be noted that experiment temperature, crystal
packing contacts, and distortions in the crystal lattice will
have a strong influence on the ER models and may affect
the overall interpretation of structural dynamics. Therefore,
ER users should keep in mind that, although very powerful,
even in a perfect crystalline sample ER models will always
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FIGURE 1 | Visualizing molecular flexibility using structural ensembles. Ensemble refinement of macromolecular crystal structures: from a single, B factor-
weighted static model to a superimposed “bouquet” of structural conformations, providing deeper understanding of local flexibility even inside the crystal lattice. The
structural models (represented as sticks) and electron density maps (blue mesh, 2Fo–Fc maps contoured at 1.2 σ) for single- and ensemble-refined data were from
PDB files 4CBN and 4CBO, respectively (Forneris et al., 2014). The structures are colored based on their isotropic atomic B factors, using the same scale from 10
(blue) to 100 (red) Å2. Figure prepared using PyMol (Schrödinger, LLC, 2010).

capture the conformational dynamics of molecules constrained
inside a crystalline state, which may differ strongly from what
happens in solution (Fenwick et al., 2014; Woldeyes et al., 2014).
Furthermore, ER methods only provide a better sampling and
clearer visualization of what the experimental electron density is
already showing. Very likely, non-interpretable highly disordered
regions of the electron density will remain non-interpretable, and
ensemble models will simply facilitate the visualization of such
disorder and high flexibility. Analogous considerations should
be made for low-resolution data (below 3 Å), where structural
ensembles are unlikely to provide useful information (van den
Bedem et al., 2009; Burnley et al., 2012; Burnley and Gros, 2013;
Woldeyes et al., 2014).

Adding a Fourth Dimension:
Time-Resolved and Kinetic
Crystallography
Time-resolved crystallography experiments using synchrotron
radiation constitute an interesting although rather minor

branch of structural biology focusing on structural dynamics
(Bourgeois and Royant, 2005; Graber et al., 2011). Depending
on the implemented methodology, methods such as pump-
probe Laue diffraction and freeze-capture kinetic crystallography
allow obtaining time resolutions from seconds to hundreds of
picoseconds (Lindenberg et al., 2000; Schotte et al., 2004, 2012).
These methods proved highly successful in exploring enzyme
mechanisms and variations in reactive centers (Bourgeois
and Royant, 2005; Kim et al., 2012). Pump-probe Laue
crystallography is the traditional approach to time-resolved
investigation. This technique combines collection of diffraction
patterns from multi-wavelength X-ray pulses after triggering
reactions within crystals, typically using a laser pump-pulsed
source of X-ray, visible or infrared radiation (Spence et al.,
2012). By performing experiments at different temperatures,
specific induction of radiation damage or its control through
freeze-trapping allow structural determination of intermediate
enzymatic states, and understanding of conformational dynamics
associated to the triggering event (Bourgeois and Royant, 2005).
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These experiments are limited to dynamic biological systems
where a specific triggering signal from the laser pump can be
used to perform the pump-probe measurements. Furthermore,
the time resolution offered by X-ray pulses at synchrotron sources
represents another significant limitation, as it does not allow to
capture conformational changes below picoseconds. However,
recent developments suggest a broader range of applications
of these methods even using conventional synchrotron sources,
offering opportunities for time-resolved crystallography to a
larger scientific community (Yorke et al., 2014).

For studies on highly flexible systems, room temperature
crystallography is experiencing a new spring. The introduction
of high-throughput data collection pipelines for frozen crystals at
synchrotrons somehow lowered the interest toward this approach
over the years. However, recent examples of synchrotron
diffraction data collected at room temperature with careful
control of radiation-induced damage illustrate the usefulness of
this method in exploring molecular flexibility (Stellato et al.,
2014; Levantino et al., 2015), even using very sensitive samples
such as lipidic-cubic phase-grown crystals of integral membrane
proteins (Nogly et al., 2015).

Eliminating Radiation Damage Effects
Using Free Electron Lasers
A leap forward in understanding molecular flexibility and
conformational variation in crystal structures is provided by
serial femtosecond crystallography (Chapman et al., 2011). Using
next generation X-ray free electron laser (XFEL) light sources,
ultrashort, high intensity pulses can be used in “diffraction
before destruction” experiments (Chapman et al., 2014), to collect
high resolution single diffraction images from nanocrystals
passing into the XFEL beam through a microspray system.
The rapidity of the X-ray pulse immediately preceding crystal
disintegration allows obtaining (after structure determination)
three-dimensional snapshots of the crystallized molecule. Such
setup is compatible with data collection of frozen crystals, as
well as room temperature measurements. For a recent detailed
review on themethodology, see (Martin-Garcia et al., 2016).With
this approach, complete datasets can be obtained by exposing
hundreds of thousands of randomly-oriented nanocrystals,
collecting one single diffraction image before the high beam
intensity disintegrates the crystal, and selectively “blending”
the suitable diffraction images into a unique X-ray dataset for
analysis.

