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Intrinsic network interactions may underlie individual differences in the ability to remember. The default mode network

(DMN) comprises subnetworks implicated in memory, and interactions between the DMN and frontoparietal network

(FPN) were shown to support mnemonic processing. However, it is unclear if such interactions during resting-state

predict episodic memory ability. We investigated whether intrinsic network interactions within and between the DMN

and FPN are related to individual differences in memory performance. Resting-state activity was measured using functional

MRI in healthy young adults followed by a memory test for object–location associations that were studied 3 d earlier.

We identified two subnetworks within the DMN, the main-DMN and the medial temporal lobe, retrosplenial cortex

(MTL_RSC)-DMN. Further, we found regions forming the FPN. Memory performance was associated with lower connec-

tivity within the MTL_RSC-DMN, and stronger connectivity between the main-DMN and FPN. Exploratory whole-brain

analysis revealed stronger MTL connectivity with the left posterior parietal cortex that was related to better memory per-

formance. Furthermore, we found increased task-evoked activation during successful retrieval within the main-DMN and

FPN, but not within the MTL_RSC-DMN. In sum, lower intrinsic connectivity within the MTL_RSC-DMN, combined

with stronger connectivity between the main-DMN and FPN, explain individual differences in memory ability.

[Supplemental material is available for this article.]

We all differ in our ability to learn and remember information. Not
only variance in task-evoked brain responses, but also functional
interactions between large-scale brain networks during rest may
describe brain properties that underlie trait differences in our abil-
ity to learn (Gerraty et al. 2014) and memorize (Wang et al. 2010;
Salami et al. 2014; Spreng et al. 2018). The default mode network
(DMN) was originally defined as a set of regions showing increased
activation during rest compared to goal-directed, complex tasks
(Shulman et al. 1997; Raichle et al. 2001). Key regions of the
DMN include the dorsal and ventral medial prefrontal cortex, the
posterior cingulate cortex, retrosplenial cortex (RSC), lateral tem-
poral lobes, and the posterior inferior parietal lobes (including
the angular gyri) (Gusnard et al. 2001; Raichle et al. 2001; Greicius
et al. 2003; Fox et al. 2005; Buckner et al. 2008). Several studies
have shown that the DMN consists of interacting subsystems
that are involved in different aspects of internally focused cogni-
tion, including self-referential processing and memory processing
(Buckner et al. 2008; Kumaran et al. 2009; van Buuren et al. 2010;
Andrews-Hanna et al. 2010, 2014a,b; Kaboodvand et al. 2018; Staf-
faroni et al. 2018), althoughmultiple fractionations of the network
were proposed. An analysis of intrinsic activity of the DMN by
Andrews-Hanna et al. (2010) described a core subsystem (the
core-DMN), comprising the anteriormedial prefrontal and posteri-
or cingulate cortices serving as hubs, that interactedwith two other
subsystems; a dorsal medial and amedial temporal lobe (MTL) sub-
system (Andrews-Hanna et al. 2010). Other studies have reported a

division of the cortical DMN regions into an anterior and posterior
subnetwork (Damoiseaux et al. 2008), and anMTL-subsystem (Sal-
ami et al. 2014; Kaboodvand et al. 2018; Staffaroni et al. 2018). Re-
gions of the MTL-subsystem, as well as cortical medial posterior
regions, the angular gyrus, and the anterior medial prefrontal cor-
tex, appear to be involved in autobiographical and episodic mem-
ory retrieval (Andrews-Hanna et al. 2010, 2014a,b; Daselaar et al.
2004, 2009; Vilberg and Rugg 2008; Sestieri et al. 2011; Huijbers
et al. 2012; Benoit and Schacter 2015). Moreover, a recent study
probing age-related changes reported connectivity changes within
a cortical DMN network and between anterior and posterior DMN
subnetworks to predict changes in memory performance (Staffar-
oni et al. 2018), highlighting the importance of these subnetworks
in mnemonic processing.

Not only interactionswithin theDMNbut also interactions be-
tween the DMN and other large-scale networks (Vatansever et al.
2015), in particular the frontoparietal network (FPN, or executive
control network), appear to support cognitive abilities (Spreng
et al. 2010; Cocchi et al. 2013). The FPN comprises the lateral pre-
frontal cortex, dorsal anterior cingulate cortex, precuneus, anterior
inferior parietal lobule, and the inferior temporal cortex (Vincent
et al. 2008; Yeo et al. 2011; Spreng et al. 2013), and is implicated
in cognitive control (Cocchi et al. 2013; Cole et al. 2013), attention
(Markett et al. 2014), and memory processes (Borst and Anderson
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2013). A study segregating the brain’s resting-state activity into an
intrinsic and an extrinsic system (related to internal and external
processing, respectively) (Doucet et al. 2011) reported that, al-
though the DMN and FPN formed distinct networks, both the
DMN and FPN were assigned to the same, intrinsic system. This
suggests that the DMN and FPN are cooperative rather than com-
petitive networks (Doucet et al. 2011; see also, Andrews-Hanna et
al. 2014b). Moreover, task-based interactions between the DMN
and FPN were found to contribute to successful (King et al. 2015)
and more rapid memory retrieval (Fornito et al. 2012), as well as
memory search (Kragel and Polyn 2015); thus, revealing coopera-
tive interplay between these networks in support of mnemonic
processing. Additionally, a recent study reported increased intrin-
sic coupling between the lateral prefrontal cortex and DMN to pre-
dict more semanticized autobiographical memories in older (but
not younger) adults (Spreng et al. 2018). However, it is unclear
whether intrinsic interactions within and between the DMN and
FPN are related to episodic mnemonic processing in young adults,
and whether they underlie individual differences in the ability to
remember.

Our goal was to investigate whether intrinsic network interac-
tionswithin and between theDMNand FPN are related tomemory
ability, ormore specifically, to the individual variability in episodic
memory performance. To this aim, wemeasured brain activity dur-
ing resting-state using functionalMRI in 24 young adults, followed
by a memory test for associations that were studied 3 d earlier (Fig.
1A). We used a spatial associative memory task in which partici-
pants studied and recalled associations between objects and loca-
tions to minimize the potential influence of self-referential and
social processing on task performance and activation in the DMN
(Fig. 1B,C;Meyer et al. 2018). Sincewewere interested inmore eco-
logically valid, longer-term memories, memory performance was
defined as the number of associations correctly recalled immediate-
ly after learning as well as at the delayed test after 3 d. Additionally,
brain activity changes during the delayed test were assessed to val-
idate engagement of the DMNand FPN in actualmemory retrieval.

