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Sepsis is characterized by an initial hyperinflammatory response, with intense cell

activation and cytokine storm. In parallel, a prolonged compensatory anti-inflammatory

response, known as immunological tolerance, can lead to immunosuppression. Clinically,

this condition is associated with multiple organ failure, resulting in the patient’s death.

The mechanisms underlying the pathophysiology of sepsis are not yet fully understood,

but evidence is strong showing that epigenetic changes, including DNA methylation

and post-translational modifications of histones, modulate the inflammatory response

of sepsis. During the onset of infection, host cells undergo epigenetic changes that

favor pathogen survival. Besides, epigenetic changes in essential genes also orchestrate

the patient’s inflammatory response. In this review, we gathered studies on sepsis and

epigenetics to show the central role of epigenetic mechanisms in various aspects of the

pathogenesis of sepsis and the potential of epigenetic interventions for its treatment.
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INTRODUCTION

Sepsis is a syndrome that includes different abnormalities, described in 1992 as systemic
inflammatory response syndrome. It was believed that its pathogenesis was mainly due to an
unbalanced inflammatory response of the organism triggered by the presence of an infectious
agent. This response is much more complex is characterized by the simultaneous exacerbation
of inflammatory, metabolic, catabolic, and immunosuppressive pathways, with lingering effects
and difficulty in restoring basal homeostasis (1, 2). The concept of sepsis and the understanding
of its pathogenesis are continually evolving. Many of the changes considered a dysregulated host
response to infection may be, at least in part, an effort to adapt to a hostile environment (3).

Despite all efforts to unravel the mechanisms that orchestrate sepsis, questions remain
about its pathophysiology. Epigenetic mechanisms play a prominent role in regulating gene
transcription, and gene transcription undergoes significant changes during sepsis. Therefore,
epigenetic mechanisms are involved in the acute events of sepsis and in the long-standing
post-septic effects on the host response.
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DEFINITION OF EPIGENETIC
MECHANISMS

Epigenetic changes are described in literature as chemical
changes in chromatin, inherited during cell division, with
a role in regulating gene expression and genome stability,
without involving changes in the DNA sequence (4). The most
studied epigenetic mechanisms are DNA methylation and post-
translational modifications (PTMs) of histones but also include
changes in chromatin remodeling and regulation by non-coding
RNAs (ncRNA) (5). Information on the epigenetic changes
plays an important role in regulating DNA processes, such
as transcription, repair, and replication. As a result, abnormal
expression patterns of gene changes in chromatin regulators may
have discrepant results (6).

Gene activation or silencing is controlled by enzymes that add
or remove chemical groups (acetyl, methyl, among others) in
chromatin (Figure 1). These modifications interact with “reader”
proteins that have unique structurally conserved domains
present in various chromatin regulators and transcription
factors, recruiting components of transcriptional machinery and
chromatin remodeling complexes (6). These complexes can be
subdivided into two main regions: heterochromatin, composed
mainly of inactive genes, with late and highly condensed

FIGURE 1 | Schematic representation of epigenetic changes in the mononuclear cell. The chromosome is composed of chromatin, a complex formed by DNA and

nucleosomes, and the core is formed by an octamer of histones. Both DNA and histones can suffer the action of catalyzing enzymes of chemical groups that influence

the chromatin structure, affecting gene expression. K, lysine; HATs, histone acetyltransferases; HDACs, histone deacetylases; HMTs, histone methyltransferases;

HDMs, histone demethylases; DNMTs, DNA methyltransferases.

replication; and euchromatin, which contains most of the active
genes and has the loosest chromatin (7).

DNA methylation and histone modifications are
complementary dynamic processes that together determine
the pattern of gene expression, essential in the development,
differentiation, and cellular function (8); from the beginning
of development and throughout an individual’s life, they act
regularly and physiologically. Epigenetic marks have plasticity in
response to the cellular state and the environment. Epigenetic
patterns are influenced by environmental factors during
pregnancy, neonatal phase, puberty, and adulthood, and even by
exposure to radiation and other chemical and physical agents. In
addition, epigenetic errors are associated with the development
of chronic diseases in humans (9, 10).