Due to the femtosecond time scale of the X-ray pulses (shorter
than the time required for radiation damage to occur) XFEL
data are free of radiation damage (Chapman et al., 2011). Such
rapid pulse is far beyond the achievable time resolutions used
in conventional time-resolved studies at synchrotron sources
(Cammarata et al., 2008; Levantino et al., 2015). Taken together,
these features demonstrate how XFEL data collection can enable
achieving radiation-damage free time resolutions that push the
conventional limits of time-resolved data collection into the
femtosecond time scale, enabling capture of ultrafast protein
conformational changes which may remain completely elusive
using more conventional sources (Liu et al., 2013; Keedy et al.,

2015; Levantino et al., 2015; Doerr, 2016). As such, usage of XFEL
offers the opportunity to study ultrafast conformational changes
in the sub-picosecond time range, as already demonstrated by
recent time-resolved studies of enzymatic mechanisms (Tenboer
et al., 2014; Fukuda et al., 2016; Pande et al., 2016).

Considering the potentials of ensemble refinement and
crystallography using XFELs, merging the two approaches
for better understanding in crystallo dynamics appears as
a very promising strategy. Such an idea has been exploited
recently (Keedy et al., 2015), providing the first example of
a conformational ensemble from XFEL data and suggesting
exciting developments for the detection of concerted
conformational changes upon ultrafast temperature changes,
offering an opportunity to study correlated motions inside
macromolecular crystals using ensembles.

ANALYZING CONFORMATIONAL
FLEXIBILITY IN SOLUTION

Strengths and Limitations of NMR Analysis
Structural studies using NMR play a major role in understanding
flexible systems and unstructured macromolecules (Wright
and Dyson, 2009; Ravera et al., 2014; Dunker and Oldfield,
2015). X-ray crystal structures naturally complement such
approach, by providing high-resolution information about
conformationally stable fragments (Lindorff-Larsen et al., 2005;
Huntington, 2008; Lechtenberg et al., 2010; Fenwick et al.,
2014). Such combined analysis provides information about the
time-scale of atomic motions, allowing better descriptions of
the alternate conformational substates sampled through changes
in picosecond-nanosecond time scales (Baber et al., 2001).
However, the difficulties associated to NMR assignment of
large macromolecular systems generally constitute a significant
methodological limitation (Clore et al., 1994, 1995; Fenwick et al.,
2014; Schwander et al., 2014; Clark et al., 2015). Approaches
to overcome these limitations include the development of
elegant strategies of selective side-chain isotope labeling (Otten
et al., 2010) and development of long-distance NMR probes
(Kato and Yamaguchi, 2015). These systems have provided
valuable insights in flexibility of large systems, including the
recent investigations on the extended motions associated to
HSP90 chaperone function (Karagöz et al., 2011) and various
molecular recognition events in the RNA polymerase complex
(Drogemuller et al., 2015).

Next to NMR-specific developments, integrative approaches
using advanced biophysics often allow bypassing the need
for complex or poorly feasible labeling and assignment
of NMR. These methods expand the research ground for
scientists challenging flexibility in solution. Methods such
as single molecule fluorescence energy transfer (Delaforge
et al., 2015; Nagy et al., 2015), native and hydrogen-
deuterium exchange coupled to mass spectrometry (Chen
et al., 2010; Rostislavleva et al., 2015) often compensate the
lack of interpretable information about molecular flexibility
from direct NMR investigation. The increasing feasibility
of computational simulations for large macromolecules is
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also significantly changing the field, offering larger room
to integrative approaches merging structural predictions and
advanced biophysical strategies next to more conventional
structural techniques to explore molecular flexibility (Fenwick
et al., 2014; Schröder, 2015; van den Bedem and Fraser, 2015).

Solution Scattering: Valuable Information
at Low Resolution
With great improvements over the last years (Hura et al., 2009;
Rambo and Tainer, 2010; Classen et al., 2013; Pernot et al., 2013;
Dyer et al., 2014; Kachala et al., 2015; Kikhney and Svergun, 2015;
Round et al., 2015; Tria et al., 2015), small-angle X-ray scattering
(SAXS) and small-angle neutron scattering (SANS) (simply
indicated as solution scattering techniques or SAS from now on)
have turned from rather complex biophysical methods into high-
throughput structural characterization techniques for complex
macromolecular samples in their native state. Even though these
methods provide very low resolution information compared to
X-ray crystallography or modern cryo-EM, the structural details
that can be reliably extracted from SAS experiments are very
powerful for the analysis of conformation, shape, and dimensions
of biopolymers ranging in size from short polypeptides to large
viruses (Jacques and Trewhella, 2010; Dyer et al., 2014).