We hypothesized that trait-like interactions within the DMN
and between the DMN and the FPN would explain individual dif-
ferences in memory performance. To test this hypothesis, resting-
state connectivity between regions of the DMN and FPN was ana-
lyzed and subsystems were identified using hierarchical cluster
analysis. Next, the individual average connectivity scores within
and between the resulting subsystems were submitted into a step-
wise multiple regression analysis with memory performance as a
dependent variable. We predicted stronger connectivity within
an MTL-subsystem of the DMN, and of both this MTL-subsystem
and the core-DMNwith the FPN to be associated with better mem-
ory performance. Additionally, we expected theMTL-subsystem of
the DMN, the core-DMN, as well as the FPN, to reveal increased ac-
tivation during correct relative to incorrect memory retrieval.

Results

Memory performance
The goal of this study was to investigate whether network interac-
tions during resting-state are associated with individual variation
in associative memory performance. Successful memory perfor-
mance was significantly above chance level (1 correct association/
64 possible locations =1.60%). On average, participants correctly
recalled ∼44% of all learned associations (mean± SE: 28.17 ±2.66
correct associations, t(23) = 10.56, P<0.0005, test-value=0.016).
About 45% of the learned associations were recalled incorrectly
(mean± SE: 29.17±2.74 incorrect associations), and participants
failed to respond tovery fewtrials only (mean± SE: 4.04±0.68miss-
es). Importantly, successfulmemoryperformancevaried acrosspar-

ticipants ranging from six to 49 associations and thus showed
sufficient variance for testing individual differences in memory
ability.

Resting-state functional connectivity

Connectivity and network identification

Regions of interest (ROIs) were defined by 8-mm spheres centered
on the 22 selected coordinates within the DMN and FPN based on
the literature (see Table 1; Andrews-Hanna et al. 2010; Yeo et al.
2011). To define subnetworks within the DMN (and possibly with-
in the FPN), and to identify regions that changed network align-
ment (i.e., regions that were originally selected as being part of
the DMN but that were then identified as being part of the FPN
by the cluster analysis and vice versa), wefirst calculated functional
resting-state connectivity between all 22 ROIs and then averaged
connectivity across participants. The average connectivity matrix
is shown in Figure 2A. Next, we performed a hierarchical cluster
analysis to define subnetworks based on this mean connectivity
profile. As depicted in Figure 2B, this analysis divided the 22
ROIs into four clusters (threshold of 70% of the maximum link-
age): two clusters within the DMN, one cluster forming the FPN,
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Figure 1. Experimental design (A) Experimental procedure. On the first
day, participants performed an object–location association memory task
on a computer in a behavioral laboratory. Seventy-two hours later, partici-
pants returned for a session in theMR scanner. Brain activity wasmeasured
using functional MRI during a resting-state period and subsequently while
the participants performed the delayed recall test of thememory task. (B) At
the start of the study phase, all 64 objects were displayed at their correct lo-
cations within the grid for 1.5 min. After this, study trials were presented. A
trial started with the presentation of a cue (i.e., one of the objects) in a red
frame (here in black) below an empty grid. After 3 sec, the frame turned
green (here in gray) and a black squared cursor appeared randomly at
one of the four sides of the grid. The subject was then required to indicate
the correct object–location association within 2 sec (example of cursor tra-
jectory ismarked as dashed line). After responding, feedbackwaspresented
on the screen for 3 sec plus the remaining response period. If the given re-
sponse was incorrect (as illustrated), the cursor turned red (here in black)
and the object was displayed at the correct location. (C) During the recall
test, a trial again started with the presentation of a cue followed by a re-
sponse period of 2.5 sec (example of cursor trajectory is marked as
dashed line). No feedback was provided. The next trial started after a vari-
able inter-trial-interval (ITI; mean =5 sec, range=2.5–7 sec). Figure is mod-
ified from a previous publication (Wagner et al. 2017).
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and one cluster consisting of the precuneus and the right posterior
inferior parietal lobule that were originally part of the FPN and
DMN, respectively, when selecting the ROIs based on previous lit-
erature. Since the latter cluster comprised only two regions that
each were originally affiliated with distinct networks, this cluster
was not included in the remaining analyses. The two clusters
of the DMN consisted of (1) the main-DMN, that included the
ventral, anterior and dorsal medial prefrontal cortex, posterior cin-
gulate cortex, left posterior inferior parietal lobule, bilateral tem-
poroparietal junction, and the bilateral lateral temporal cortex,
and (2) the MTL_RSC-DMN comprising the bilateral MTL and
RSC (Fig. 2C). We refer to this cluster as the “MTL_RSC-DMN” to
make it explicit that no regions except the MTL and RSC were in-
cluded. The FPN consisted of the dorsal anterior cingulate cortex,
bilateral lateral prefrontal cortex, inferior temporal cortex, and
the anterior inferior parietal lobule (Fig. 2C), all part of the FPN
when defining the ROIs (see Materials and Methods, Definition
of regions of interest). Changing the clustering threshold to corre-
spond to a maximum number of 5 or 6 clusters did not change the
partition of the DMN.

Next, we assessed the strength of the within- and between-
network connectivity as defined by the hierarchical cluster
analysis. To avoid circularity, we performed this verification using
resting-state data of an independent group of 25 participants.
Connectivity (Fisher’s z-scores, Fz) within the three networks was
significantly above zero (main-DMN: mean Fz=0.46, t(24) = 27.22,
P<0.0005; MTL_RSC-DMN: mean Fz=0.54, t(24) = 22.85, P<
0.0005; FPN:mean Fz=0.41, t(24) = 19.40, P<0.0005), and the aver-
age within-network connectivity was stronger compared to the av-
erage between-network connectivity (mean Fz: 0.47 and 0.10,
respectively, t(24) = 24.37, P< 0.0005). In addition, connectivity be-
tween the two networks of the DMNwas stronger than the average
connectivity of these networks with the FPN (mean Fz: 0.21 and
0.05, respectively, t(23) = 5.99, P<0.0005).

In sum, the cluster analysis identified two networks within
the DMN, namely, the main-DMN and the MTL_RSC-DMN, and
a network of regions forming the FPN. As expected, connectivity
within these three networks was higher as compared to connectiv-
ity between the networks. Additionally, a fourth cluster consisting
of the precuneus and the right posterior inferior parietal lobule
emerged. Contrary to what we expected, the posterior cingulate
and anterior medial prefrontal cortex did not form a separate clus-
ter (i.e., the core-DMN), but were aligned with the main-DMN
network.

Network connectivity is associated with memory performance

We hypothesized that interactions within the DMN and between
the DMN and the FPNwould be related to individualmemory abil-
ity. To this aim, the individual average connectivity scores within
the MTL_RSC-DMN, the main-DMN, and FPN, and between these
three networks were submitted to a stepwise multiple regression
analysis with memory performance as a dependent variable.