DNA Methylation
In mammals, DNA methylation occurs predominantly in
cytosines that precede guanine, called CpG dinucleotides.
DNA methyltransferases (DNMTs) are enzymes that catalyze
the transfer of the methyl group (–CH3) to carbon 5 of
the cytosine, converting it to 5-methylcytosine (5mC) (11).
DNMT1 is a maintenance methyltransferase that maintains the
mitotic inheritance of the DNA bases through the preferential
recognition of hemimethylated DNA during replication,
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TABLE 1 | Effects of the most frequent histone changes in gene transcription.

Histone modification Modifying enzymes Function Location

H3K4me1 SET1, SET7/9, MLL, SMYD2, PRDM9 Activation Enhancers

H3K4me3 SET1, MLL1, MLL2, SMYD3, PRDM9 Activation Promoters

H3K9ac GCN5 Activation Enhancers, promoters

H3K27ac GCN5 Activation Enhancers, promoters

H3K27me3 EZH1, EZH2 Repression Promoters, gene-rich regions

H3K9me3 SUV39H1, SUV39H2 Repression Satellite repeats, telomeres, pericentromeres

From references From references (18–20).

methylating the newly synthesized CpG dinucleotides,
generating two new methylated DNA molecules (12). DNMT3a
and DNMT3b can recognize any strand of unmethylated DNA
and act mainly in establishing new methylation patterns, playing
a fundamental role during embryogenesis (13).

More than half of all genes contain high concentrations
of CpGs (CpG islands) in their promoters. Gene’s promoters
containing unmethylated CpGs give the gene a permissive
state for transcription. In contrast, hypermethylation of these
promoters may prevent binding of transcriptional factors and/or
recruiting methyl-binding proteins and repressor complexes,
resulting in gene silencing (14).

Histone Modification
Histones are proteins that compose nucleosomes H1, H2A, H2B,
H3, and H4. They have amino acid residues, mainly in their
N-terminal portions, subject to covalent modifications, such as
acetylation, phosphorylation, methylation, and ubiquitination,
which regulate the chromatin structure. Histone modifications
can either modify their load or recruit proteins and complexes
that affect the transcription of genes present in the region, DNA
repair, and replication (6, 15).

Among these modifications, the acetylation of lysines in the
N-terminal portions of histones is dynamic and catalyzed by
histone acetyltransferase enzymes (HATs). Addition of acetyl
groups neutralizes the positive charge of the lysine, weakening the
electrostatic interaction between histones and negatively charged
DNA, which favors transcriptional activation. Another family of
enzymes that is also part of this process is histone deacetylases
(HDACs), which have opposite effects to HATs and remove the
acetyl group, restoring the positive charge of lysine (15).

Histone methylation occurs mainly in the side chain of
lysine and arginine residues through the action of histone
methyltransferases (HMTs). Lysines can receive more than one
methyl group so that gene transcription can be suppressed or
activated, depending on the number of methyl groups and the
modified amino acid residue (16). In contrast to acetylation,
histone methylation does not alter the general charge of the
molecule. This modification was once considered static and
stable. However, different families of histone demethylases
(HDMs) enzymes act on the lysine residues (15, 17).

Table 1 shows the most frequent changes in histones,
their function, the enzymes promoting the changes, and
location (18–20).

Non-coding RNAs
In addition to the classic epigenetic mechanisms of DNA and
histones, a new layer of complexity involving non-coding RNAs
has emerged as an important post-transcriptional regulator of
gene expression (21). Thus, ncRNAs are a group of RNAs that
do not encode functional proteins, being broadly classified as
short (<200 nucleotides) or long (more than 200 nucleotides),
and these can be grouped by their genomic origin and biogenic
processes (22).

