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PR model for screening organic
corrosion inhibitors for carbon steel using machine
learning techniques†

Thanh Hai Pham, *abc Phung K. Leab and Do Ngoc Son *ab

Machine learning (ML) techniques have shown great potential for screening corrosion inhibitors. In this

study, a data-driven quantitative structure–property relationship (QSPR) model using the gradient

boosting decision tree (GB) algorithm combined with the permutation feature importance (PFI)

technique was developed to predict the corrosion inhibition efficiency (IE) of organic compounds on

carbon steel. The results showed that the PFI method effectively selected the molecular descriptors

most relevant to the IE. Using these important molecular descriptors, an IE predictive model was trained

on a dataset encompassing various categories of organic corrosion inhibitors for carbon steel, achieving

RMSE, MAE, and R2 of 6.40%, 4.80%, and 0.72, respectively. The integration of GB with PFI within the ML

workflow demonstrated significantly enhanced IE predictive capability compared to previously reported

ML models. Subsequent assessments involved the application of the trained model to drug-based

corrosion inhibitors. The model demonstrates robust predictive capability when validated on available

and our own experimental results. Furthermore, the model has been employed to predict IE for more

than 1500 drug compounds, suggesting five novel drug compounds with the highest predicted IE on

carbon steel. The developed ML workflow and associated model will be useful in accelerating the

development of next-generation corrosion inhibitors for carbon steel.
1. Introduction

Carbon steel is the most widely used metallic material in
industry owing to its unique mechanical properties, availability,
and low cost.1 However, the signicant weakness of carbon steel
is its poor corrosion resistance when exposed to aggressive
environments, such as acidic solutions, which are used for
various processes such as cleaning, pickling, descaling, and well
acidizing.1,2 To prevent the corrosion of carbon steel, different
methods have been used, including the use of corrosion
inhibitors. Organic corrosion inhibitors showed good efficiency
and have great potential.3,4 However, their toxicity and envi-
ronmental pollution are issues of great concern. The search for
less toxic, environmentally friendly, and renewable corrosion
inhibitors has become a research focus in this eld.5

The search for new organic corrosion inhibitors involves
a vast chemical space that includes millions of potential
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compounds. Experimental scientists oen rely on insights from
previous research to select potential compounds and conduct
experiments. Such empirical trial-and-error studies are time-
consuming and costly. To this end, computer-aided
approaches have also been used, such as density functional
theory (DFT) calculations, molecular dynamics (MD) simula-
tion, and machine learning.6–9

Currently, ML techniques have shown great potential to
generate IE predictive models for screening new inhibitors.10

Several ML models have been developed to predict the IE of
organic compounds on carbon steel. Zhao et al.11 used the
support vector machine (SVM) algorithm to build a QSPRmodel
for predicting the IE of amino acids using a dataset of 19
compounds. The study used the inhibitor molecular quantum
chemically-derived descriptors and adsorption energies on the
Fe surface to predict the IE. With similar methods, Li et al.12

proposed a QSPR model for predicting the IE of benzimidazole
derivatives on Q235 carbon steel using a dataset of 20
compounds. Ser et al.13 employed an articial neural network
(ANN) algorithm to construct an IE predictive model for pyri-
dine and quinoline compounds on steel using a dataset of 40
compounds from the input data, including the inhibitor
molecular descriptors and the adsorption energies on the Fe
surface. Recently, Quadri et al. used an ANN algorithm to build
an IE predictive model for pyridazines,14 ionic liquids,15 and
pyrimidines16 on steel. In these studies, the input data includes
RSC Adv., 2024, 14, 11157–11168 | 11157
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ve main descriptors selected from many quantum chemically-
derived and cheminformatics-derived descriptors. As can be
seen, the above studies focused on small datasets, and each
dataset contains one or two categories of compounds. More-
over, the calculations for quantum chemically-derived descrip-
tors such as frontier orbital energies and molecule–surface
interaction energies are time-consuming and unsuitable for
screening a large number of compounds.