As a first step, connectivity within the MTL_RSC-DMN was
entered into the regression equation and significantly predicted
memory performance (β=−0.53, t(22) =−2.89, P=0.008), explain-
ing 27.5% of the variance in memory performance (F(1,22) = 8.35,
P=0.008). Next, connectivity between the main-DMN and FPN
was entered to the equation, resulting in an increase in explained
variance of memory performance by 23.7% (F(1,21) = 10.21, P=
0.004, Durbin–Watson=2.48). In this final model, 51.2% of the
variability in memory performance was explained (R2 = 0.51, ad-
justed R2 = 0.47, F(2,21) = 11.02, P=0.001). Collinearity statistics
(tolerance) was ∼0.55 for all independent variables (included and
excluded in the model), and the assumption of homoscedasticity
and normality of the residuals was met. Specifically, memory per-
formancewas positively associated with lower connectivity within
the MTL_RSC-DMN (β=−0.50, t(21) =−3.27, P=0.004) (Fig. 3A),
in combination with stronger connectivity between the main-
DMN and FPN (β=0.49, t(21) = 3.19, p=0.004) (Fig. 3B). Remaining
within- and between-network interactions did not enter themodel
and thus did not significantly contribute to explaining variance in
successful memory performance (main-DMN: t(21) = 0.83, P=0.42;
FPN: t(21) =−0.40, P=0.69; main-DMN by MTL_RSC-DMN: t(21) =
−0.036, P=0.97; MTL_RSC-DMN by FPN: t(21) = 1.00, P=0.33).
Thus, the resulting regression equation for predictingmemory per-
formance was

Predicted memory performance = 50.33− (51.74xMTL RSC−DMN)

+ (83.48xmain−DMN×FPN).

To further probe the reported association between lower within
MTL_RSC-DMN connectivity and memory performance, we per-
formed two exploratory whole-brain connectivity analyses with
the left and right MTL regions combined as one seed region, and
the left and right retrosplenial cortex combined as a second seed re-
gion. Successful memory performance was entered as a covariate at
the group level. More specifically, we calculated correlation coeffi-
cients (Pearson’s r) between the average time course of each seed re-
gion with all other voxels in the brain and converted resulting
correlations to Fz. These Fz-weighed images were submitted to a
one-sample t-test with successful memory performance added
as a covariate. Significance was assessed using a cluster-defining
threshold of P<0.001 and a P<0.05 FWE-corrected critical cluster
size of 29 voxels. Significant clusters were labeled using the Labora-
tory of Neuro Imaging (LONI) Probabilistic Brain Atlas (Shattuck
et al. 2008). We found connectivity between the bilateral MTL
and left supramarginal gyrus, extending into the angular gyrus,
to be positively related to memory performance (peak coordinate

Table 1. Coordinates of regions of interest

MNI coordinates

Brain region (abbreviation) x y z

DMN
Anterior medial prefrontal cortex (aMPFC) −6 52 −2
Dorsal medial prefrontal cortex (dMPFC) 0 52 26
Ventral medial prefrontal cortex (vMPFC) 0 26 −18
Posterior cingulate cortex (PCC) −8 −56 26
Left retrosplenial cortex (lRSC) −14 −52 8
Right retrosplenial cortex (rRSC) 14 −52 8
Left temporoparietal junction (lTPJ) −54 −54 28
Right temporoparietal junction (rTPJ) 54 −54 28
Left posterior inferior parietal lobule (lpIPL) −44 −74 32
Right posterior inferior parietal lobule (rpIPL) 44 −74 32
Left lateral temporal cortex (lLTC) −60 −24 −18
Right lateral temporal cortex (rLTC) 60 −24 −18
Left medial temporal lobe (lMTL) −25 −32 −18
Right medial temporal lobe (rMTL) 25 −32 −18

FPN
Dorsal anterior cingulate cortex (dACC) −5 22 47
Precuneus (Prec) −4 −76 45
Left lateral prefrontal cortex (lLPFC) −40 50 7
Right lateral prefrontal cortex (rLPFC) 40 50 7
Left inferior temporal cortex (lITC) −57 −54 −9
Right inferior temporal cortex (rITC) 57 −54 −9
Left anterior inferior parietal lobule (laIPL) −43 −50 46
Right anterior inferior parietal lobule (raIPL) 43 −50 46

MNI coordinates of the center of the ROI with abbreviation in brackets.
Selection of the regions is based on current literature (Andrews-Hanna et al.
2010; Yeo et al. 2011) and mirrored coordinates in the right hemisphere are
included for lateral regions (x >−10). l, left; r, right.
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of local maxima, Z-value, and cluster size: x, y, z=−52, −49, 49; Z=
3.71; 29 voxels; see Fig. 3C). No significant interaction between
whole-brain connectivity of the RSC seed with memory perfor-
mance was found.

In sum, memory performance was predicted by lower con-
nectivity within the MTL_RSC-DMN network, combined with
stronger connectivity between the main-DMN and FPN at rest.
Together, these interactions accounted for 51.2% of the individual
variability in memory performance. Moreover, exploratory whole-
brain analysis revealed stronger connectivity between the bilateral
MTL with the left angular gyrus to be associated with better mem-
ory performance.

To demonstrate the stability of our results, we performed four
additional control analyses (see Supplemental Materials and
Methods and Supplemental Results). First, incorporating global sig-
nal regression instead of partial global signal regression again re-
vealed two subnetworks within the DMN (the main-DMN and
MTL_RSC-DMN), one set of regions forming the FPN, and a cluster
comprising the precuneus and right posterior inferior parietal
lobule. Furthermore, the resulting prediction model of individual
differences in memory performance remained similar. Second,
cluster analysis on resting-state data of an independent group of
participants revealed the same four subnetworks when a clustering
thresholdof fourwasapplied, indicating that thisnetwork architec-
ture was reliable. Third, interactions within and between two con-
trol networks, the auditory and visual network (see Supplemental

Table S1), did not predict memory perfor-
mance, suggesting that the network in-
teractions within the MTL_RSC-DMN
andbetween themain-DMNandFPNspe-
cifically are associated with individual
memory ability. Fourth, the results of
the stepwise multiple regression analyses
were confirmed with a Lasso approach.

Task-induced signal changes during

delayed memory retrieval
To verify the involvement of the main-
DMN, MTL_RSC-DMN, and the FPN in
memory retrieval, we analyzed signal
changes within these networks during
correct compared to incorrect memory re-
trieval following resting-state fMRI. A
repeated-measures ANOVA with network
(main-DMN, MTL_RSC-DMN, FPN) and
memory (correct, incorrect) as within-
subject factors revealed main effects of
memory and network (F(1,23) = 9.31, P=
0.006 and F(2,46) = 124.87, P<0.0005,
respectively), together with a network
by memory interaction (F(2,46) = 8.67, P=
0.001), suggesting that the threenetworks
showed differential activation profiles
related to mnemonic processing. Post-
hoc t-tests, comparing correct to incorrect
memory retrieval within each network,
showed increased activation of the
main-DMN (t(23) = 4.71, P<0.0005) and
the FPN (t(23) = 2.36, P= 0.027) in correct
memory retrieval, but no significant dif-
ferential activation in the MTL_RSC-
DMN (t(23) = 0.39, P=0.704) (Fig. 4).
These findings suggest that the main-
DMN and FPN are related to successful
retrieval processes. Unexpectedly, the

MTL_RSC-DMN did not show increased brain activation related
to successful memory retrieval.