MicroRNAs (miRNAs) belong to the most studied and highly
conserved class of short ncRNAs, presenting 19–22 nucleotides
(nt) in length, which destabilize messenger RNA (mRNA)
by binding to 3′ untranslated regions (3′-UTR) or inhibiting
protein translation (23, 24). In contrast, long ncRNAs (lncRNAs),
generally not much conserved among species, have a multitude
of roles, including gene expression regulation at epigenetic,
transcriptional, and post-transcriptional levels (23, 25).

EPIGENETIC REGULATION OF THE
IMMUNE SYSTEM

The immune system can recognize different agents and
substances foreign to the body, triggering an immune response
mediated by immediate reactions of innate immunity and late
responses of adaptive immunity through signaling pathways
that are strictly regulated at different levels. Epigenetic changes
can also occur during an infectious process, so changes in the
epigenome can affect the immune cell phenotype, interfering
with the response to infection and contributing to inflammatory
disorders (Figure 2) (26–28).

During sepsis, the host innate immune system cells release
an excessive number of inflammatory mediators through
recognizing the pathogen by pattern recognition receptors
(PRRs) that identify the microorganism through pathogen-
associated molecular patterns (PAMPs) and damages (DAMPs).
These include Toll-like receptors (TLRs), cytosolic RIG-I-like
receptors (RLRs), NOD-like receptors (NLRs), and C-type lectin
receptors (CLRs), which induce complex intracellular signaling
with complementary activities that activate transcriptional
factors that regulate inflammatory response genes, generating
dynamic changes in chromatin (26, 29–31).

Pathogens are capable of various epigenetic strategies to
guarantee their survival and replication, in such a way that they
decrease PRR detection and signaling pathways andmodulate the
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FIGURE 2 | Epigenetic modifications during infection. Pathogen recognition by PRR triggers cascades of intracellular signaling activating inflammatory mediators

which induces dynamic changes in chromatin through epigenetic mechanisms, leading to increased or decreased gene activation. The pathogen can also directly

alter chromatin through the influence of epigenetic modifiers. These epigenetic alterations (yellow background) may modulate the inflammatory response (pink

background). Sepsis induces profound changes in gene expression involved in the inflammatory process and host defense. Epigenetic modifications play a central

role in its regulation as evidenced by the presence of differentially methylated CpG islands, several modifications of histones with effects on gene activation (H3K4me,

H3K9ac) and repression (H3K27me3, H3K9me3), and the presence of differentially expressed ncRNAs. PAMP, pathogen-associated molecular pattern; PRR, pattern

recognition receptor; DNMT, DNA methyltransferase; HAT, histone acetyltransferase; HDAC, histone deacetylase; HDM, histone demethylase; HMT, histone

methyltransferases; ncRNA, non-coding RNA.

expression of immunity-activating and -repressing substances.
Thus, a chronic infection can induce epigenetic dysregulation,
contributing to the pathogenesis of infectious diseases and
even cancer. However, considering that epigenetic changes are
potentially reversible, these could be reversed, allowing the host
immunity to return to respond efficiently to stimuli (27).

The lipopolysaccharide (LPS) present in the cell wall of
gram-negative bacteria binds to TLR-4 receptor, inducing the
expression of several genes via the transcription factor NF-
κB, such as tumor necrosis factor (TNF), interleukin 1 (IL-
1), and IL-8. This activation generates a local and systemic
inflammatory process, resulting in coagulation, vasodilation,
endothelial escape, scrolling, and leakage of neutrophils and
inflammatory mediators to the extravascular space, which can
lead to organ dysfunction and hypotension (2, 3, 30–32). LPS
stimulation in human monocytes results in the erasure of a
repression marker, histone methylation into lysine 9 (H3K9me)
in inducible inflammatory gene promoters, regulating these
genes (33). In the human endotoxin model, transcriptome
analysis revealed that 3,714 genes undergo transcriptional
changes after 2 h of exposure, with changes in DNA methylation
in several regions of the genome, correlating these results with the
tolerance of the immune system and the increase in vulnerability
to subsequent infections (34, 35).