The main advantage in using SAXS for the analysis of
macromolecules relates to the robustness and very rapid readout
of various critical features of the sample, including homogeneity,
size, low-resolution shape, molecular weight, stoichiometry and
flexibility, even in absence of other structural information
(for comprehensive reviews about the theoretical and practical
aspects of these methodologies, please see Mitsui et al., 2007;
Mertens and Svergun, 2010; Petoukhov and Svergun, 2013;
Kikhney and Svergun, 2015). The low signal-to-noise readout
of SAXS requires accurate sample preparation and very careful
subtraction of the scattering contributions from buffering
components, as well as excellent monodispersity (Mertens and
Svergun, 2010; Kachala et al., 2015; Kikhney and Svergun,
2015). A prominent advance in facilitating sample preparation
is the introduction of online size-exclusion chromatography
systems immediately preceding the sample capillary at SAXS
synchrotron beamlines (Pernot et al., 2013; Wright et al.,
2013). This conceptually simple modification avoids most buffer
subtraction issues and allows real-time selective separation
of possible interfering components (oligomers, heterogeneous
species) through the gel filtration matrix, increasing the chances
of monodispersity and therefore more accurate measurements,
directly at the beamline. Recent examples include analysis flexible
therapeutic antibodies in various buffer environments (Tian
et al., 2014) and the low resolution structural studies on large,
heterogeneous proteoglycans (Watanabe and Inoko, 2013).

Addressing Flexibility Using SAXS
Depending on sample quality and overall data resolution, the
final outcome of SAS can be limited to the overall extent of
macromolecules in solution (measured by the radius of gyration)
or a finer description of macromolecular shape through ab-initio
modeling and/or rigid body fitting (Jacques and Trewhella,
2010; Mertens and Svergun, 2010; Petoukhov and Svergun,

2013). The added value of SAS analysis is that these methods
also directly provide useful data on flexible regions, expanding
the investigation range of other high-resolution structural
approaches (Classen et al., 2013; Kikhney and Svergun, 2015),
also providing an effective complement to NMR studies of
intrinsically disordered systems (Bernadó and Svergun, 2012;
Dunker and Oldfield, 2015; Kachala et al., 2015). Flexibility has
a dramatic effect on SAS data: it causes a general “blurring”
and loss of detailed features in scattering curves (Bernadó and
Svergun, 2012). Direct visualization of flexible features in SAXS
samples can therefore be enhanced through accurate analysis of
pair distance distribution function and Kratky plots (Bernadó,
2010; Rambo and Tainer, 2011). In particular, dimensionless
Kratky analysis of SAXS data, typically used for investigating
protein folding, provides a rapid yes/no result about the presence
of conformational flexibility, allowing direct comparisons also
among molecules differing in mass and conformational states
(Rambo and Tainer, 2011; Bernadó and Svergun, 2012). More
sophisticated methods, relying on Porod-Debye analysis of
scattering decay, can further increase the reliability of the
investigation and carefully distinguish intrinsic flexibility from
conformational changes. These methods are more complex to
apply, but when such analysis is possible, they efficiently allow
discriminating between disorder associated to fully- or partially-
unfolded states from flexible linkers connecting folded structural
elements (Rambo and Tainer, 2011).

In flexible systems, the SAXS scattering profiles represent a
weighted average over all the accessible conformations. Ab-initio
models generated from these data may wrongly be fitted by
single rigid-body structures, leading to data misinterpretation
(Bernadó, 2010). Modern modeling techniques to circumvent
such problems include, analogous to NMR and crystallography,
generation of ensembles of conformers that fit the polydisperse
sample (Bernadó, 2010; Bernadó and Svergun, 2012; Tria et al.,
2015). Such a procedure is all but intuitive, because direct
deconvolution of the contributions of each conformation to
the overall SAXS curve is not possible (Kikhney and Svergun,
2015). Given the magnitude of molecular motions and multiple
conformations that could be sampled in solution, it is critical to
avoid overfitting of the data with toomany states not representing
the real conformational space (Pelikan et al., 2009; Kikhney and
Svergun, 2015; Tria et al., 2015). At present, validation strategies
to circumvent overfitting are still limited and rely on visual or
computational inspection of the ensemble models, exclusion of
inappropriate conformers and reduction of the overall pool of
models into a feasible, but necessarily oversimplified, molecular
ensemble (Bernadó et al., 2007; Pelikan et al., 2009; Hammel,
2012).