To further investigate the lack of differential activationwithin
theMTL_RSC-DMN related tomemory retrieval, we probedwheth-
er the amount of accurate spatial information available during
incorrect trials influenced the level of activation within the
MTL_RSC-DMN. To this aim, we repeated the analysis with dis-
tance to the correct location included as a parametric modulator
of the incorrect trials (see Supplemental Materials and Methods).
As above, this analysis revealed no significant differential retrieval-
related activation in the MTL_RSC-DMN (t(23) = 0.06, P=0.96), nor
a significant effect of distance on MTL_RSC-DMN activity during
incorrect trials (t(23) = 0.80, P=0.435).

Discussion

We examined whether intrinsic functional network interactions
underlie memory ability, and tested the hypothesis that in-
teractions within the DMN, and between the DMN and the FPN,
are related to individual differences in memory performance.
Cluster analysis identified two networks within the DMN, the
main-DMN and the MTL_RSC-DMN, as well as a set of regions
forming the FPN. Contrary to our expectations, lower connectivity
within the MTL_RSC-DMN, combined with stronger connectivity
between the main-DMN and FPN, were related to better individual

B
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Figure 2. Average connectivity and network identification. (A) Average connectivity values (Pearson’s
r) over subjects of all ROI-to-ROI correlations. Warmer colors indicate higher connectivity. (B) Den-
drogram of the hierarchical cluster analysis revealing the four networks; MTL_RSC-DMN (cyan),
main-DMN (blue), FPN (red), and a fourth cluster (orange). (C) Colored regions of each network,
MTL_RSC-DMN (cyan), main-DMN (blue), FPN (red), and a fourth cluster (orange), are schematically
indicated by spheres and overlaid on a mean anatomical image. Explanations of the abbreviations of
the regions are found in Table 1.
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memory ability. In line with our connectivity findings, analyses of
task-related activity revealed increased activation within the
main-DMN and FPN when comparing successful to unsuccessful
retrieval. However, no such differential activation was found with-
in the MTL_RSC-DMN. To the best of our knowledge, our study is
the first to show that resting-state interactions between the DMN
and the FPN are associated with individual differences in episodic
memory ability in young adults.

We identified two networks within the DMN and one set of
regions forming the FPN. These three networks largely overlap
with previous studies on the fractionation of the DMN and studies
on the FPN (Vincent et al. 2008; Andrews-Hanna et al. 2010,
2014b; Spreng et al. 2010; Staffaroni et al. 2018). However, we
did notfinddecomposition of the cortical DMN regions into an an-
terior andposterior component (Damoiseaux et al. 2008; Staffaroni
et al. 2018), nor did we find a separate network comprising the core
regions of the DMN (the posterior cingulate and anterior medial
prefrontal cortex) (Andrews-Hanna et al. 2010). Instead, the cluster
analysis yielded two DMN subnetworks, the main-DMN and
the MTL_RSC-DMN. All cortical DMN regions except for the right
posterior inferior parietal lobule were included in the main-DMN.
The MTL_RSC-DMN comprised the bilateral medial temporal lobe
and RSC, comparable to the MTL-DMN reported by Staffaroni
and colleagues (Staffaroni et al. 2018; but see Andrews-Hanna
et al. 2010 for anMTL-subsystem including the ventral medial pre-
frontal cortex and the posterior inferior parietal lobule). All regions
of the FPN, except for the precuneus, formed the FPN cluster.
Unexpectedly, the precuneus formed a separate cluster together

with the right posterior inferior parietal
lobule. Although in the 17-network par-
cellation of the cerebral cortex of Yeo
et al. (2011), the precuneus was also re-
ported as a separate network (together
with a posterior cingulate cortex node),
we did expect the right posterior inferior
parietal lobule to be included in a DMN
subnetwork. The differences in cluster
formation between our study and previ-
ous findings may be due to differences
in region selection as well as clustering
approach which impact network forma-
tion (Arslan et al. 2018). Our region selec-
tion was based on two previous studies
(Andrews-Hanna et al. 2010; Yeo et al.
2011). We excluded regions with low
signal-to-noise ratio and included both
left and right lateralized regions (instead
of only left lateralized regions, as in
Andrews-Hanna et al. 2010, 2014b), since
we had no predictions for specific lateral-
ity effects (Bellana et al. 2016). Moreover,
because we were interested in the in-
terplay between the two overarching net-
works as well as their subnetworks, cluster
analysis was performed on both the DMN
and FPN regions together, instead of on
whole-brain connectivity patterns or on
each network separately. Importantly,
aside from the precuneus and the right
posterior inferior parietal lobule, none of
the other regions changed their network
alignment (i.e., regions that were origi-
nally selected as being part of the DMN
but that were identified as being part of
the FPN by the cluster analysis and vice
versa). Moreover, repetition of the cluster

analysis on resting-state data of an independent sample identified
similar clusters of the DMN and FPN. Altogether, this suggests that
although the exact decomposition of the DMN in subnetworks
may differ depending on region selection and cluster analysis ap-
proach, network alignment and clustering were robust.
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Figure 3. Network interactions predicting memory performance. (A) Lower connectivity within the
MTL_RSC-DMN, in combination with (B) stronger connectivity between the main-DMN and FPN to-
gether predict memory performance. Memory performance and connectivity values are standardized
(z-scores). Panel A shows the relationship between memory and MTL_RSC-DMN connectivity after re-
moving the linear effects of main-DMN-FPN connectivity. Panel B shows the relationship between
memory and main-DMN-FPN connectivity after removing the linear effects of MTL_RSC-DMN connec-
tivity. (C) Stronger connectivity between the left and right MTL with the left posterior parietal cortex at
rest was associated with better memory performance. Cluster-defining threshold of P<0.001 and a P<
0.05 FWE-corrected critical cluster size of 29 voxels. Left and right MTL are schematically indicated by
spheres in cyan. MTL regions and results are overlaid on a mean anatomical image.