Recent evidence has shown that the innate immune
system can generate an immune memory mediated by
epigenetic reprogramming of transcription pathways, known as
trained immunity. This consists of the functional long-lasting
reprogramming of innate immune cells in response to exogenous
or endogenous stimuli, generating an altered response to a
second challenge after returning to baseline (36). For example,
individuals vaccinated with BCG (Bacille Calmette-Guérin)
have monocyte epigenetic reprogramming throughout the
genome, with increased H3K4 trimethylation activation mark
(me3), increasing IL-1β production and protection against viral
infections in an experimental model of yellow fever. These
functional changes indicate trained immunity (37).

During sepsis, a phenomenon known as immunological
tolerance occurs. The immune system of patients leaves the
state of hyper-inflammation, called a cytokine storm, and
goes to a dysfunctional state, where the innate cells do not
respond adequately to posterior stimuli (3). In this process,
there is a reorganization of the immune functions and metabolic
processes of inflammatory cells, with suppression to subsequent
challenges as part of this acute cellular reprogramming. Studies
show epigenetic modifications are essential for establishing
immunosuppression in late sepsis. These modifications include
changes in histone marks, loss of activation marks in promoter
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regions, and gene enhancers that are negatively transcribed into
tolerant monocytes (2, 34, 38, 39).

In a model of tolerance induced by LPS, nuclear factor-κB
(NF-kB)-activated genes are downregulated. In contrast, genes
related to the p38 pathway are preserved, showing a different
regulation from the TLR cascades during immunoparalysis (40).
Austenaa and colleagues showed that the H3K4me3 epigenetic
activation mark participates in regulating the TLR4 signaling
pathway and described the profile of this modification in the
mouse macrophage genome during the response to LPS (41).

T cells recognize antigens through the human leukocyte
antigen (HLA) system [the major histocompatibility complex
(MHC) in humans] that are expressed on the surface of
host cells; research points to a decrease in the expression of
HLA-DR in septic monocytes and DCs (2, 42, 43), combined
with transcription reduction of the class II transactivator gene
(CIITA), which is modulated by the action of HATs (44, 45).

In this context, the dysregulation of innate and adaptive
immunity is associated with harmful consequences, which,
together with organ failure, lead to increased short- and long-
term mortality in septic patients (46).

Another fundamental mechanism for regulating the
inflammatory response is cellular metabolism. During sepsis,
innate immunity cells activate a series of intracellular cascades
that result in cellular metabolism alterations. The metabolic
shift from oxidative phosphorylation to glycolysis during acute
inflammation provides the necessary energy for cell function
and induces an accumulation of metabolites that function as
cofactors of epigenetic enzymes (47).

Thus, a reduction in intracellular levels of acetyl-CoA can
decrease histone acetylation. The accumulation of nicotinamide
adenine dinucleotide (NAD)+ activates histone deacetylases
of the sirtuin class, leading to lower acetylation levels. High
concentrations of fumarate inhibit the histone demethylase
enzyme KDM5, responsible for removing methyl groups.
Therefore, several cellular metabolites can activate or inhibit
different enzymes involved in epigenetic programming. They
induce changes in chromatin and DNA, modulate gene
transcription, and lead to different functional states during sepsis,
such as excessive inflammation immunoparalysis (2, 33).

EPIGENETIC REGULATION IN SEPSIS

Different epigenetic changes have already been associated with
immune activation and tolerance during sepsis, contributing
to the process of prolonged inflammation, organ failure,
persistent immunosuppression, development of severe secondary
infections, and even death (36, 48, 49).

Much of the research that correlates epigenetics and sepsis has
been with in vitro studies or animal models, with scarce data in
septic patients (Tables 2, 3).