Recently, Dai et al.17 proposed an IE predictive model for
cross-category organic compounds on carbon steel based on
a three-level direct message passing neural network (3L-
DMPNN) model using a dataset containing 270 organic inhib-
itors with molecular structure information that integrates
atomic-level, chemical bond-level, and molecular-level features.
This 3L-DMPNN model showed good prediction performance,
with a RMSE of 7.8%. The results also showed that
cheminformatics-derived descriptors can be good input
features for IE predictive models on large datasets because
these descriptors can be calculated easily and quickly. However,
a large number of descriptors are used without assessing the
inuence of each type of descriptor, making the model lack
interpretability. Notably, some studies showed that the feature
selection also affects the model's predictive performance. For
example, Winkler et al.18,19 used a Bayesian regularized neural
network with sparse Bayesian feature selection methods to
determine the descriptors that are correlated with the IE from
the large descriptor pool. Their results showed that the models
with few selected descriptors performed best. Recent works by
Li et al.20 and Schiessler et al.21 also showed that using a large
number of descriptors gives less performance compared to
choosing a suitable group of descriptors for machine learning
models such as SVM, kernel ridge regression (KR)20 or deep
learning models using NN.21 It has been shown that feature
selection can increase the performance of the IE predictive
model while at the same time improving its interpretability.

Moreover, within the realm of corrosion inhibition predic-
tive models, it is noteworthy that while NN and SVM are
commonly employed algorithms, other potent machine
learning methodologies, such as GB, are underutilized. A recent
investigation conducted by Akrom et al.,22 which assessed the
predictive capabilities of multiple algorithms for IE in diazine
derivatives using a dataset of 100 compounds, highlighted that
the GB algorithm exhibited superior performance. This under-
scores the signicance of algorithm selection in potentially
enhancing the predictive performance of IE models.

In this study, an IE predictive model was developed by
integrating the GB algorithm with the PFI method, utilizing
a dataset comprising 317 organic inhibitors for carbon steel in
a 1 M HCl solution. Initially, the importance of molecular
descriptors was estimated by the PFI method. Subsequently,
various models utilizing input datasets, incorporating distinct
descriptor groups distinguished by the highest PFI index, were
evaluated to identify the optimal descriptor group. Additionally,
the performances of models utilizing molecular descriptors
were compared with those employing molecular ngerprints or
a combination of features, aiming to identify the most effective
IE predictive model. The performance of the proposed ML
11158 | RSC Adv., 2024, 14, 11157–11168
workow, integrating the GB algorithm and PFI method, was
validated across different published datasets to assess its
comparative performance against other ML models. Further-
more, the correlation between selected molecular descriptors
and IE was scrutinized. Finally, the constructed IE predictive
model was applied to prospectively screen potential inhibitors
for carbon steel in 1 M HCl solution from drug compounds.

2. Materials and methods

The workow employed for the construction of the IE predictive
model in this study is illustrated in Fig. 1. This comprehensive
workow includes data collection, feature generation, feature
selection, model selection, and prediction. The detailed
descriptions of these processes are provided in the subsequent
sections.

2.1. Data

2.1.1. Experimental data. The primary aim of this study is
to introduce an advanced ML workow, coupled with an effec-
tive ML model, for the prediction of IE across diverse categories
of organic substances. Hence, we combined two datasets con-
structed in recent publications14,17 to form a larger dataset
encompassing diverse organic compound categories. This
dataset (denoted as Fe–HCl-317) includes electrochemical
impedance spectroscopy (EIS) measured IEs of 317 organic
inhibitors for carbon steel in a 1 M HCl solution at 25–30 °C
with a concentration of inhibitors of 1 mmol L−1. The distri-
butions of the number of compounds according to IE and
molecular weight are shown in Fig. S1 in ESI.† It can be seen
that the IEs of the collected inhibitors are predominantly
distributed between 60% and 100% (Fig. S1a†), while the
molecular weights exhibit a predominant distribution within
the range of 100 to 500 gmol−1 (Fig. S1b†). The details of the Fe–
HCl-317 dataset are given in Data availability statements.