Figure 4. Activity within the network during recall. Mean percentage of
signal change per network during correct relative to incorrect recall within
each of the networks. Error bars represent standard error of mean. (*) P<
0.0005.
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We predicted stronger connectivity within the MTL-sub-
system of the DMN (i.e., the MTL_RSC-DMN), as well as between
both this MTL-subsystem and the core-DMN with the FPN to be
associated with better memory performance. In contrast to this,
we revealed that lower within MTL_RSC-DMN connectivity and
stronger connectivity between the main-DMN and FPN explained
individual memory ability. In line with our finding of lower
MTL_RSC-DMN connectivity associated with better memory,
Salami et al. (2014) showed enhanced resting-state connectivity
within a hippocampal-DMN subsystem that was positively as-
sociated with age and negatively related to memory performance.
This enhanced connectivity was suggestive for more isolated
hippocampal-DMN functioning and the inability to flexibly re-
cruit this region together with other memory-related regions dur-
ing memory processing (Salami et al. 2014). This hypothesis is
partly supported by studies reporting a positive relationship be-
tween memory performance and hippocampal connectivity with
the posterior medial cortex (Wang et al. 2010; La Joie et al. 2014),
although these studies focused on hippocampal connectivity and
not connectivity of an MTL-system of the DMN. Additionally, a
study targeting individual differences in autobiographic episodic
memory revealed stronger coupling of a parahippocampal region
(similar to our MTL region included in the MTL_RSC-DMN) with
parietal and occipital regions related to episodic-based remember-
ing (Sheldon et al. 2016). Similarly, our exploratory whole-brain
analysis showed that stronger MTL connectivity with the left pos-
terior parietal cortex was associated with better memory perfor-
mance. Together, these studies and our findings suggest stronger
MTL coupling with regions outside the MTL_RSC-DMN system
(as defined in the present study) is positively related to memory
performance. However, a recent study in elderly participants
did not find connectivity of the MTL-DMN to cortical DMN net-
works in relation to memory performance (Staffaroni et al. 2018).
Furthermore, another study in elderly participants that partitioned
the DMN into five subnetworks, including a separate MTL-DMN
component and a component comprising the RSC, reported that
stronger instead of weaker MTL-RSC connectivity was associated
with better episodic memory. These differences in findings could
possibly be explained by yet unknown differences in, for example,
task design and stimuli used, or by differences in age of the partic-
ipants. Indeed, a longitudinal study revealed changes in hip-
pocampal–cortical connectivity that were differently associated
with memory changes across young and older adults (Fjell et al.
2016). Furthermore, studies reported age-related reductions in con-
nectivityof posterior hippocampal regions to corticalDMNregions
(Damoiseaux et al. 2016), as well as changes in intra-network con-
nectivity of the DMN (Ng et al. 2016). In sum, both our study and
previous work tentatively suggest that lower connectivity within
the MTL_RSC-DMN might not be directly related to memory per-
formance, but instead might indicate that stronger connectivity
of the MTL_RSC-DMN to cortical regions outside this network ex-
plains individual variation in memory ability, depending on age.
However, the dependency on age appears to be complex, necessi-
tating more cross-sectional or even longitudinal research to disen-
tangle the relation betweenMTL_RSC-DMN connectivity, age, and
memory performance.

Previous studies have revealed better memory performance
with increased connectivity between the posterior and anterior
midline regions (Andrews-Hanna et al. 2007; Vidal-Piñeiro et al.
2014). Moreover, these midline core regions, together with the an-
gular gyrus, have been implicated in memory retrieval (Vilberg
and Rugg 2008; Sestieri et al. 2011, 2017; Kim 2015; Rugg and
King 2017). Our finding of stronger connectivity between the
main-DMN and the FPN associated with better memory perfor-
mance may therefore be partly driven by these regions. While
the DMN is assumed to be related to memory reconstruction and

retrieval (Vincent et al. 2006; Kim 2015), the FPN is thought to un-
derlie attention and cognitive control processes contributing to
memory retrieval (Vincent et al. 2008). For example, the anterior
inferior parietal lobe (Wagner et al. 2005; Cabeza et al. 2008;
Ciaramelli et al. 2008; Vilberg and Rugg 2008; Sestieri et al. 2017)
and the dorsolateral prefrontal cortex (Simons and Spiers 2003)
supportmemory bymediating attentional control andmonitoring
processes. Furthermore, the FPN is thought to function as a flexi-
ble, adaptive system between internally focused processes of the
DMN and more externally focused processes, such as bottom-up
sensory processing and top-down attentional control (Dosenbach
et al. 2007; Doucet et al. 2011; Cocchi et al. 2013; Cole et al.
2013). Our findings complement previous reports of task-based in-
teractions between the DMN and FPN associated with mnemonic
processing (Fornito et al. 2012; King et al. 2015; Kragel and Polyn
2015). In a recent study, King et al. (2015) revealed retrieval-related
increases in connectivity between regions largely corresponding
to the main-DMN and areas belonging to the FPN. Additionally,
stronger connectivity between the DMN and the right FPN
has been associated with more rapid recollection (Fornito et al.
2012). Resting-state interactions between the main-DMN and
FPNmay promote individual memory ability through dynamic in-
terplay between processes directly related to memory recollection
mediated by the main-DMN, and attention as well as memory
control processes subserved by the FPN. Moreover, we speculate
that enhanced interactionsmight enable better switching between
internally focused memory processes and the processing of ex-
ternal cues. This could possibly result in better adaption to chang-
ing attentional demands that are required for adequate task
performance.

In line with the suggested role of the main-DMN and FPN in
memory, we showed increased activation during successful com-
pared to unsuccessful retrieval during the delayed recall task in
both networks. However, no significant differential activation in
the MTL_RSC-DMN was observed during the task. Although the
MTL_RSC-DMN showed generally elevated levels of activation dur-
ing memory retrieval compared to baseline, the network did not
differentiate between correct and incorrect trials. A reason for
this could be that incorrect trials activated knowledge of the sur-
rounding locations on the grid, or that the spatial associative and
navigational aspects of the task required involvement of the
MTL_RSC-DMN (Epstein 2008; Miller et al. 2014), irrespective of
memory outcome. Future studies should focus on the effects of
navigation in the regions of theMTL_RSC-DMN in a spatial associ-
ative memory task such as the one at hand.