Nevertheless, ensembles originating from SAXS are excellent
for the identification of interdomain motions in large multi-
domain systems. In particular when high-resolution data from
isolated domains is available, the knowledge gained from
ensemble analysis can be crucial for the understanding of
the biological function of the studied system as a whole,
and the low-resolution information may provide guidance for
important new investigations (Bernadó, 2010; Hammel, 2012;
Tria et al., 2015). A remarkable example is offered by the

Frontiers in Molecular Biosciences | www.frontiersin.org 7 September 2016 | Volume 3 | Article 47

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Palamini et al. Investigating Molecular Flexibility with Structural Biology

analysis of how the small ubiquitin molecule binds to the
PCNA interface in multiple states in solution. The SAXS analysis
expanded the outcome of previous crystallographic studies,
which showed only a single ubiquitin binding mode; such
isolated conformation was likely selected by the crystal packing
contacts. Solution studies revealed a whole range of motions
possible for ubiquitin linked to PCNA that may have prominent
roles in regulating ubiquitin-mediated DNA damage response
(Tsutakawa et al., 2011). Similar in crystallo conformational
selection was nicely shown in a recent publication about
conformational variability of importin beta, illustrating how
the environment surrounding the macromolecule may have
a dramatic influence on quaternary structure and molecular
flexibility (Tauchert et al., 2016). Another relevant case includes
evidence for marked flexibility in the linker region of cytosine
DNA methyltransferases that clarified previous controversies
about their functional oligomeric states (Konarev et al.,
2014).

The Added Value of SANS
SANS can provide very useful, different, yet highly
complementary information to SAXS analysis. While the
principles of data analysis and interpretation are similar, SANS
offers some advantage when combined with sample isotope
labeling. Differences in neutron scattering intensity between
hydrogen and deuterium can be used in contrast variation
measurements (Gabel, 2012). This strategy proved useful to
study complex systems, as shown for example in the SANS
characterization of the intrinsic flexibility in apolipoprotein
B-100 structure. SANS contrast variation allowed understanding
the molecular features of a lipid-free apo B-100, allowing low
resolution structural determination of a highly hydrophobic
and flexible molecule, almost impossible to obtain using other
methods (Johs et al., 2006).

Sample requirements and instrumental setups for SANS
are however usually more technically challenging than SAXS,
limiting its usage to combined SAXS-SANS experiments to
maximize the information obtained from a sample in solution.
Interesting examples of combined SAXS-SANS approaches
include the determination of the architecture of neurexin-
neuroligin interactions, important for synapse formation. In
particular, using SANS contrast variation, it was possible to
understand how two monomers of neurexin β are able to bind
on opposite sides of the long axis of the neuroligin dimer in
a defined orientation, a result which was validated by SAXS
analysis and could not be obtained by X-ray crystallography due
to the high flexibility of the macromolecular complex (Comoletti
et al., 2007). Another example of synergy between SAXS and
SANS measurements is the structural determination of drug-
loaded liposomes. SANS allowed obtaining good contrast for the
liposomal hydrophobic tails. Conversely, SAXS allowed studying
the head groups. Depending on their hydrophobicity, different
drugs interacted with the lipophilic tails or with the hydrophilic
heads of the liposomes. The scattering profiles, measured using
either SANS or SAXS, enabled accurate characterization of the
interactions between the drugs and the particles (Di Cola et al.,
2016).

Using the Power of XFEL to Study
Dynamics in Solution
Another fascinating recent development includes usage
of solution wide-angle X-ray scattering (WAXS) at XFEL
sources (Arnlund et al., 2014). In this method, the sample is
flown through the intense pulsed XFEL source, providing
conformational information at lower resolution than
crystallography, but enriched of the ultrafast time resolution
due to the femtosecond X-ray pulse. This methodology already
showed promising results in probing ultrafast protein dynamics
in light-sensitive protein centers (Cammarata et al., 2008;
Takala et al., 2014; Levantino et al., 2015). Intriguingly, the
combination of elements of WAXS analysis and time-resolved
serial femtosecond crystallography seems to yield very promising
results on studies of ultrafast conformational changes, further
supporting the promise of obtaining time-correlated molecular
movies from nanocrystals using XFEL sources (Aquila et al.,
2012).