2.1.2. Molecular descriptors. In this study, 208 two-
dimensional (2D) descriptors were employed, calculated using
RDKit soware23 and referred to as 2Ddes features, to charac-
terize the molecular structure. The 2Ddes features include 4
partial charge descriptors, 4 molecular property descriptors, 22
topological and connectivity descriptors, 21 Lipinski descrip-
tors, 59 MOE-type descriptors, 8 BCUT2D descriptors, 4 Estate
descriptors, 85 constitutional descriptors, and 1 Quantitative
Estimation of Drug-Likeness (QED) descriptor. The compre-
hensive list of 2Ddes feature set is given in Table S1 in ESI.†

2.1.3. Molecular ngerprints. Morgan ngerprints with
a radius of 2 and a size of 2048 bit (equivalent to ECFP4
extended-connectivity ngerprints)24 were also used to repre-
sent the molecule. This feature group is denoted as ECFP4.

2.2. Methods

2.2.1. ML algorithm. In this study, the GB algorithm was
used to build the machine learning model. GB is a powerful
supervised ensemble learning algorithm. GB uses the gradient
information from the existing weak learner to train the new
weak learner, and then uses a sum function to aggregate the
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 Machine learning workflow for the construction of the IE predictive model.

Table 1 The considered and optimal values of hyper-parameters for models

Hyper-parameter Considered values

Optimal valuea

Model A Model B Model C Model D

n_estimators 50, 100, 200, 400, 600 600 200 400 200
min_samples_split 2, 3, 4, 5, 6 2 2 2 2
min_samples_leaf 1, 2, 3, 4, 5 5 5 2 5
max_depth 1, 2, 3, 4, 5 4 4 3 3

a Model A: GB/2Ddes, Model B: GB/ECFP4, Model C: GB/2Ddes40, Model D: GB/2Ddes40-ECFP4. These models are described below.

Paper RSC Advances
model prediction.25 The GB algorithm used in this study is
integrated into GradientBoostingRegressor, a regression model
in the scikit-learn Python package,26 using squared error as the
loss function. In each iteration, GB calculates the gradient of
the loss function with respect to the predictions made by the
current ensemble. It then ts a new decision tree to the negative
gradient, which is essentially the residual error le by the
current model. In addition, we also compare the performance of
GB with some other typical machine learning algorithms such
as linear regression (LR), KR, and random forest (RF), which are
integrated into LinearRegression, KernelRidge, and Random-
ForestRegressor models in scikit-learn, respectively.

2.2.2. Hyper-parameters turning. The grid search cross-
validation (CV) method was used to select the optimal value
for the model's hyper-parameters. This method uses a K-fold CV
process to evaluate the model's performance on all possibilities
in a discrete hyper-parameter space to search optimal values.27

Details of the K-fold CV method will be presented below. In this
study, there are four hyper-parameters surveyed, including
© 2024 The Author(s). Published by the Royal Society of Chemistry
n_estimators, min_samples_split, min_samples_leaf, and
max_depth. These are essential hyper-parameters of the model
using the GB algorithm.28 The considered values and optimal
values of hyper-parameters for the four typical models, which
will be presented in the results section, are given in Table 1. The
optimal values of hyper-parameters for other considered
models are listed in Table S2 in ESI.†

2.2.3. Feature importance. To optimize the predictive
performance of the model, the permutation feature importance
(PFI) method29 was employed for the selection of descriptors
most correlated with inhibition efficiency. First, the hyper-
parameters of the model using the 2Ddes features will be
selected by the method presented above. Then, this model is
used to estimate the importance of descriptors using the PFI
method. In this method, the importance of a descriptor,
denoted as the PFI index, is quantied by the reduction of the
model's score when randomly shuffling the data for that
descriptor while keeping the data for other descriptors
unchanged. The permutation process was iterated 10 times for
RSC Adv., 2024, 14, 11157–11168 | 11159
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each descriptor in this study to establish the distribution range
and mean values of the PFI index. Upon assessing the impor-
tance of molecular descriptors, datasets comprising the top N
descriptors with the highest mean PFI indexes were employed to
rene the model's performance. The model utilizing the
selected top N descriptors is denoted as GB/2DdesN.