In this study, we were interested in resting-state network dy-
namics in relation to individual variation inmemory performance.
To this aim, we focused on network-level interactions rather
than separate regions, or region-to-region interactions. Therefore,
we cannot make inferences about single regions that may drive
within- or between-network interactions related to memory. Addi-
tionally, we targeted differences in individual memory ability by
measuring memory performance on a cued recall, spatial associat-
ive task. However, it is difficult to draw conclusions specific to re-
trieval as this task is our only behavioral read-out. Differences in
memory performance may therefore also reflect differences in
memory encoding, consolidation or related attentional ormemory
search processes. A recent study of Sneve et al. (2017) targeted
memory consolidation specifically. The authors showed that
individuals with enhanced intrinsic connectivity between the
hippocampus, DMN and FPN subnetworks, parietal and limbic
subnetworks, had better memory performance 6.5 wk after encod-
ing. No significant association was found in participants whose
memory was probed 1.5 h after consolidation, potentially reflect-
ing long-term memory consolidation. Future studies investigat-
ing the role of intrinsic fluctuations in memory may consider
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including measures of encoding and consolidation to be able to
draw more specific conclusions about the different memory pro-
cesses. Moreover, future studies may consider investigating the ex-
tent to which our findings generalize over different forms of
episodic memory. However, we used a typical episodic memory
task, and given the importance of both the FPN and DMN in epi-
sodic memory and the previously reported finding of task-related
connectivity changes between the FPN and DMN related to indi-
vidual differences in episodic memory performance (King et al.
2015), we speculate that our findings can be generalized to other
forms of episodic memory, at least in young adults. Furthermore,
our model explained 51.2% of inter-individual variance in memo-
ry performance through network interactions within the MTL_
RSC-DMN and between the main-DMN and FPN. This amount of
variance in memory accounted for by the interactions is specific
to our statistical model. In reality, other factors such as structural
brain connectivity and intelligencemight contribute to individual
differences inmemory ability. Nevertheless, the large percentage of
explained variance in ourmodel does indicate an important role of
resting-state functional connectivity within the MTL_RSC-DMN,
and between the main-DMN and FPN in supporting individual
memory ability. Moreover, control analyses revealed that network
interactions between and within the auditory and visual network
did not explain inter-individual differences in memory per-
formance, suggesting that the network interactions within the
MTL_RSC-DMN and between the main-DMN and FPN specifically
contribute to individualmemory ability. Finally, although it is like-
ly that network interactions during resting-state reflect trait-like
differences that are related to individual variation in memory per-
formance (Geerligs et al. 2015; Touroutoglou et al. 2015), we can-
not rule out the influence of state-like characteristics. Importantly,
participants were aware that the resting-state measurement was
followed by a recall task, and were possibly engaged in rehearsing
the studied associations, which perhaps affected intrinsic brain
connectivity.

To conclude, we found lower resting-state connectivity with-
in the MTL_RSC-DMN network combined with stronger con-
nectivity between the main-DMN and FPN explained differences
in individual memory ability, as assessed by successful memory
performance on a spatial associative retrieval task. Furthermore, ex-
ploratory whole-brain analysis revealed that strongerMTL connec-
tivity with the left posterior parietal cortex was related to better
memory performance, suggesting that lower intrinsic connectivity
within the MTL_RSC-DMN may be indicative of a more function-
ally embeddedMTL_RSC-DMNwith neocortical regions. The func-
tional importance of the main-DMN and FPN in memory was
mirrored by changes in activation during the actual memory re-
trieval task, however, no retrieval-related activation differences
were shown in the MTL_RSC-DMN.

Materials and Methods

Subjects
Data of 28 healthy males were acquired. Three participants were
excluded because of technical failure of the cardiorespiratory re-
cordings and one participant was excluded because he did not per-
form the task as instructed. This left 24 participants (age 19–29 yr,
mean 22.69 yr) for data analyses. All participants were right-
handed and none received medication, had any contraindication
forMRI, a self-reported current disease or a past neurological, endo-
crine, psychiatric or substance use disorder. The participants took
part in a randomized, double-blind, placebo-controlled, between-
subject study probing the effect of methylphenidate on memory
(Wagner et al. 2017). Only male participants were included in
this study to rule out interaction effects betweenmethylphenidate
and themenstrual cycle, as well as to avoid the inclusion ofwomen

who were in the early weeks of pregnancy. For the current study,
only those who received placebo were included in the main
analyses. Twenty-five participants who received methylphenidate
were included in control analyses (see Supplemental Materials
and Methods). The experimental protocol was reviewed and ap-
proved by the institutional review board (CMO Region Arnhem-
Nijmegen, The Netherlands; registration number 2014/289).
Participants received monetary compensation for participation.

Procedure and associative memory task

General procedure

Participants came to the laboratory on 2 d, 72 h apart (Fig. 1A).
On the first day, participants performed the learning phase and
the immediate recall test of an object–location associationmemory
task on a computer in a behavioral laboratory (Fig. 1B,C). On the
fourth day, participants returned to the center for a session in
the MR scanner. Brain activity was measured using functional
MRI during a resting-state period and subsequently while the par-
ticipants performed the delayed recall test of the memory task.

Resting-state

To measure intrinsic brain activity, participants were scanned dur-
ing a resting-state period of 11 min and were instructed to lie still
and to look at a fixation cross. Eye-tracking was performed to en-
sure that they remained awake with their eyes open.

Associative memory task

On the first day, participants came to the behavioral laboratory to
perform the associative memory task (Fig. 1, see also Wagner et al.
2017). Spatial associativememory tasks such as the task at hand tap
into a core feature of episodic memory and have been used repeat-
edly in prior studies. They have been found to elicit robust activa-
tion in both the DMN and the FPN (Takashima et al. 2009; van
Dongen et al. 2011, 2012 van Buuren et al. 2014; Wagner et al.
2016). In the current task, participants were instructed to memo-
rize associations between pictures of everyday objects and their lo-
cations within an 8×8 grid presented on the computer screen, and
to select the correct object–location association. First, participants
practiced with the trackball (Kensington, Orbit Optical Trackball)
used to select a location on the grid. After this practice session,
the learning phase of the associative memory task began. At the
start of this phase, all 64 objects were displayed at their correct
screen locations within the grid for 1.5min. All objects were select-
ed from the Hemera Photo-Objects database (Hemera Technolo-
gies Inc.) and were distinct and easy to name. The assignment of
the objects to the 64 grid locationswas randomized across subjects.
After viewing the grid, the first trial startedwith the presentation of
a cue (i.e., one of the objects) in a red frame below an empty grid
(Fig. 1B). After 3 sec, the frame turned green and a black squared
cursor appeared at one of the four sides of the grid. Participants
had to select the location on the grid that was associated with
the object by scrolling the black squared cursor toward that loca-
tion and by pressing the left button on the trackball within a re-
sponse period of 2 sec. After responding, feedback was presented
on the screen for 3 sec plus the remaining response period. That
is, if the given response was incorrect, the cursor turned red and
the object was displayed at the correct location. If the response
was correct, the object was shown at that location. After presenta-
tion of all objects, a rest block of 30 sec was inserted duringwhich a
fixation cross was presented on the screen. The learning phase con-
sisted of five cycles, in which every object was presented once. The
order of trials was randomized across subjects and per cycle.

