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Abstract: Robust early prediction of clinical outcomes in Parkinson’s disease (PD) is paramount for
implementing appropriate management interventions. We propose a method that uses the baseline
MRI, measuring diffusion parameters from multiple parcellated brain regions, to predict the 2-year
clinical outcome in Parkinson’s disease. Diffusion tensor imaging was obtained from 82 patients
(males/females = 45/37, mean age: 60.9 ± 7.3 years, baseline and after 23.7 ± 0.7 months) using a 3T MR
scanner, which was normalized and parcellated according to the Automated Anatomical Labelling
template. All patients were diagnosed with probable Parkinson’s disease by the National Institute
of Neurological Disorders and Stroke criteria. Clinical outcome was graded using disease severity
(Unified Parkinson’s Disease Rating Scale and Modified Hoehn and Yahr staging), drug administration
(levodopa equivalent daily dose), and quality of life (39-item PD Questionnaire). Selection and
regularization of diffusion parameters, the mean diffusivity and fractional anisotropy, were performed
using least absolute shrinkage and selection operator (LASSO) between baseline diffusion index and
clinical outcome over 2 years. Identified features were entered into a stepwise multivariate regression
model, followed by a leave-one-out/5-fold cross validation and additional blind validation using
an independent dataset. The predicted Unified Parkinson’s Disease Rating Scale for each individual
was consistent with the observed values at blind validation (adjusted R2 0.76) by using 13 features,
such as mean diffusivity in lingual, nodule lobule of cerebellum vermis and fractional anisotropy in
rolandic operculum, and quadrangular lobule of cerebellum. We conclude that baseline diffusion
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MRI is potentially capable of predicting 2-year clinical outcomes in patients with Parkinson’s disease
on an individual basis.

Keywords: diffusion tensor imaging; least absolute shrinkage and selection operator; machine
learning; Parkinson’s disease; prognosis

1. Introduction

Parkinson’s disease (PD) is a common progressive neurodegenerative disorder characterized
by resting tremor, bradykinesia, restricted mobility, and postural instability. The diagnosis of PD
relies primarily on clinical signs and symptoms according to commonly accepted criteria [1]. PD has
a progressive course [2] and is associated with increased mortality [3], with physical disabilities and
non-motor symptoms exerting a significant negative impact on the quality of life [4]. In this context,
robust early prediction of clinical outcomes would be paramount for implementing appropriate
interventions. Unfortunately, reliable biomarkers of clinical outcome and/or progression are still
lacking. Besides, the assessment of clinical outcomes can be time-consuming and might fluctuate
according to the patient’s conditions at the time of measurement.

Magnetic resonance imaging (MRI) is a medical imaging technique that provides excellent tissue
contrast without using ionizing radiation. Although patients with advanced neurodegenerative disease
may show signs of cerebral atrophy [5], the use of MRI in suspected patients is generally restricted
to rule out concomitant brain disorders, rather than for diagnostic confirmation. The application in
prognosis is even further limited to no or weak correlation with clinical outcomes, for example, disease
severity, drug administration, and quality of life [6,7].

Diffusion MRI has been utilized to investigate microstructural damage in the brain of patients
with PD. For example, the free-water level in the posterior substantia nigra, as measured by diffusion
MRI, could potentially predict the changes in bradykinesia and cognitive status over one year [8,9].
A recent study using diffusion tensor imaging (DTI) showed that extensive cortical regions were altered
in patients with PD when compared to age-matched controls [10]. The identification of these changes
has important diagnostic implications. Such extensive cortical involvement in PD might lead to
impairments in the related sensorimotor or cognitive functions and, as a consequence, contribute to the
clinical outcome [11]. Our hypothesis is that the clinical outcome can be predicted by a comprehensive
assessment of the pattern in the entire brain, rather than a few etiology-related regions.