THE FLEXIBILITY OF MASS
SPECTROMETRY

Mass spectrometry (MS) is a very useful and versatile technique
which allows not only to investigate the composition and
overall mass of a macromolecular entity, but also to garner
information on dynamics (Sharon and Robinson, 2007; Zhou and
Robinson, 2014). While most MS approaches are inadequate for
the mapping and visualization of protein flexibility, there are a
few methodologies relying on soft ionization techniques (native
mass spectrometry; Heck, 2008), which have allowed to do just
that (Zhou and Robinson, 2014). The first of these involves
coupling MS to a technique capable of highlighting regions of
protein flexibility: hydrogen-deuterium exchange (HDX) (Wales
and Engen, 2006). An example of synergistic analysis using
HDX-MS and SAXS is provided by the investigation of large
multidomain protein complement C3b and its conformational
changes upon binding of bacterial ligands. These data showed
how unprecedented flexibility and allosteric motions between
folded states of C3b could be identified without high-resolution
3D structures of the complex available (Chen et al., 2010).

Coupling of chemical cross-linking to MS (XL-MS) offers
a second possibility and provides information on spatial
constraints between residues in a protein and/or subunits of
a protein complex (Holding, 2015). This was employed, for
example, to detail the inter-subunit interfaces and interactions of
an F-type ATPase, evidencing a conformational shift dependent
on the phosphorylation state of the protein complex. Such
information was inferred by a change in spatial constraints
investigated using a cross-linking agent. Integration of these
data with pre-existing crystal structures, homology models, and
crystal structures of homologous protein complexes, allowed
describing this ATPase in a detail that might have been
significantly hard to obtain with more conventional approaches
(Schmidt et al., 2013).

A third approach using Ion Mobility (IM-MS) is particularly
interesting as it can allow distinction between different
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conformers of proteins and protein complexes, as well as the
generation of low resolution sphere models for previously
unobserved structures (Ruotolo et al., 2008; Taverner
et al., 2008). Structural models can then be further refined
through computational methods such as MD, and/or by
integration/comparison with homology models. While other
low-resolution techniques like SAXS can provide similar data,
the use of IM allows to isolate and interrogate individual
conformers, a feature inaccessible to SAXS (Ruotolo et al.,
2008). This experimental approach was used to investigate
the conformational dynamics of a bacterial rotary V-type
ATPase. IM-MS allowed interrogating the separate subdomains
of this ATPase in different experimental conditions, thus
highlighting structural shifts tied to the presence or absence of
ATP. Moreover, it was possible to pinpoint the origin of the
conformational heterogeneity to the flexibility displayed by the
membrane subunit I of the ATPase V0 subdomain. Subsequent
analysis of the IM-MS spectra of the other subdomains,
integration with homology models and analysis of MD data
through computational methods, allowed to evidence and model
a continuum of conformations depicting the structural variations
associated to its biological function (Zhou and Robinson, 2014;
Zhou et al., 2014).

The potential of MS is elevated and the resolution of IM-
MS is such that it can separate different protein conformers
(Ruotolo et al., 2008; Zhou et al., 2014). However, most MS
approaches allow only to infer data on structural flexibility and
actual visualization is dependent on computational integration
with pre-existing experimental data or homology models.
Additionally, the best MS technique to provide de novo structural
visualization (IM-MS) may suffer limitations due to instrument
calibration and bias originating from reference models employed
for the computational analysis (Ruotolo et al., 2008). Nonetheless
these low resolution approaches often allow a more detailed
investigation than many of their non-MS counterparts.

CRYO-ELECTRON MICROSCOPY:
UNEXPECTEDLY QUICK ADVANCEMENTS
IN STRUCTURAL BIOLOGY

The cryo-EM Revolution
Nowadays, cryo-EM is a very powerful structural biology
technique, as it combines the advantages of atomic resolution
without the need for protein crystals, de facto overcoming the
biggest bottleneck of protein crystallography and opening a
whole new era of structural biology investigations (Kühlbrandt,
2014; Bai et al., 2015a; Subramaniam et al., 2016). The
impact of this technique for understanding the molecular bases
of biological processes, particularly in large macromolecular
complexes, cannot be underestimated. Since 2013, the progress
in cryo-EM has been so fast that it has been heralded as
a revolution (Bai et al., 2015a; Callaway, 2015). Through
major achievements in the methodology over the last years,
including introduction of new direct electron detectors (DEDs)
and improved image processing methodologies, it is now
possible to obtain crystallography-comparable resolutions for

macromolecules as small as 100–150 kDa using cryo-EM, even
in absence of internal high-order symmetry as was indispensable
until a few years ago (Allegretti et al., 2015; Bai et al., 2015b;
Fernandez-Leiro et al., 2015). Furthermore, if the exciting
promises offered by the new phase plate technologies are kept
(Danev and Baumeister, 2016), cryo-EM will likely expand
toward smaller molecular systems in the 50–100 kDa range and
beyond (Merk et al., 2015; Subramaniam et al., 2016).