Approximately 5 min after the learning phase, the recall
phase started (Fig. 1C). In this phase, each object was presented
once and sequentially below the board in a red frame for 3 sec as
a cue. Similar to the learning phase, subjects had to select the cor-
rect location (but within 2.5 sec). However, after selection of the
card, no feedback was provided. The cursor turned gray for the re-
maining response period, followed by a 2.5–7.5 sec (mean 5 sec)
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inter-trial interval, during which a fixation cross was presented.
After every 16 trials, a short break of 30 sec (fixation cross) was in-
serted. Again the order of trials was randomized across subjects.

Memory was tested once again after 72 h (mean=72 h;
range =70–73 h). The task instructions were repeated and partic-
ipants were positioned in the MR scanner, where they lay supine
with the trackball placed on their abdomen (Kensington, Orbit
Optical Trackball, in house adapted for MRI compatibility). They
could view the task on the screen through a mirror mounted on
the head coil. First, brain activity during resting-state was mea-
sured. Then, participants practiced with the trackball and per-
formed the final recall test, which was identical to the immediate
recall test on the first day. The presentation order of the trials
was again randomized across participants.

Behavioral data analysis
In line with our previous study (Wagner et al. 2017), successful
memory performance was defined as the number of object–loca-
tion associations that were correctly retrieved at both the immedi-
ate and the delayed recall test. Incorrect retrievalwas defined by the
amount of incorrect responses on the delayed recall test, and trials
without a response were regarded as misses. The task and number
of learning cycles were piloted to acquire both a high level of cor-
rect responses and an adequate distribution of correct and incor-
rect trials required for functional MRI analyses. Associations that
were correctly remembered at the delayed recall test but incorrectly
remembered at the immediate recall test were sparse (mean± SE:
2.63±0.26 associations) and excluded from behavioral data
analyses.

Cardiorespiratory measurements and calculation
Heart beat and respiration weremeasured during scanning as these
processes affect the blood oxygen level-dependent (BOLD) signal
independent of neuronal activity (Glover et al. 2000; Wise et al.
2004) and were found to affect functional connectivity measures
(Birn et al. 2006; Shmueli et al. 2007; van Buuren et al. 2009).
Heartbeat wasmeasured by a pulse oximeter affixed to the little fin-
ger of the left hand and respirationwasmeasuredwith a respiration
belt placed at the level of the abdomen. Data were recorded with a
MR-compatible BrainAmp MR amplifier (BrainProducts), and re-
cordings as well as storage were controlled using the Brain Vision
Recorder (BrainProducts).

Raw physiology recordings were converted using FieldTrip
software (Oostenveld et al. 2011), artifacts in the signal caused by
radiofrequency pulses were removed and peaks in the heart beat
signal were detected using in-house developed software pro-
grammed in MATLAB (MATLAB 2014, The MathWorks Inc.).
Next, heart beat data were visually inspected and spurious peaks
were removed. To correct the BOLD signal for confounds caused
by the respiratory cycle and cardiac pulsatility, RETROICOR (Glov-
er et al. 2000) was applied to model the relationship between the
BOLD signal and the phase of the filtered respiratory and cardiac
signal using fifth-order Fourier series. This resulted in 10 regressors
modeling the respiratory phase and 10 regressorsmodeling the car-
diac phase for each subject. In addition, time courses of heart rate
frequency and respiration volume per unit time were calculated
and shifted with 6, 10, and 12 sec, and −1 and 5 sec, respectively,
to account for the variable delay between fluctuations in these pro-
cesses and the BOLD signal (Birn et al. 2006; Shmueli et al. 2007;
van Buuren et al. 2009). This yielded three regressors for heart
rate frequency and two regressors modeling respiration volume
per unit time, resulting in a total of 25 regressors for each subject
modeling cardiorespiratory effects on the BOLD signal.

Definition of regions of interest
The coordinates of the regions constituting theDMNand FPNwere
based on current literature describing the brain’s resting-state dy-
namics (Yeo et al. 2011), and fractionation within the DMN
(Andrews-Hanna et al. 2010). ROIs were all defined by 8-mm
spheres centered on the selected coordinates. We included mir-

rored coordinates in the right hemisphere for lateral regions (x>
−10) as was done in a previous study on network connectivity
(Vatansever et al. 2015), sincewewere uncertain about possible lat-
erality effects (Bellana et al. 2016). After careful inspection of the
DMN ROIs (Andrews-Hanna et al. 2010), we had to omit the “hip-
pocampal formation” ROI, because of its location ventral to the
hippocampus, and near the edge of the brain resulting in poor tem-
poral signal-to-noise ratio (tSNR left hippocampal formation:
mean=47.75, range =38.2–58.47; tSNR right hippocampal forma-
tion:mean=43.88, range =35.48–53.30), despite sufficient tSNR in
the hippocampus overall as based on the LONI Probabilistic Brain
Atlas (Shattuck et al. 2008), using a probability of 75%) (tSNR left
hippocampus: mean=90.32, range =63.34–108.53; tSNR right
hippocampus: mean=94.08, range =72.18–107.80). The parahip-
pocampal ROI had better tSNR but was located at the posterior
end of the MTL. The MTL region described in Yeo and colleagues
(Yeo et al. 2011 and see Table 1 for coordinates), and the mirrored
region in the right hemisphere, were positioned between, and part-
ly overlappingwith, the “hippocampal formation” and parahippo-
campal ROIs defined in the study of Andrews-Hanna et al. (2010)
and had good tSNR for analysis (tSNR left MTL: mean=91.10,
range =74.56–102.99; tSNR right MTL: mean=89.60, range =
72.47–104.18). Given its location and the higher tSNR values, we
included this MTL region described in Yeo et al. (2011) instead of
the “hippocampal formation” and parahippocampal region cen-
tered on the coordinates provided in the study of Andrews-
Hanna et al. (2010). This resulted in a total of 22 regions; 14 regions
constituting the DMN and eight regions constituting the FPN (see
Table 1).

MRI data acquisition and preprocessing

Data acquisition

Participantswere scannedusing a SiemensMagnetomSkyra 3 Tesla
MR scanner equipped with a 32-channel-phased array head coil.
A total of 316 BOLD-dependent scans were acquired during the
resting-state period, and 364 scans were obtained during the recall
test, both using a T2*-weighted gradient-echo,multiecho echo pla-
nar imaging (EPI) sequence (Poser et al. 2006) with the following
parameters: repetition time (TR) = 2100 msec; echo time (TE)1=
8.5 msec, TE2=19.3 msec, TE3=30 msec, TE4=41 msec; flip an-
gle = 90°; matrix size = 64×64; field of view (FOV) =224×224×
119; slice thickness = 3mm; slice gap=0.51mm; 34 slices, acquired
in ascending order.

Between the acquisition of the resting-state and task function-
al data, a T1-weighted structural image of the whole brain was
made using a magnetization prepared, rapid-acquisition gradient
echo (MPRAGE) sequence (parameters: TR=2300 ms; TE =3.03
ms; flip angle = 8°; matrix size = 256× 256; FOV=192×256×256;
slice thickness = 1 mm; 192 sagittal slices).