To select multiple involved regions, conventional analysis based on the manual delineation of
regions of interest can be time-consuming and subjective. It would be impractical to select many regions
of interest throughout the brain, especially when multiple slices are needed to identify a 3D structure.
A representative slice could be used, but might not necessarily be located where the disease-related
signal alteration has occurred. The use of voxel-wise analysis may serve as a potential alternative,
but either fails to account for inter-individual variation (in the absence of normalization) or alters
the principal diffusion direction (when normalization is applied). Brain parcellation with standard
template after normalization to obtain multiple parcellated regions would allow diffusion parameters
from standardized brain regions to be obtained, and therefore makes multivariate regression model
analysis possible.

Although the whole brain parcellation approach allows for the identification of many potentially
neglected brain regions, challenges against the traditional statistical approach due to high feature
dimensionality still occur, which could lead to overfitting of the data [12]. To avoid the potential
spurious correlation, we propose to perform feature reduction by least absolute shrinkage and
selection operator (LASSO), followed by a general linear regression model in our bivariate associations.
This procedure has been shown to be stable for predictive performance [13].
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As such, diffusion measurements from the parcellated brain as a whole was reduced by LASSO to
improve the generalization of the established prognostic model. The meaningful features that remained
could be helpful in elucidating the relationship between underlying microstructural damage and
clinical outcome. We therefore designed the current longitudinal study to investigate whether baseline
diffusion parameters can predict clinical outcomes in patients, using PD as an example. Specifically,
our purpose is to examine the prognostic performance of diffusion parameters in the prediction of
disease severity, drug administration, and quality of life in patients with PD. If confirmed, our study
would demonstrate the possibility of diffusion parameters, as measured from parcellated multiple
brain regions, to predict the clinical outcomes of patients with PD after 2 years.

2. Material and Methods

This prospective study was approved by the local Institutional Review Board (100-3761A3).
After a detailed explanation of the study, all participants provided written informed consent.

2.1. Patients

A total of 109 patients with PD (61 males and 48 females, mean age: 61.2 ± 7.1 years) were
recruited between June 2012 and May 2013. The cross-sectional analysis of patients in the first visit
was previously published in 2016 [10]. Only patients who returned for follow-up examination were
included in the analysis. In total, 82 subjects were included (45 males and 37 females, mean age:
60.9 ± 7.3 years), who visited between June 2014 and 2015 (mean follow-up time 23.7 ± 0.7 months).
Of the 27 excluded patients, 17 were unwilling to undergo a second visit, 1 expired in an accident,
4 underwent deep brain stimulation, and 5 had poor image quality at baseline. Diagnosis and ad hoc
recruitment were performed by the consensus of three senior neurologists (28 years, 21 years, and 8
years of experience). The inclusion criteria were as follows: (1) diagnosis of probable PD, as proposed
by the National Institute of Neurological Disorders and Stroke, except for the age at onset [14]; (2) ability
to tolerate treatment discontinuation for 12 h; (3) modified Hoehn and Yahr staging (MHY) ratings
between 1 and 3 at baseline. Table 1 shows the general characteristics of the participants.

The exclusion criteria were general MRI exclusion criteria as well as the presence of any
of the following conditions: (1) major physical illnesses (i.e., renal failure, heart failure, stroke,
acute myocardial infarction, unstable angina, poorly controlled diabetes mellitus, poorly controlled
hypertension, moderate-to-severe dementia, severe dyskinesia, and cancer), (2) psychiatric disorders,
(3) known brain abnormalities, (4) history of intracranial surgery, and (5) pharmacotherapy for more
than ten years or treatment with drugs able to cross the blood–brain barrier (other than those used to
treat PD).