Histone Modification and Sepsis
Foster and collaborators presented the first evidence linking
tolerance to LPS with epigenetic mechanisms. They showed
that in mouse macrophages, a different response occurs
in genes induced by TLR4. These responses were divided

into two classes: class T composed of pro-inflammatory
genes, which were inhibited in tolerant macrophages; and
the NT class genes, composed of antimicrobials that were
not inhibited in these macrophages. In the promoters of
inflammatory genes, the H3K4me3 activation marks and
H4 acetylation were lost during a re-exposition to LPS,
and the NT class genes remained with the presence of
the activation marks after a second challenge (50). Also,
monocytes exposed to LPS do not show active histone
marks in the promoter region and in gene enhancers that
participate in lipid metabolism and phagocytic pathways,
resulting in transcriptional inactivity of these genes through new
stimulus (31).

In human sepsis, selective and precise changes in chromatin
occur in regulatory regions of genes that participate in the
immune process. Chromatin immunoprecipitation combined
with high-throughput sequencing showed that in the cells
of septic patients, transcriptional activation marks (H3K4me3
and H3K9ac) increased in genes related to immune response;
in contrast, genes involved in processing and presenting
antigens gained the repression mark (H3K27me3) compared
with healthy controls (64). Differences in epigenetic marks can
be explained by their plasticity at different times of exposure
to the pathogen. Zhao and colleagues found the presence
of the activation mark H3K4me2 in bone marrow–derived
macrophages (BMDMs) in mice after 30min of stimulation with
LPS, with a return to baseline levels after prolonged exposure to
the stimulus (51).

Organ dysfunction occurs during sepsis due to the excessive
initial response of cytokines that generate tissue damage. In a
model of acute lung injury (ALI) induced by sepsis in mice,
loss of histone acetylation was observed in promoters of the
main angiogenic genes in the lung and extrapulmonary organs.
This systemic response of negative transcription regulation has
been included in the pathogenesis of microvascular leakage
induced by sepsis and multiple organ dysfunction syndrome
(MODS) (54), suggesting early intervention can preserve
these epigenetic marks, maintaining endothelial integrity (68).
Mice pretreated with HDAC inhibitors attenuated ALI during
sepsis (57).

Epigenetic Regulators and Sepsis
The activity of the enzymes HATs and HDACs can be modulated
by LPS, but their contribution to endotoxin tolerance is not
yet clear. A study showed that the inhibition of acetyl-lysine
binding domain, known as bromodomain and its subfamily
bromo- and extra-terminal (BET), induces a negative regulation
of inflammatory genes in activated macrophages, reducing
inflammation in a model of bacterial sepsis in murine (69).

In the NF-kB activation signaling pathway, the CREB-binding
protein (CBP)—a transcriptional coactivator of HAT function—
contains bromodomains that bind to acetylated histones H3 and
H4 in a way that allows the expression of pro-inflammatory
cytokine genes (70). Exposure to LPS increases the stability
of CBP by reducing interaction with the FBXL19 subunit of
ubiquitin ligase 3 and activating the deubiquitylating enzyme
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TABLE 2 | In vitro and in vivo experimental studies evaluating epigenetic modifications in LPS challenge and infection.

Study Epigenetic modification Experimental model Results

In vitro

(41) Histone methylation Macrophages of Wbp7 –/– mice exposed

to LPS

Macrophages Wbp7 –/– show impaired responses to LPS, with

loss of H3K4me3

(50) Histone methylation histone

acetylation

BMM stimulated with LPS Epigenetic changes are associated with silencing of inflammatory

genes and priming of antimicrobial effector

(51) Histone methylation Murine RAW264.7 cells and BMDMs upon

LPS stimulation

LPS stimulation resulted in enhanced methylation at H3K4 and

H3K9 in cells

(52) Histone methylation Raw264.7 macrophages LPS-treated The JmjC-Jmjd3 domain protein is H3K27me

macrophage-induced demethylase in the presence of bacterial

products and inflammatory cytokines

(53) Histone methylation BMM stimulated with LPS Jmjd3 interferes with the transcription of LPS-activated genes in

an independent way to demethylate H3K27

In vivo

(54) Histone acetylation ALI sepsis in murine ALI sepsis reduces the levels of histone H3 lysine acetylation that