In cryo-EM the samples are rapidly flash-frozen in vitreous
ice that preserves and stabilizes the aqueous environment of the
sample in a native-like state. Such rapid process of vitrification
also enables the trapping of transient states, often impossible to
observe using X-ray crystallography (Kühlbrandt, 2014; Nogales,
2016; Thompson et al., 2016). During data acquisition, the
electron beam may induce motions within the sample as well
as radiation damage (Kühlbrandt, 2014). Whilst minimization of
radiation damage is pivotal to successful structural determination
using cryo-EM, the movement of the particle, also called beam-
induced movement (BIM), may provide useful insights on the
physiological dynamics of the molecules under characterization.
Beam-induced movement affects the sample both spatially and
temporally: distinct regions of the vitreous ice could show
differential amounts of motion, which may also include large
movements associated to flexible region of the sample (Campbell
et al., 2012). However, BIM and the overall sample flexibility
may as well affect negatively the quality, the resolution, and
the biological interpretation of the three-dimensional cryo-EM
reconstructions (Rawson et al., 2016).

A major contribution to the cryo-EM revolution was provided
by DEDs, making a huge leap in quality compared to previously
available technologies (Grigorieff, 2013). These new detectors can
capture electrons directly, without any intermediate conversion
steps (Faruqi and Henderson, 2007), resulting in outstanding
imaging quality at high resolution, superseding CCD, and
even photographic film (Fromm et al., 2015). The dramatic
improvement in readouts enabled recording of cryo-EM images
in “movie mode,” with many frames constituting the final
micrograph recorded from a single exposure (Campbell et al.,
2012; Li et al., 2013). This allowed tracking of single particles
inside each electron micrograph, with better evaluation and
compensation of molecular motions due to BIM (Brilot et al.,
2012), more careful evaluation of radiation damage (Baker and
Rubinstein, 2010; Fromm et al., 2015), and selective classification
of multiple conformations within the imaged particles (Bai et al.,
2013, 2015a,b; Schwander et al., 2014; Frank and Ourmazd,
2016). This last feature allows multiple reconstructions from a
one single cryo-EM dataset, from which different conformers of
the same molecule can be obtained (Rawson et al., 2016). These
features are critical for reaching the final sub-nanometer high
resolutions in recent 3D reconstructions and inspect molecular
motions (Campbell et al., 2012; Bai et al., 2013; Li et al., 2013).

Next to hardware improvements, the continuous evolution
of cryo-EM imaging softwares, with highly efficient semi-
or fully-automated tools for particle picking (Tang et al.,
2007; Langlois et al., 2014; Scheres, 2015), motion correction
(Li et al., 2013; Rawson et al., 2016), 3D reconstruction
(Elmlund et al., 2008; Singer and Shkolnisky, 2011; Scheres,
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2012; Brown et al., 2015), 3D structure fitting (Topf et al.,
2008; Wriggers et al., 2010; Barad et al., 2015; Brown et al.,
2015), and validation using objective criteria (Zhang et al.,
2008; Murray et al., 2013) further accelerated the march
of cryo-EM in structural biology. Outstanding achievements
of cryo-EM showed that this investigation approach is also
highly suitable for membrane proteins (Allegretti et al.,
2015; Cleverley et al., 2015; Gao et al., 2016), a notoriously
challenging field in structural biology. In this respect, cryo-
EM enabled studies of integral and membrane-anchored
macromolecular systems in more physiological environments
than detergent micelles or lipidic-cubic phases typically used in
X-ray diffraction experiments. Recent cryo-EM reconstructions
of transmembrane proteins reconstituted in nanodiscs (soluble
nano-scale phospholipid bilayers constrained by lipoprotein
boundaries) showed that the strong electron density for the
phospholipid head groups can be efficiently distinguished from
the weak density of the region occupied by the acyl chains of
the fatty acids, facilitating particle picking, reconstruction and
subsequent structural analysis (Frauenfeld et al., 2011; Gao et al.,
2016).