All participants were diagnosed and treated according to standard routine. They underwent
a detailed medical history review and neurological and physical examinations. The following
parameters were recorded: body mass index, education, Mini-Mental State Examination (MMSE),
Schwab and England Activity of Daily Living (ADL) score, and the Taiwanese version of the Medical
Outcomes Study Short Form-36 (SF-36SI) [15]. Patients deemed eligible were scheduled for MRI
examinations. The following measures were used in the analysis: clinical outcome according
to the disease severity (Unified Parkinson’s Disease Rating Scale, UPDRS; MHY), and levodopa
equivalent daily dose (LEDD). Quality of life was assessed using the 39-item PD Questionnaire
(PDQ39). The summary indices (PDQ39SI) were used in the final analysis. In addition, images of
T2-weighted turbo spin-echo, T2-weighted fluid attenuation inversion recovery, and T1-weighted
magnetization-prepared rapid gradient-echo were acquired to rule out the presence of any intracranial
structural abnormality. MR images were read independently by one of three neuro-radiologists who
were blinded to the diagnosis (27 years, 19 years, and 9 years of experience).
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Table 1. General characteristics of participants and changes in clinical scores over time.

Entire cohort (n = 82)

Sex (Male/Female) 45/37
Age, years 60.9 (7.3)
Disease duration, years 6.4 (5.4)
BMI 23.9 (3.2)
Education 10.4 (4.3)

Baseline Follow-up

LEDD 686.8 (349.2) 821.0 (395.2) †

UPDRS 27.6 (16.4) 33.7 (19.2) †

I 1.6 (1.9) 1.8 (1.7)
II 7.1 (4.9) 10.5 (6.6) †

III 17.3 (10.7) 19.8 (11.7) †

IV 1.6 (2.1) 1.6 (2.2)
MHY 1.9 (0.8) 2.2 (1.0) †

1 31 23
1.5 9 6
2 9 16

2.5 18 10
3 15 19
4 0 6
5 0 2

ADL 0.9 (0.1) 0.8 (0.1) †

PDQ39SI 22.7 (18.8) 33.9 (24.5) †

SF36SI 100.5 (6.2) 95.9 (7.9) †

Data are presented as counts or means (standard deviations or range in parentheses). † p < 0.005. The reported age
and disease duration are those recorded at baseline. BMI: body mass index; LEDD: Levodopa equivalent daily dose;
UPDRS: Unified Parkinson Disease Rating Scale; MHY: Modified Hoehn and Yahr staging; ADL: activity of daily
living; PDQ39SI: Summary Index of 39-item PD Questionnaire; SF-36SI: Summary Index of the Taiwanese version of
the Medical Outcomes Study Short Form-36.

2.2. Imaging

MRI was performed with a 3T scanner using a 12-channel head matrix coil (Trio, A TIM system,
Magnetom, Siemens, Erlangen, Germany). The patient’s head was kept fixed with a pad to avoid bulk
motion during scanning. The imaging parameters for T1-weighted images were repetition time/echo
time/inversion time/flip angle = 2000 ms/2.63 ms/900 ms/9◦, slice thickness = 1 mm, number of slices =

160, matrix size = 224 × 256, field of view = 224 × 256 mm2, and acquisition time = 4 min 8 s.
Diffusion-weighted images were acquired using a spin-echo echo-planar-imaging sequence

with repetition time/echo time/slice thickness = 5700 ms/108 ms/3 mm, matrix size = 96 × 96,
and field of view = 192 × 192 mm2, 40 slices which covered the whole brain down to the cerebellum,
and an acceleration factor of 2 using GRAPPA (generalized autocalibrating partially parallel acquisition)
reconstruction. The b-value was 1000 s/mm2 with the diffusion-weighting gradients applied along 30
non-collinear directions.

2.2.1. Image Post-Processing

Diffusion data were processed using Diffusion Kurtosis Estimator software [16]. The mean
diffusivity (MD) and fractional anisotropy (FA) were extracted from the diffusion tensor in accordance
with the methods described by Lo et al. [17]. Briefly, a transformed matrix was identified by normalizing
the B0 image from each individual to the standard Montreal Neurological Institute template using
linear registration (12 parameter affine transformation) and was parcellated into 116 different regions
according to the Automated Anatomical Labelling template [18]. A parenchyma mask was used to
remove the presence of cerebrospinal fluid in all diffusion metrics. The 10th, 50th, and 90th percentiles
for each parcellated brain region were recorded, which led to 696 features in each subject.
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2.2.2. Statistical Analysis

Statistical analyses were performed in SAS version 9.4 (SAS Institute, Inc. Cary, NC, USA). Student’s
paired t-test was used to examine the differences in (a) clinical measures (p < 0.05), and (b) diffusion
parameters between baseline and follow-up. The normal distribution of the diffusion index was tested
using the Kolmogorov–Smirnov test. Statistical significance was reached at p < 0.05 with correction for
multiple comparisons by using Bonferroni’s method (0.05/696) in tests for diffusion parameters.