2.2.4. Evaluation metrics. The performance of the model is
evaluated by using the 10-fold CV method based on three
metrics: root-mean-square error (RMSE), mean absolute error
(MAE), and coefficient of determination (R2). First, the initial
data set will be shuffled randomly and then divided equally into
ten folds in the order, using one of the ten folds as the evalu-
ation set and the remaining 9 folds as the training set.

The metrics RMSE, MAE, and R2 are determined by the
following equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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where IEiexp and IEipre are the experimental and predicted IE of

the ith sample, respectively. IE ¼ 1
m

Xm
v

IEi
pre is the average

value of the predicted IE.
2.2.5. Quantum chemical calculations. To validate the

corrosion inhibition capability based on the electronic structure
of the new compounds predicted by the machine learning
model, the distributions and energies of highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) were calculated on ORCA program30,31 using the
B3LYP correlation-exchange functional32 and the Def2-TZVP
basis set.33 The distributions of HOMO and LUMO were visu-
alized using the VESTA soware.34
Fig. 2 Average MAE, RMSE, and R2 of the validation sets in the 10-fold C
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2.2.6. Experimental measurements. To validate the
prediction performance of the proposed model, we conducted
electrochemical experiments to evaluate the IE of four drug
compounds (vidarabine, cytarabine, chlorothiazide, and idox-
uridine) on Q235 steel in a 1 M HCl solution with an inhibitor
concentration of 1 mmol L−1. The experiments were performed
by the PGSTAT30 workstation using a three-electrode cell with
a platinum electrode as the counter electrode and Ag/AgCl
(saturated KCl) as the reference electrode at room tempera-
ture. The working electrode was the research electrode, made of
Q235 steel. The steel electrode was immersed in the solution at
open circuit potential (OCP) for 1800 s before performing
a polarization curve test within the potential range of EOCP ±

250 mV and a scan rate of 1 mV s−1. The corrosion current
density (icorr) can be obtained by linear extrapolation of the
anodic and cathodic Tafel lines. The IE is calculated as follows:

IE ¼ icorr;blank � icorr;inh

icorr;blank
� 100%; (4)

where icorr,blank and icorr,inh represent corrosion current densi-
ties in the absence and presence of inhibitors, respectively.
3. Results and discussion
3.1. Inuence of molecular descriptors selection on model's
performance

The inuence of selecting molecular descriptors on the
predictive performance of the model is illustrated in Fig. 2. It
can be seen that the model's performance metrics exhibit
signicant variations with the number of selected descriptors.
When employing less than the top 20 descriptors with the
highest PFI indexes, the average MAE and RMSE values for the
validation set in a 10-fold CV remain comparatively high, and
the R2 value remains relatively low. This implies that an insuf-
cient number of descriptors may hinder the model from
capturing essential relationships inuencing IE, indicating
a state of under-tting. Conversely, when the number of top
descriptors exceeds 80, a notable decline in the model's
predictive performance is observed, suggesting the potential
inclusion of descriptors unrelated to IE in the dataset, leading
V depend on the number of selected top descriptors.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Experimental versus predicted IEs in the training sets of the 10-fold CV as obtained by the models using different feature sets.

Paper RSC Advances
to over-tting.35,36 The model achieves its optimal predictive
performance with approximately 40 descriptors. These ndings
align with the result of Li et al., who employed the recursive
feature elimination method to select descriptors for an IE
predictive model on an Mg alloy. Their results similarly indi-
cated that a moderate number of descriptors is optimal for
optimizing IE predictive performance.20

3.2. Inuence of feature selection on model's performance

Fig. 3 compares the experimental IEs with the predicted IEs in
the training sets of the 10-fold CV for four distinct models.
These models are constructed on four different feature sets: 2D
descriptors (GB/2Ddes model), ECFP4 ngerprints (GB/ECFP4
model), top 40 2D descriptors (GB/2Ddes40 model), and top
40 2D descriptors combined with ECFP4 ngerprints (GB/
2Ddes40-ECFP4 model). It can be seen that all models exhibit
commendable regression performance, with only the GB/ECFP4
model demonstrating slightly inferior performance compared
to the other three models. However, it is crucial to emphasize
that this result solely illustrates the regression performance on
the training set and does not reect the predictive performance
of the models.