Data preprocessing

Raw functional multiecho data acquired during resting-state were
combined using in-house built MATLAB software. This software
applies motion correction on the first echo by estimating iterative
rigid body realignment to minimize the residual sum of squares
between the first echo of the first scan and all other scans. These
estimated parameters were applied to all other echoes, thereby
realigning all echoes to the first echo of the first scan. Then, the
four echo images of each scan were combined into a single image
per scan using the weighted sum of the four echo times. These
combined images were further spatially preprocessed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm). First, using mutual informa-
tionoptimization, the individual structural imagewas co-registered
to themean functional scan, obtained after realignment. Next, the
structural scan was segmented and the normalization parameters
were estimated using unified segmentation. Subsequently, these
parameters were used to transform both the structural image and
the functional scans into Montreal Neurological Institute (MNI)
space, as defined by the SPM8 MNI T1 template (resampled voxel
size of functional data = 3.5 ×3.5 ×3.5 mm). Finally, the functional
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scanswere smoothedusing a 3DGaussianfilter (8-mm full width at
half maximum).

Spatial preprocessing of the functional data obtained during
the recall test largely followed the same procedure. However, to
combine the echoes of these scans into single images, 32 scans ac-
quired during a brief additional rest period before start of the task
were used to determine the optimal weighting of echo-times for
each voxel, by calculating the contrast-to-noise ratio for each
echo per scan. These calculated optimal echo time weightings
were then used to combine the four echo images of each scan
into single images after motion correction. Spatial preprocessing
steps using SPM8 were performed on the combined images as de-
scribed above.

Smoothed and normalized resting-state fMRI data were sub-
mitted to a voxel-wise multiple linear regression analysis using
MATLAB to correct for effects of motion, cardiorespiratory pro-
cesses, and low-frequency drifts. This regression contained the 25
regressors modeling the cardiorespiratory processes and the six
realignment parameters. Motion scrubbing was performed to re-
move scans displaying excessive head motion, by calculating the
framewise displacement (FD, Power et al. 2012, mean± SE: 0.12±
0.01 mm). This yielded one regressor per outlier-scan (FD>0.3
mm, mean± SE: 10 ±1.84 outlier-scans), with a 1 coding for the
outlier-time point and 0 coding for all other time points. In addi-
tion, we included a regressor of the average partial global signal
of the brain to remove non-regional specific fluctuations affecting
connectivity measures. This regressor contained the average BOLD
signal time course of resting-state networks of no interest. These
networks were the visual, cerebellar, sensorimotor and auditory
networks, determined by the 10 well-matched networks of the
resting-state data from the 20-component analysis published by
Smith et al. (2009). Any overlapping voxels of these networks
with the ROIs of the current study were removed. We included
this partial global signal instead of the global signal of the entire
brain to reduce the chance of inducing spurious correlations, or
removing signal of interest. Finally, we added a discrete cosine
transform basis set to the regression to remove low-frequency fluc-
tuations below the frequencies of interest (>0.01 Hz). No low-pass
filtering was performed as recent studies suggest that fluctuations
at higher frequencies may contribute to the signature of the
time courses and removal of these frequencies may result in less re-
liable connectivity profiles (Shirer et al. 2015; Geerligs et al. 2017),
or even artificial correlations (Davey et al. 2013). Residual data
were used to calculate connectivity between the ROIs. Notably,
to allow a maximum delay between heart rate frequency and the
BOLD-signal fluctuations of 12 sec, the first six scans and corre-
sponding regressors were removed, leaving 310 scans for data
analysis.

Functional MRI data analyses

Resting-state functional connectivity analyses

First, for each subject and each ROI, the average BOLD signal time
course was extracted from the residual resting-state data. Correla-
tion coefficients (Pearson’s r) between the average time courses of
each ROI with all other ROIs were calculated and the correlations
were converted to Fz. These values were then averaged across sub-
jects, resulting in a 22×22 average connectivity matrix. Second, to
define subnetworks within the DMN, and potentially within the
FPN, and to identify regions that changed network alignment,
we calculated the Euclidean distance between average pairwise
connectivity values and performed a hierarchical cluster analysis
(using MATLAB’s average “linkage” function). The resulting clus-
ters were visualized with a dendrogram using a threshold of 70%
of the maximum linkage, corresponding to four clusters. Third,
to verify if within-network connectivity was significantly higher
than between-network connectivity, we calculated connectivity
within and between the resulting networks. To avoid circularity,
we performed this verification using resting-state data of an
independent group of 25 participants (see also Supplemental
Materials and Methods and the final paragraph of the section Re-
sults—Network connectivity is associated with memory performance).

Individual correlation coefficients within and between the net-
works were again transformed to Fz and effects were tested using
paired-sample t-tests. As a fourth step, we assessed whether interac-
tions within and between the networks, as identified by the hierar-
chical cluster analysis, predicted memory performance. Therefore,
we submitted the individual within- and between-network con-
nectivity values (Fz) into a multiple regression analysis with suc-
cessful memory performance (see above) as a dependent variable.
We used a stepwise regression approach (with a probability of F
to enter of P<0.05), sincewe did not expect all within and between
intrinsic network interactions to contribute to successful memory
performance.

Task-induced activation

To verify the involvement of DMN and FPN subnetworks (defined
by the hierarchical cluster analysis on the resting-state data) in
memory retrieval, the preprocessed functional images of the recall
task were submitted to a general linear model (GLM) regression
analysis. In this analysis, we included two regressors of interest;
(1) correct trials, associations that were correctly remembered at
both the delayed test and the immediate recall test, and (2) incor-
rect trials, associations that were incorrectly remembered at the de-
layed recall test. For these regressors, a parametric modulation of
reaction timewas included to capture variance in the signal linear-
ly related to reaction time and not explained by signal changes at-
tributed to the regressor (correct or incorrect). A regressor of no
interest was included to model misses and associations that were
correctly remember at the delayed recall test but incorrectly re-
membered at the immediate recall test. All regressors were time-
locked to the onset of the cue andmodeled by convolving a box-car
function of 5.5 sec (cue presentation+maximum response period)
with a canonical hemodynamic response function (Friston et al.
1995). To correct for head motion, the six realignment parameters
were included in the design matrix as regressors of no interest. A
high-pass filter was applied to the data to remove low-frequency
fluctuations in the signal (cutoff 128 sec). Subsequently, contrast
images were created for each subject, comparing correct and incor-
rect recall to baseline, and the percent signal change was extracted
for the networks derived from the hierarchical cluster analysis on
the preceding resting-state data. Significance of activation within
the networks was tested using a repeated-measures ANOVA with
network andmemory (correct, incorrect) as within-subject factors.
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