permits the transcription of angiogenic genes in the lung, kidney,

and liver

(55) DNA methylation ALI sepsis in rat 1,721 genes had aberrant methylation in the rat’s lung tissue with

acute LPS-induced injury

(56) Histone acetylation DNA

methylation

ALI sepsis in mice Combined treatment of DNMTi and HDACi alleviates

inflammation-induced pyroptosis and apoptosis during ALI

(57) Histone acetylation CLP-induced sepsis in mice Pretreatment with HDACi 30min before CLP resulted in decreased

lung injury and increased survival

(58) DNA methylation CLP-induced sepsis in mice Treatment with decitabine reduces DNMTs, minimizes NF-kB

activation, and attenuates inflammatory cytokine levels, inhibiting

sepsis progression

(59) DNA methylation Rat model of endotoxemia Treatment with DMNTi (procainamide) reduced the levels of

DMNT1 and 5-methylcytosine, improving inflammatory infiltrate

and superoxide production in the lung

(60) Histone acetylation Mice injected with LPS Prophylactic treatment with HDACi (SAHA) reduced levels of

TNF-α, IL-1-β, IL-6, and IFN-γ induced by LPS

(61) Histone acetylation Mice injected with LPS SAHA-treated mice had increased survival than untreated mice

LPS, lipopolysaccharide; BMM, bone marrow macrophage; BMDM, bone marrow–derived macrophage; ALI, acute lung injury–induced sepsis; DMNTi, DNA methyltransferase inhibitor;

HDACi, histone deacetylase inhibitor; CLP, cecal ligation and puncture; SAHA, suberoylanilide hydroxamic acid; DMNT1, DNA methyltransferase 1; JMJD3, Jumonji domain-containing

protein D3.

USP14, resulting in chromatin remodeling and cytokine gene
expression (71).

The expression of the Jumonji domain-containing protein
D3 (Jmjd3) enzyme, a H3K27me histone demethylase class,
is induced in macrophages by the transcription factor NF-kB
in response to LPS, and binds to genes targeting proteins of
the Polycomb group, which belongs to the Chromobox family
proteins and mediates gene silencing, regulating the levels of
the repressor mark H3K27me3 and transcriptional activity,
independent of H3K27 demethylation (52, 53).

Cellular bioenergetic changes during sepsis can also be
coordinated by epigenetic mechanisms. During sepsis, sirtuin
1 (SIRT1) rapidly accumulates in the TNF-α and IL-1β gene
promoters, deacetylating H4K16 and blocking NF-kB-dependent
transcription (62). The presence of SIRT6 can also attenuate NF-
kB signaling by deacetylating H3K9 in chromatin (72). Besides,
in endotoxin tolerance, the interaction of DNA methylation with
histone H3K9 methylation silences the expression of some pro-
inflammatory genes (63, 73). LPS activates M1 macrophages,
which present a high rate of glycolysis, leading to HDAC

degradation, which interferes with the activity of inflammatory
cytokines (74, 75). α-Ketoglutarate (αKG), a tricarboxylic
acid cycle (TCA) intermediate, favors tolerance to endotoxin
in inflammatory genes after M1 macrophages are activated,
independently of Jmjd3 (76). Exposure to LPS also increases
the metabolism of one-carbon, which produces S-adenosyl
methionine, a potent methyl donor (77).

DNA Methylation and Sepsis
A pilot study involving septic and non-septic patients analyzed
methylation throughout the genome in the samples of these
individuals and found 668 differentially methylated regions
(DMRs) between the septic vs. non-septic groups, among
which 56 genes have already been associated with sepsis in
literature (65). Blood transcriptome analysis of patients with
community-acquired pneumonia identified several chromatin-
modifying enzymes are differentially expressed in the initial
sepsis, leading to chromatin reorganization and stimulating
widespread transcriptional reprogramming (66).
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TABLE 3 | Epigenetic modifications in human cells in vitro and in different clinical settings.