To evaluate the predictive capabilities of the models, the
predicted IEs in the validation sets of the 10-fold cross-
validation were compared with the corresponding experi-
mental IEs, as illustrated in Fig. 4. All four models exhibit
diminished errors at higher IE values, with more substantial
© 2024 The Author(s). Published by the Royal Society of Chemistry
errors observed at lower IE values. This observation may be
attributed to the concentration of training data at high IE levels.
A comparative analysis between Fig. 4a and b reveals that the
utilization of molecular descriptors (the 2Ddes feature set)
yields signicantly superior performance compared to molec-
ular ngerprints (the ECFP4 feature set). Notably, the model's
predictive performance employing the top 40 descriptors (the
2Ddes40 feature set) outperformed others, achieving R2, MAE,
and RMSE values of 0.72, 4.80%, and 6.40%, respectively
(Fig. 4c). Furthermore, the model employing a feature set that
combines the top 40 descriptors with molecular ngerprints
(the 2Ddes40-ECFP4 feature set) was also examined. However,
the performance of this model (Fig. 4d) was found to be inferior
to that of the model utilizing only the top 40 descriptors.

Table 2 presents the performance of our model in compar-
ison to the published ML models13–15,17,37 for predicting IE on
carbon steel. We nd that the GB/2Ddes40 model has better
prediction performance than many published IE prediction
models in the literature. It can be seen that feature selection is
able to improve predictive accuracy on a small dataset, which is
a challenge in predicting corrosion inhibition efficiency.38

3.3. Inuence of ML algorithm

To compare the performance of different ML algorithms, we
also conducted the same ML workow for three typical algo-
rithms, i.e., LR, KR, and RF. Table 3 shows that the GB algo-
rithm has the best performance for the IE prediction compared
RSC Adv., 2024, 14, 11157–11168 | 11161



Fig. 4 Experimental versus predicted IEs in the validation set of the 10-fold CV obtained by the models using different feature sets.

Table 2 The comparison between the model performance of this work and the literature

Dataset Number of compounds Validation method MAE (%) RMSE (%) R2 Ref.

Pyridines-quinolines 41 5-Fold CV — 16.74 — Ser et al.13

Quinoxaline 40 5-Fold CV — 15.97 — Quadri et al.37

Pyridazines 20 5-Fold CV — 14.69 — Quadri et al.14

Ionic liquids 30 5-Fold CV — 10.01 — Quadri et al.15

Organic compounds 270 10-Fold CV 5.30 7.82 0.41 Dai et al.17

Organic compounds 317 10-Fold CV 4.80 6.40 0.72 This work

Table 3 The performance of themodels using different ML algorithms

ML algorithm Optimal feature set MAE (%) RMSE (%) R2

LR 2Ddes30 8.36 10.99 0.17
KR 2Ddes130 7.43 9.49 0.37
RF 2Ddes120 5.26 7.16 0.65
GB 2Ddes40 4.80 6.40 0.72

RSC Advances Paper
to the remaining ones. This result agrees with the conclusion in
a recent publication that the GB algorithm has the best
performance when predicting the IE of diazine compounds.22
3.4. Feature importance and correlation

An advantage of the ML model developed in this study is that it
uses a small optimal number of input features, which improves
11162 | RSC Adv., 2024, 14, 11157–11168
its predictive performance. This gives the IE predictive model
better interpretability when characterizing these highly corre-
lated input features. The PFI index of the top 40 most important
descriptors used in the GB/2Ddes model is shown in Fig. 5.
These descriptors include the topological type descriptors such
as Chi, Kappa, BertCZ, and BalabanJ, the BCUT2D type
descriptors, and the MOE type descriptors. Topological
descriptors characterize the topological structure of the mole-
cule but take into account the electronic character of the atoms
in the molecule.39–41 The geometric structure and electronic
properties are two important factors affecting the interaction
between the molecule and the metal surface. Therefore, the
topological descriptors are highly correlated with corrosion
inhibition efficiency. The MOE descriptors represent the
contribution of the sum vdW surface area (VSA) of the atoms to
molecular properties such as molecular refraction (MR),
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Average PFI indexes of the top 40 most important descriptors after 10 permutations.