Studying Flexible Systems Using Modern
cryo-EM
Comparative analyses of crystal and cryo-EM structures of
the same macromolecular system are starting to provide clear
insights into functionally-relevant features and unprecedented

molecular motions thus far concealed by the conformational
sampling forced by packing inside crystal structures. Relevant
examples are the novel co-receptor site identified in the cryo-EM
reconstruction of adeno-associated virus-2 in complex with its
receptor and heparin (O’Donnell et al., 2009), or the horizontal
transmembrane alpha helices assisting dimerization in the F-type
ATP synthase (Allegretti et al., 2015). In both cases, these regions
are critical for the biological functions of these molecules, and
were never observed in previously determined crystal structures.
Likewise, the recent cryo-EM structure of the E. coli 70S ribosome
in complex with EF-Tu and tRNA enabled identification of new
rRNAmodifications, not observed in any of the higher resolution
ribosome X-ray structures available, because of their flexibility
(Fischer et al., 2015).

There are numerous examples elucidating the ability of cryo-
EM to enable direct analysis of conformational changes in
large macromolecular complexes. The structure of the complex
of human gamma secretase was determined by implementing
new structural refinement methodologies, allowing to “focus”
the refinement on a defined region of the protein complex
of interest. Such strategy allowed overcoming the issue of
structural heterogeneity within the cryo-EM dataset, and
allowing characterization of atomic features and side-chain
allosteric rearrangements in the active site. The same structural
refinement methods enabled understanding how inhibitors
of the enzyme complex induce conformational rigidification
(Bai et al., 2015b; Figure 2A). In a recent study focusing
on processivity in cytoplasmic dynein, cryo-EM showed a

FIGURE 2 | Trapping multiple conformations using modern cryo-EM. (A) Three different EM maps obtained from selective classification of the apo gamma
secretase cryo micrographs show conformational changes in the transmembrane region of the enzyme complex. Shown are the experimental maps and the
three-dimensional structures (obtained from EMDB maps 3238, 3239, 3240, and PDB IDs 5FN3, 5FN4, 5FN5, respectively, Bai et al., 2015b) with soluble nicastrin
depicted in green, and the transmembrane region composed of Aph-1, PS1, and Pen-2 components in cyan. Transmembrane helices found in different
conformations in the three different classes are shown in blue, red and orange. Arrows indicate the putative movements associated to the rearrangements of the
transmembrane helices. (B) Three EM reconstructions relative to identification of multiple conformations in DNA-free and DNA-bound E. coli

PolIIIα-clamp-exonuclease-τc micrographs (Fernandez-Leiro et al., 2015). PolIIIα is depicted in cyan, the clamp is shown in green, the exonuclease domain is in blue.
DNA is colored in dark gray and is present only in classes 2 and 3. The moving regions, composed of the PolIIIα-tail and τc, are shown in orange and red, respectively
(data from EMDB maps 3201, 3198, and 3202). The superposition shows the comparison between the structural models obtained from the DNA-free (class 1) and
DNA-bound (class 2) states, shown as cartoon and colored in light and dark blue, respectively (PDB IDs 5FKU and 5FKV). DNA for the bound state is shown in gold.
Figure prepared using Chimera (Pettersen et al., 2004).
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wide range of conformations, providing for the first time
evidence for extensive flexibility to be essential to the function
of this molecular motor (Imai et al., 2015). Recently, five
ribosome structures in complex with the viral internal entry
sites (IRES) and translocase eEF2 were obtained by accurate
classification and particle analysis from a single cryo-EM
dataset. These structures, refined to maximum resolutions
ranging from 3.5 to 4.2 Å, revealed how the viral molecule
progressively translocates in a cap-independent manner from
the A to the P sites of the ribosome, and provided an
unprecedented view of EF2 dynamics (Abeyrathne et al., 2016).
Other fascinating examples of the possibilities of cryo-EM in
investigating molecular flexibility are provided by the E. Coli
PolIIIα-clamp-exonuclease-τc complex and the hexameric AAA
ATPase p97. In the 8 Å resolution structures of DNA-bound
and DNA-free states of the PolIII-replisome complex, even
if nearly all the proteins composing the complex are flexible
enough to hinder crystallography, the cryo-EM structures clearly
revealed conformational changes critical for interaction of the
replisome with DNA (Fernandez-Leiro et al., 2015; Figure 2B).
The cryo-EM micrographs of the hexameric AAA ATPase
p97 showed three distinct, co-existing functional states of p97
with differential ATP occupancy per protomer, accompanied
by large rearrangements of structural elements in the ATPase
fold. Interestingly, the conformations obtained in the cryo-EM
reconstructions were never observed in the crystal structures of
p97. This example illustrates how multiple 3D reconstructions
of distinct conformations of a dynamic macromolecule can be
obtained from a single cryo-EM dataset by accurate particle
selection and classification after particle picking (Banerjee et al.,
2016).