For blind validation, the original data were randomly split into two sub-datasets by using
systematic random sampling. Following the 80/20 rule [19,20], the training dataset consisted of 66
patients (80%) and independent blind dataset of 16 (20%). All qualified patients were enrolled in
a chronological order and selected at a fixed interval. Regression analysis used LASSO, in which
L1-norm regularization was performed to minimize the sum of the absolute value of the regression
coefficients [21] in order to reduce the number of features to a statistically reasonable level for further
analyses [22]. Age, sex, disease duration and imaging protocols were examined by LASSO, together
with the imaging features, in order to clarify the potential confounding effect on the predictability of
the models. During the training process, approximately 43 to 55 features, less than the sample size,
were selected by LASSO from the original 696 imaging parameters for each clinical change. To devise
a final predictive model, a stepwise linear regression was performed from LASSO selected features
using 1000 times bootstrap calculation. To avoid overfitting the model, the number of features was
further reduced to 1/5 of the training samples [23,24]. As a result, 13 features were entered into the
regression model.

Adjusted R2, F values, and regression coefficients were used to express goodness-of-fit. Predictive
power was expressed as adjusted R2. To confirm our final model, we employed a leave-one-out and
five-fold cross validation in the training dataset, followed by blind validation in the independent blind
dataset, where the mean values of the adjusted R2 and the absolute error (MAE, the absolute difference
between the observed and the predicted scores) were calculated from each validation model.

Figure 1 shows the experimental procedure from enrollment to statistical analysis.
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Figure 1. Experimental design from enrollment to statistical analysis. Changes in both structural and
diffusion images, as well as clinical outcome measures, including disease severity (UPDRS and MHY),
LEDD, and PDQ39, were compared between baseline and follow-up. Baseline diffusion parameters
entered statistical analysis. The prognostic performance was examined for the entire cohort, where the
adjusted R2 for clinical outcome measures were presented.
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3. Results

3.1. Changes over the Study Period

We first looked for any changes from baseline to the end of the study in clinical outcome,
dose administration, and quality of life (Table 1). None of the patients had an intracranial structural
abnormality. Over the 2-year study period, clinical staging (MHY) increased by 0.3 (p < 0.001), as did
the total and the motor subscale of the UPDRS by 6.1 and 2.5, respectively (p = 0.003). In the assessments
of quality of life (including in ADL, UPDRS category II, PDQ39SI, and SF36SI), there were significant
declinations (p < 0.005). Measures of disease severity were not correlated with age, systolic or diastolic
blood pressure, education, and body mass index. A significant positive correlation was found between
disease duration and clinical outcomes (p < 0.05).

The values of FA and MD at baseline and follow-up are summarized in Table 2. Figure 2 plots the
changes in diffusion parameters over the follow-up period when significant. Extensive regions can be
involved, which include superior and middle parts of the frontal lobe; superior, middle and inferior
parts of the occipital lobe; biventral, tonsil, and flocculus of the cerebellum. Notably, in basal ganglia,
the regions with a significant change in diffusion were mainly located in the caudate.

3.2. Summary of Regression Analysis

Imaging parameters that survived the LASSO regression with the change of each clinical outcome
in the training dataset were entered into the linear regression analysis. All of the variance inflation
factors were within the normal range and <2.8, which suggests that the assumption of multicollinearity
was not violated. The values of statistical power and effect size (Cohen f2) of the prediction model
ranged from 0.94–1 and 0.48–7.59, respectively.