Fig. 6 Pearson correlation coefficients between the top 40 descriptors and IEs.

Paper RSC Advances
octanol–water partition coefficient (logP), partial charges
(PEOE), and electrotopological state (EState).42 MOE descriptors
reect many characteristics necessary to evaluate corrosion
inhibition efficiency, such as hydrophilicity, hydrophobicity,
© 2024 The Author(s). Published by the Royal Society of Chemistry
polarity, electrostatic interaction, and steric effect.42,43 BCUT2D
are also descriptors that show high efficiency when building
QSAR/QSPR models thanks to their high diversity.39 Some
research results showed that the BCUT2D descriptors can
RSC Adv., 2024, 14, 11157–11168 | 11163
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describe the interaction between molecules,44,45 and this may
also be an important factor affecting the corrosion inhibition
efficiency.

Moreover, Fig. 6 illustrates the Pearson correlation between
the top 40 descriptors and experimental IE. It can be seen that
most descriptors do not have a strong linear correlation with
experimental IE, including descriptors with high PFI indexes
such as Chi0n and Chi2n. The correlation between descriptors
is also mainly concentrated at the weak correlation level. It can
be seen that the IE has a non-linear correlation with the
descriptors, and the synergy between a group of descriptors can
create an effective prediction model.20
3.5. Testing on published datasets

To assess the performance of the proposed ML workow inte-
grating the PFI method and the GB algorithm, its performance
was examined on existing datasets to compare with the pub-
lished ML models. The dataset characteristic, validation meth-
odology, andML algorithm details are listed in Table S3 in ESI.†
The comparison of the model's RMSE is shown in Fig. 7. The
results reveal that, when utilizing the same dataset and valida-
tion methodology, the model employing the GB algorithm and
the top N descriptors with the highest PFI index (GB/2DdesN
model) exhibits signicantly superior predictive performance
compared to published models, manifesting reductions in
RMSE ranging from 14% to 39%. This improvement is evident
not only on datasets comprising a limited number of
compounds within the same category, such as the 41 pyridines
and quinolines (PQ-41), the 20 pyridazines (P-20), and the 30
ionic liquids (IL-30) datasets, but also on larger datasets
encompassing diverse types of organic compounds, exemplied
by the 270 cross-category organic compounds (CO-270) dataset.
Specically, the utilization of the GB algorithm in conjunction
with cheminformatics-derived descriptors selected by the PFI
method outperforms the performance achieved by employing
the NN algorithm with quantum chemically-derived descriptors
and adsorption energies on the PQ-41 dataset.13 This superior
performance extends to comparisons with the NN algorithm
Fig. 7 Comparison of the performance of GB/2DdesN model with
published models13–15,17 on different datasets.

11164 | RSC Adv., 2024, 14, 11157–11168
combined with ve selected quantum chemically-derived and
cheminformatics-derived descriptors on the P-20 and IL-30
datasets,14,15 as well as the integration of deep learning
models, such as DMPNN, with cheminformatics-derived
descriptors on the CO-270 dataset.17

Furthermore, Table S3† also presents the performance of
models employing the GB algorithm with all molecular
descriptors, without undergoing a feature selection step (GB/
2Ddes models). The results reveal that the GB/2Ddes models
exhibit commendable performance across three out of four
datasets, with the only exception being a slightly lower perfor-
mance than the GA-NN model on the PQ-41 dataset. This
observation suggests that the GB algorithm stands as a robust
choice for predicting IE when compared to other ML algo-
rithms, consistent with the ndings from a recent study by
Akrom et al.22 Moreover, it is also evident that the application of
the PFI feature selection method signicantly enhances the
performance of the GB algorithm across all four published
datasets, similar to the ndings observed on our Fe–HCl-317
dataset.
3.6. Model validation on drug compounds