Study Epigenetic modification Model Results

(33) Histone methylation Human monocytes exposed to LPS Exposure to LPS changed the methylation pattern of H3K9 in a set of

inflammatory gene

(34) DNA methylation histone

methylation

Human monocytes exposed to LPS Exposure to endotoxin generated changes in DNA methylation, mainly

demethylation, and a gain of acetyl in H3K27 and methyl H3K4 in

cytokine promoters

(62) Histone acetylation Human monocyte cell model of

endotoxin tolerance

SIRT1 coordinates the epigenetic and bioenergy shifts

(63) DNA methylation histone

methylation

Human monocyte cell line THP-1

incubated with LPS

In tolerant macrophages, the interaction of DNA methylation with H3K9

methylation silences TNF-α expression

(64) Histone methylation histone

acetylation

Monocytes from septic patients Sepsis induces changes in chromatin, with selective and precise

changes in promoter regions of immunological genes

(65) DNA methylation Adults patients with

Sepsis

The DNA methylation profile showed 668 differentially methylated

regions between patients with sepsis and patients with critical

non-septic diseases

(66) DNA methylation histone

methylation

Adult patients with

community-acquired pneumonia

Chromatin remodeling occurs in community-acquired pneumonia

associated with extensive transcriptional deregulation of

chromatin-modifying enzymes

(67) DNA methylation Neonates with bacterial sepsis Analysis of the entire epigenome of whole blood samples reveals 81

differently methylated CpG sites in 64 genes, where functional analysis

showed an enrichment of protocadherin genes in neonatal sepsis

LPS, lipopolysaccharide; SIRT1, sirtuin 1.

Retrospective research evaluated whether the DNA
methylation pattern of CpG sites in the procalcitonin gene
[polypeptide related to α calcitonin (CALCA)] could be used
as an epigenetic biomarker for bacterial sepsis in premature
newborns. These preterm patients showed variation in the DNA
methylation status of the CALCA promoter in different types of
bacterial sepsis, suggesting different regulation of this gene at
the epigenetic level according to the type of infection (78). In a
further approach searching for prognostic markers of neonatal
sepsis, a small epigenome study analyzed the methylation
status of CpGs in blood samples from 3 septic neonates and 3
non-septic and found 81 differently methylated CpG sites in
64 genes, whose functional analysis showed the enrichment of
protocadherin genes in neonatal sepsis (67).

An experimental model of LPS-induced ALI found an increase
in DNMT1 and 5-methylcytosine, accompanied by neutrophil
infiltration and superoxide production in the lung tissue of
endotoxemic rats (59). Another epigenomic analysis showed
aberrant DNA methylation occurs in promoter regions of 1,721
genes, many of which participate in the hyperinflammatory
response (55).

Non-coding RNAs and Sepsis
ncRNAs are also involved in the pathogenesis of sepsis. A
study analyzing the co-expression network of protein-coding
and lncRNAs in septic and healthy neutrophils showed that
several lncRNAs are linked to genes differentially expressed
during sepsis and appear to have a regulatory role in the
translation of proteins, and participate in regulatory loops that
are altered during sepsis (79). They were detected as sepsis
regulators because of the interaction between lncRNAs and

sepsis co-expression modules identified by whole blood RNA
expression profile of septic patients (80). An analysis of the
transcriptome in blood leukocytes of volunteers with sepsis and
healthy individuals showed that both lncRNAs and, to a lesser
extent, short ncRNAs undergo significant changes during sepsis
in healthy individuals (81). So, different types of ncRNAs can
serve as potential biomarkers for sepsis and as new therapeutic
targets (82).

POTENTIAL EPIGENETIC THERAPIES FOR
SEPSIS

Several studies evaluated the potential therapeutic effect of
epigenetic drugs in modulating chromatin regulatory enzymes
during sepsis. Animal research has shown that epigenetic
mechanisms can mitigate the acute inflammatory response to
endotoxins (39, 48). Many of these epigenetic therapies are
undergoing clinical trials to treat different cancers (83–85). Some
of these therapies have been approved by the Food and Drug
Administration and are used in clinical practice.