Regression analyses revealed strong-to-excellent (adjusted R2 between 0.57 and 0.94) associations
between the predicted clinical parameters by baseline diffusion parameters and the observed at
follow-up. We summarized the results of the regression, cross- and blind validations, including the
adjusted R2 and the mean average error in Table 3. The predicted scores at follow-up are plotted
against the observed values in Figure 3, including the disease severity (total score of UPDRS, MHY),
LEDD, and PDQ39SI, using both the training (solid circle) and the blind (circle) datasets. The observed
UPDRS at follow-up were significantly in line with those predicted by the regression model with
the high adjusted R2 (leave-one out/5-folds cross validation = 0.939 ± 0.002/0.944 ± 0.011, Figure 3A).
Figure 4 shows the predicted and observed values for each category in UPDRS in the training dataset
(solid circle) and the blind dataset (circle). Category II and III in UPDRS showed highly adjusted R2,
which ranged between 0.923 and 0.933 in cross validations.

For the independent blind dataset, the adjusted R2 was 0.76 in UPDRS with an inherent error of
4.38%. The linear relationships between the predicted and observed LEDD, PDQ39SI, and MHY were
also good-to-excellent (adjusted R2 between 0.86 and 0.89, Figure 3B–D). Noticeably, LEDD could be
predicted at a mean adjusted R2 of 0.891 and 0.898 at both cross and blind validations with a mean
average error of approximately 135 and 138 mg, respectively (Table 3). The adjusted R2 was still high
for Category II (0.82) and III (0.62) in UPDRS at the independent blind dataset. The error between the
predicted and the observed scores were 5.88% and 6.90%, respectively.
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Figure 2. Changes of diffusion parameters from the parcellated brain regions over the follow-up period.
The figure shows the change of diffusion parameter from parcellated brain regions in patients with PD if
with statistically significant differences between baseline and the end of the study. MD, mean diffusivity,
in unit of 10−3 mm2/sec; FA, fractional anisotropy, unitless.



J. Clin. Med. 2020, 9, 647 8 of 20

Table 2. Diffusion parameters in parcellated cortical regions over time. Table 2 shows average values of fractional anisotropy and mean diffusivity in the different
parcellated cortical regions at baseline and at follow-up. Data are reported as means ± standard deviations.

FA MD

90th Percentile 50th Percentile 10th Percentile 90th Percentile 50th Percentile 10th Percentile

Brain Region Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up

Precentral L 0.71 ± 0.05 0.70 ± 0.05 0.33 ± 0.04 0.30 ± 0.04 ** 0.11 ± 0.01 0.10 ± 0.04 1.60 ± 0.14 1.71 ± 0.12 ** 0.71 ± 0.04 0.74 ± 0.03 ** 0.37 ± 0.06 0.36 ± 0.05
Precentral R 0.67 ± 0.05 0.67 ± 0.05 0.29 ± 0.04 0.26 ± 0.04 ** 0.10 ± 0.01 0.10 ± 0.03 1.74 ± 0.15 1.83 ± 0.11 ** 0.76 ± 0.04 0.80 ± 0.04 ** 0.40 ± 0.05 0.38 ± 0.04 **

SuperiorFrontal L 0.64 ± 0.06 0.61 ± 0.06 ** 0.30 ± 0.04 0.26 ± 0.04 ** 0.11 ± 0.02 0.10 ± 0.03 1.58 ± 0.18 1.73 ± 0.12 ** 0.73 ± 0.04 0.77 ± 0.05 ** 0.41 ± 0.05 0.42 ± 0.04
SuperiorFrontal R 0.60 ± 0.05 0.59 ± 0.05 0.28 ± 0.04 0.26 ± 0.04 ** 0.11 ± 0.02 0.10 ± 0.03 1.58 ± 0.19 1.71 ± 0.11 ** 0.76 ± 0.04 0.78 ± 0.04 ** 0.44 ± 0.05 0.43 ± 0.04