Still, the most remarkable example of how cryo-EM
is dramatically changing all structural biology paradigms,
is perhaps the very recent structural characterization of
small (<100 kDa) enzymes in complex with small-molecule
inhibitors (Merk et al., 2015). Remarkably, a single paper
experimentally summarizes the outstanding potential of cryo-
EM in investigating molecular flexibility. By breaking the 2.0
Å resolution limit and challenging macromolecule sizes below
100 kDa (also thanks to application of the latest phase plate
technologies), the authors did not simply demonstrate that cryo-
EM is suitable for drug discovery and structural enzymology,
but also provided for the first time clear details about molecular
allostery mediated by binding of inhibitors (Merk et al., 2015).
Such a remarkable result possibly sets the starting point for a
new era of structural analysis using cryo-EM, with biological
outcomes that even at present are not completely imaginable.

CONCLUSIONS

Conformational flexibility is the driving force of a plethora
of biological events, and understanding the contributions of
dynamics to macromolecule function is a fundamental aspect
of basic and applied biological research. Over the course of this
review we have described how several cutting-edge structural
biology techniques may provide a broad toolbox to explore
molecular flexibility, with emphasis on the possible outcome
of the investigation and on the methodological approaches
to employ. The choice of the most appropriate experimental
strategy to carry out the investigation must take into account the
overall extent of conformational changes, and will likely involve
the usage of multiple structural biology methods (Figure 3).

FIGURE 3 | Representative flowchart addressing modern experimental structural biology approaches for the understanding of molecular flexibility.
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Given the complexity of these studies, it is natural that additional
experimental validation using biophysics or other specific
methods is of paramount importance. This holds especially
true for low resolution methods, which nonetheless can be
fundamental for preliminary investigation as well as solid sources
of corroborating data, as shown by the usage of SAXS (Hura et al.,
2009; Pelikan et al., 2009; Rambo and Tainer, 2011; Bernadó and
Svergun, 2012; Hammel, 2012; Petoukhov and Svergun, 2013;
Dyer et al., 2014; Kachala et al., 2015) but possibly also by
novel, unorthodox methodologies that may provide unexpected,
remarkable results (Longchamp et al., 2012, 2016). Although
the promise of single-molecule structural biology remains far
from possible at the moment (Henderson, 2002; Fratalocchi
and Ruocco, 2011), serial femtosecond crystallography at XFELs
(Martin-Garcia et al., 2016), as well as atomic resolution
single-particle cryo-EM (Bai et al., 2015a; Merk et al., 2015;
Subramaniam et al., 2016) are now reality. Combined with
more “conventional” structural approaches, these techniques
nowadays enable extrapolation of relevant structural information
also from datasets so far considered untreatable (Hollenstein
et al., 2014; Murray et al., 2016), pushing the resolution limits
(Karplus and Diederichs, 2012; Lang et al., 2014; Merk et al.,
2015) and further bridging the gap between molecular and
cellular approaches of biological investigation (Schröder, 2015;
van den Bedem and Fraser, 2015).

A converging aspect of the various approaches discussed
in this review concerns the final readout generated by the
investigation. Most methods generate structural ensembles
(Levin et al., 2007; Rambo and Tainer, 2010; Burnley et al.,
2012; Schwander et al., 2014; Clark et al., 2015; Keedy
et al., 2015; Urzhumtsev et al., 2015; Van Benschoten et al.,
2015; Abeyrathne et al., 2016), explicating the information
about molecular flexibility through uncorrelated, superimposed
conformations that should be analyzed as a whole. There is
a need for reliable tools to efficiently compare and visualize
complex ensemble data with the same efficiency and user-
friendliness of traditional softwares for superpositions and
structural comparisons. Computational methods to perform
such analyses on large ensembles are still quite limited,
and the first truly useful tools are just becoming available

(Burnley and Gros, 2013; Clark et al., 2015; Varadi and
Tompa, 2015). It is expectable that development of efficient
methods of analysis applied to structural ensembles will proceed
with the same pace of the methods that experimentally
generate those ensembles from structural data. This will be
essential to facilitate usage and dissemination of the insights
gained from structural analysis of flexible systems. Similarly,
advanced computational tools for structural bioinformatics
such as structure prediction, molecular docking and in silico
directed evolution should facilitate the integration of large
ensemble data inside their routines, to further expand the
capabilities of integrative experimental and computational
approaches.

We are confident that the novel pioneering achievements
reached by the structural biology community over the last years
will pave the way to a future where accurate description of
molecular motions will be more and more an integral part
of every molecular model. These developments will facilitate
the understanding of fundamental biological mechanisms and
will speed up also other computational and biophysical
methods (such as for example in silico drug discovery and
protein engineering) that rely on accurate experimental data
on macromolecular recognition mechanisms, allostery and
conformational variability.
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