A web tool named SMILES2IE-steel was developed using
Streamlit (https://streamlit.io), a Python-based platform for
developing web applications for machine learning and data
science, using the GB/2Ddes40 model, which was trained on the
Fe–HCl-317 dataset. This tool allows us to quickly predict the IE
of organic inhibitors on carbon steel in a 1 M HCl solution by
entering a list of molecular SMILES. The interface of
SMILES2IE-steel is shown in Fig. S2 in ESI.†

The utilization of drug compounds as corrosion inhibitors
has been a subject of extensive investigation over several years.
These compounds exhibit potential as environmentally friendly
and low-toxicity green inhibitors.46,47 Notably, pharmaceutical
substances generally remain largely unaltered, even post the
expiration date of most drugs, rendering them viable for
application as corrosion inhibitors.48 The SMILES2IE-steel tool
was employed to predict the IEs of ten previously published
drug compounds. Fig. 8 (T1–T10 compounds) illustrates the
close alignment between the IEs predicted by our model and the
corresponding experimental values.49–58 Despite slight dispar-
ities in experimental conditions compared to the predicted
conditions (detailed information listed in Table S4†), the results
underscore the high reliability of the GB/2Ddes40 model in
predicting IE for drug compounds. This robust predictive
performance can be attributed to the structural similarities
between many drug compounds and the compounds used to
train the model, both being heterocyclic organic compounds
containing elements such as N, O, and S.

Our experimental results for corrosion inhibition of four
unpublished drug compounds, vidarabine (E1), cytarabine (E2),
chlorothiazide (E3), and idoxuridine (E4), on Q235 steel, are
provided in Table 4 and Fig. 9. The comparison of experimental
and predicted IEs for E1–E4 compounds is shown in Fig. 8. It
can be seen that the prediction IEs of SMILES2IE-steel for
vidarabine, chlorothiazide, and idoxuridine are close to our
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Comparison of the predicted and experimental IEs for ten published drug compounds (T1–T10)49–58 and four unpublished drug
compounds (E1–E4), along with the five new drug compounds (B1–B5) with the highest predicted IEs.

Table 4 Electrochemistry parameters, experimental IEs, and predicted IEs for Q235 steel in 1 M HCl solution in the absence and presence of
1 mmol L−1 drug compound

ID Name Ecorr (mV vs. Ag/AgCl) icorr (mA cm−2) bc (mV dec−1) ba (mV dec−1) Exp. IE (%) Pre. IE (%)

Blank −445 431 −128 133 — —
E1 Vidarabine −421 26 −64 97 94.0 92.6
E2 Cytarabine −424 87 −92 96 79.8 90.7
E3 Chlorothiazide −432 47 −49 80 89.1 90.6
E4 Idoxuridine −443 55 −77 110 87.2 90.1

Paper RSC Advances
experimental values, with errors of 1.4%, 1.5%, and 2.9%
respectively. Vidarabine presents the highest corrosion inhibi-
tion efficiency of 94.0%, showing that this is a good inhibitor for
carbon steel in 1 M HCl solution. However, the experimental IE
of cytarabine is much lower than its predicted IE, with an error
Fig. 9 Polarization curves for Q235 steel in 1 M HCl solution in the
absence and presence of inhibitors.