SuperiorFrontal, Orbital L 0.58 ± 0.15 0.55 ± 0.09 0.27 ± 0.11 0.23 ± 0.05 0.11 ± 0.04 0.10 ± 0.04 1.50 ± 0.29 1.67 ± 0.24 ** 0.76 ± 0.11 0.83 ± 0.07 ** 0.45 ± 0.08 0.43 ± 0.08
SuperiorFrontal, Orbital R 0.53 ± 0.16 0.51 ± 0.09 0.26 ± 0.09 0.22 ± 0.04 0.11 ± 0.04 0.10 ± 0.04 1.50 ± 0.23 1.66 ± 0.22 ** 0.79 ± 0.08 0.86 ± 0.06 ** 0.47 ± 0.12 0.47 ± 0.08

MiddleFrontal L 0.59 ± 0.05 0.57 ± 0.05 0.26 ± 0.04 0.23 ± 0.04 ** 0.10 ± 0.01 0.10 ± 0.04 1.57 ± 0.16 1.74 ± 0.11 ** 0.76 ± 0.04 0.80 ± 0.04 ** 0.44 ± 0.04 0.43 ± 0.04
MiddleFrontal R 0.55 ± 0.04 0.54 ± 0.05 0.24 ± 0.03 0.22 ± 0.04 0.10 ± 0.01 0.10 ± 0.04 1.58 ± 0.16 1.73 ± 0.13 ** 0.80 ± 0.04 0.83 ± 0.05 ** 0.48 ± 0.04 0.47 ± 0.04

MiddleFrontal, Orbital L 0.58 ± 0.14 0.52 ± 0.06 0.27 ± 0.06 0.24 ± 0.04 0.11 ± 0.02 0.11 ± 0.03 1.44 ± 0.41 1.46 ± 0.20 0.79 ± 0.21 0.80 ± 0.05 0.44 ± 0.09 0.46 ± 0.05
MiddleFrontal, Orbital R 0.51 ± 0.15 0.45 ± 0.07 0.23 ± 0.05 0.21 ± 0.05 0.10 ± 0.02 0.10 ± 0.04 1.51 ± 0.43 1.56 ± 0.21 0.88 ± 0.30 0.87 ± 0.06 0.48 ± 0.13 0.52 ± 0.06

InferiorFrontal, Opercular L 0.59 ± 0.08 0.62 ± 0.07 0.25 ± 0.05 0.26 ± 0.05 0.10 ± 0.01 0.10 ± 0.04 1.83 ± 0.43 1.74 ± 0.16 0.88 ± 0.33 0.80 ± 0.06 0.45 ± 0.07 0.43 ± 0.06
InferiorFrontal, Opercular R 0.53 ± 0.06 0.55 ± 0.07 0.23 ± 0.04 0.24 ± 0.05 0.10 ± 0.01 0.10 ± 0.04 1.78 ± 0.39 1.72 ± 0.17 0.88 ± 0.13 0.85 ± 0.07 0.50 ± 0.05 0.48 ± 0.05
InferiorFrontal, Triangular L 0.59 ± 0.08 0.57 ± 0.05 0.25 ± 0.03 0.24 ± 0.05 0.10 ± 0.01 0.10 ± 0.04 1.72 ± 0.30 1.73 ± 0.14 0.80 ± 0.07 0.81 ± 0.05 0.43 ± 0.07 0.44 ± 0.04
InferiorFrontal, Triangular R 0.58 ± 0.10 0.55 ± 0.05 0.25 ± 0.04 0.24 ± 0.04 0.10 ± 0.01 0.10 ± 0.04 1.71 ± 0.28 1.74 ± 0.15 0.82 ± 0.10 0.83 ± 0.04 0.44 ± 0.09 0.46 ± 0.05