Suberoylanilide hydroxamic acid (SAHA) is a histone
deacetylase (HDACi) inhibitor known for its anti-tumor effects.
Leoni and colleagues showed that SAHA could also reduce the
production of pro-inflammatory cytokines. Mice treated with
this inhibitor reduced the production of TNF-α, IL-1β, IL-6, and
interferon gamma (IFN-γ) after a challenge with LPS (60). When
mice were submitted to the polymicrobial sepsis model initiated
by ligation and cecal puncture (CLP) (61, 86), survival improved
and damage reduced.

Another HDACi that appears to be effective in improving
the clinical outcomes of sepsis is Trichostatin A (TSA)

Frontiers in Medicine | www.frontiersin.org 7 July 2021 | Volume 8 | Article 685333

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Falcão-Holanda et al. Epigenetic Regulation in Sepsis

(86). TSA-pretreated mice submitted to CLP presented a
protective effect during sepsis-induced lung injury, with
reduced inflammatory infiltrate, decreased expression of the
intercellular adhesion molecule-1 (ICAM-1) and E-selectin in
lung tissue samples, and reduced plasma IL-6, with increased
survival (57). Treatment with TSA, in combination with DNA
methyltransferase inhibitor (DNMTi) 5-Aza 2-deoxycytidine (5-
AZA-CdR), decreases apoptosis and inflammation in BMDMs
of mice exposed to LPS (56). Also, TSA blocks the effect of
endotoxin tolerance in reducing IL-6 production (87).

Valproic acid (VPA) and sodium butyrate (SB) also act as
HDACi and have shown efficacy in experimental models of
sepsis, with reduced expression of inflammatory genes and
decreased organic damage (57, 88, 89); however, toxicity may
prevent its use in clinical trials (90).

Studies show that different DNMTi can reverse some sepsis
results in an endotoxemia model in rats. As an example,
procainamide inhibited the increase in DNMT1 and decreased
neutrophil infiltration in the lung of endotoxemic rats (59).
Decitabine, a DNMTi, reduced NF-kB activation, decreased
the levels of inflammatory cytokines, and inhibited sepsis
progression in mice challenged with CLP (58).

The mechanisms by which DNMTi and HDACi act to
reverse some of the consequences of sepsis are still not fully
understood. These inhibitors are believed to prevent epigenetic
changes and their modulating effects on gene expression (39).
However, use of these inhibitors may become unfavorable
because they reduce the expression of pro-inflammatory and
anti-inflammatory cytokines and mediators, decreasing bacterial
clearance (91).

Despite the effects of these enzymes’ inhibitors in pre-clinical
models of sepsis, one should be cautious to translate this
approach as a potential clinical adjuvant therapy for sepsis.
In most studies already mentioned here, the inhibitors were
administered prophylactically, which does not mimic the setting
of sepsis therapy. Few are those who demonstrate the benefits
of late epigenetic drug use. One used the highly specific
SIRT1 inhibitor, EX-527, in mice 24 h after onset of sepsis.
All animals receiving this epigenetic agent survived sepsis
with the reversion of endotoxin tolerance (92). Furthermore,
other animal models should also be tested. For other potential
uses of these drugs, the benefits must overcome the risks
and toxicity.

CONCLUSION

During sepsis, dysregulated gene expression occurs, generating
hyperinflammatory responses and, in parallel, persistent hypo-
inflammatory reactions. Strong evidence points to epigenetic
changes as one of the main factors influencing gene expression
changes associated with this clinical condition. In this review,
we summarize studies that highlight epigenetic mechanisms
as essential events during sepsis pathology, changing as
sepsis progresses. Thus, epigenetic regulation occurs mainly in
transcriptional promoter regions or gene enhancers, leading
to pathological and bioenergetic adaptations through specific
enzymes that catalyze chemical groups. The use of epigenetic
enzyme inhibitors is promising as a therapeutic target during
sepsis, but further research is needed to understand their role in
clinical settings.
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