© 2024 The Author(s). Published by the Royal Society of Chemistry
of 10.9%. The large discrepancy between the experimental IE
and the predicted IE for cytarabine is likely because the data set
for our ML model does not include the structural features of
cytarabine or because the standalone molecular descriptors do
not fully reect the interaction (or adsorption properties)
between the molecules and the metal surface. Emphasize that
adsorption properties are related to the effectiveness of
compounds in inhibiting steel corrosion. However, calculating
the adsorption of more than 300 organic compounds with
relatively complex structures on steel surfaces is challenging.
This calculation is beyond the scope of the present study. Note
that standalone molecular properties also reect the ability of
molecules to interact with the metal surface to some extent
through several topological descriptors such as Chi, Kappa,
BertCZ, and BalabanJ, the BCUT2D type descriptors, which are
used in the present work. Fast calculation is one of the advan-
tages of the descriptors over adsorption properties. Addition-
ally, outliers of prediction are not always bad, as adding these
data will enrich the domain of the training dataset,20 and
exploring deeper insights into how the outliers differ from the
other existing data will help nd better descriptors to enhance
prediction accuracy. These are also the research contents that
we are pursuing.
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Fig. 10 Comparison of the HOMO and LUMO energies of B1–B10 with T3.
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3.7. Predicting new corrosion inhibitors

The SMILES2IE-steel tool was employed to predict the IE of
a dataset comprising 1509 FDA-approved drug compounds
collected from the Database of Digital Properties of Approved
Drugs (DDPD).59 This web-based tool enables rapid IE predic-
tion for the entire set of 1509 compounds within seconds. The
distribution of the predicted IEs is shown in Fig. S3,† revealing
a substantial proportion of drug compounds exhibiting high
($90%) and very high ($95%) corrosion inhibition efficiency.
The ve compounds with the highest predictive IEs are shown
in Fig. 8 (B1–B5 compounds) and Table S5 in ESI.† Notably,
these compounds are predicted to be more effective corrosion
inhibitors compared to published compounds such as T1–T10.
Structural analysis indicates that these compounds feature
numerous heterocyclic atoms and aromatic rings. This struc-
tural attribute is expected to enhance the interaction between
the molecules and the metal surface, thereby strengthening
their corrosion inhibition capabilities.

To further analyse the electronic structure characteristics of
B1–B5 molecules, we conducted calculations on key electronic
properties such as HOMO and LUMO energies. As depicted in
Fig. 10, these ve new compounds exhibit signicantly higher
HOMO energies and notably lower LUMO energies compared to
the T3 compound, which showed the highest IE among the ten
compounds scrutinized in this study. Typically, higher HOMO
values signify an increased capacity of the molecule to donate
electrons to the metal surface, while lower LUMO values indi-
cate a heightened ability to receive electrons from the metal
surface.60,61 The electronic structure results indicate that
compounds B1–B5 possess superior capabilities in both elec-
tron donation and acceptance from the metal surface compared
to the T3 compound. This observation aligns with the predic-
tions of our machine learning model, because a more effective
interaction between the molecule and the surface corresponds
to enhanced corrosion inhibition ability.62,63 It is noted that the
model's prediction results still need to be conrmed with
experimental measurements. However, these ndings under-
score the utility of the proposed machine learning model for the
screening of novel corrosion inhibitor compounds for steel
11166 | RSC Adv., 2024, 14, 11157–11168
within the realm of drug compounds, presenting a promising
avenue for the identication of potential green corrosion
inhibitors.
4. Conclusions

A novel QSPR model has been constructed for the prediction of
corrosion inhibition efficiencies of organic compounds on
carbon steel. The model was trained on a dataset of different
types of organic inhibitors employing a novel ML workow
integrating the GB algorithm and PFI method. The PFI method
effectively identies a crucial descriptor group, primarily of
topological, BCUT2D-type, and MOE-type descriptors. The
model utilizing this descriptor group demonstrated optimal
performance, achieving MAE, RMSE, and R2 values of 6.40, 4.80,
and 0.72, respectively. Furthermore, the proposed ML workow
exhibited superior performance compared to other ML models
across four published datasets, with RMSE reductions ranging
from 14% to 39%. Model reliability was veried by comparing
predictions with experimental data on drug compounds,
a group of potential green corrosion inhibitors. The model was
subsequently employed to screen novel drug compounds with
high corrosion inhibition efficiencies, and the outcomes were
elucidated through DFT calculations. The obtained results
indicated that the proposed ML workow and model have the
potential for screening and developing next-generation corro-
sion inhibitors.
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