InferiorFrontal, Orbital L 0.57 ± 0.13 0.56 ± 0.08 0.27 ± 0.08 0.25 ± 0.04 0.12 ± 0.02 0.12 ± 0.04 1.57 ± 0.29 1.59 ± 0.15 0.79 ± 0.10 0.82 ± 0.04 0.45 ± 0.09 0.44 ± 0.08
InferiorFrontal, Orbital R 0.55 ± 0.14 0.56 ± 0.10 0.25 ± 0.08 0.24 ± 0.05 0.12 ± 0.03 0.11 ± 0.04 1.64 ± 0.29 1.68 ± 0.18 0.84 ± 0.10 0.85 ± 0.05 0.45 ± 0.12 0.43 ± 0.10

RolandicOperculum L 0.58 ± 0.08 0.61 ± 0.08 0.25 ± 0.04 0.28 ± 0.05 ** 0.11 ± 0.02 0.12 ± 0.04 1.82 ± 0.39 1.61 ± 0.23 ** 0.88 ± 0.26 0.77 ± 0.07 0.42 ± 0.06 0.40 ± 0.06
RolandicOperculum R 0.53 ± 0.07 0.55 ± 0.06 0.24 ± 0.03 0.26 ± 0.05 0.11 ± 0.01 0.12 ± 0.04 1.76 ± 0.41 1.57 ± 0.24 ** 0.84 ± 0.10 0.79 ± 0.06 ** 0.45 ± 0.05 0.44 ± 0.05

SupplementaryMotorArea L 0.61 ± 0.08 0.60 ± 0.07 0.27 ± 0.03 0.27 ± 0.04 0.11 ± 0.01 0.11 ± 0.03 1.72 ± 0.24 1.66 ± 0.16 0.80 ± 0.06 0.79 ± 0.05 0.43 ± 0.06 0.40 ± 0.07 **
SupplementaryMotorArea R 0.62 ± 0.07 0.62 ± 0.05 0.30 ± 0.03 0.29 ± 0.04 0.12 ± 0.01 0.12 ± 0.04 1.58 ± 0.23 1.57 ± 0.15 0.76 ± 0.04 0.77 ± 0.03 0.43 ± 0.06 0.41 ± 0.05 **

Olfactory L 0.49 ± 0.17 0.45 ± 0.09 0.27 ± 0.12 0.23 ± 0.05 0.13 ± 0.02 0.12 ± 0.04 1.37 ± 0.33 1.39 ± 0.26 0.79 ± 0.15 0.83 ± 0.07 0.52 ± 0.14 0.55 ± 0.07
Olfactory R 0.52 ± 0.17 0.50 ± 0.10 0.29 ± 0.09 0.27 ± 0.05 0.14 ± 0.03 0.14 ± 0.04 1.17 ± 0.29 1.18 ± 0.22 0.77 ± 0.12 0.79 ± 0.07 0.51 ± 0.13 0.53 ± 0.07

SuperiorFrontal, Medial L 0.50 ± 0.08 0.50 ± 0.05 0.21 ± 0.03 0.22 ± 0.04 0.09 ± 0.01 0.10 ± 0.04 1.87 ± 0.25 1.86 ± 0.14 0.85 ± 0.09 0.83 ± 0.04 0.46 ± 0.08 0.46 ± 0.04
SuperiorFrontal, Medial R 0.51 ± 0.07 0.51 ± 0.06 0.24 ± 0.02 0.23 ± 0.04 0.10 ± 0.01 0.10 ± 0.04 1.65 ± 0.20 1.78 ± 0.18 ** 0.80 ± 0.04 0.82 ± 0.05 0.46 ± 0.07 0.46 ± 0.05

SuperiorFrontal, MedialOrbital L 0.48 ± 0.14 0.44 ± 0.07 0.22 ± 0.10 0.19 ± 0.05 0.10 ± 0.04 0.10 ± 0.04 1.75 ± 0.32 1.91 ± 0.26 ** 0.85 ± 0.13 0.90 ± 0.08 0.50 ± 0.08 0.51 ± 0.06
SuperiorFrontal, MedialOrbital R 0.51 ± 0.14 0.47 ± 0.06 0.24 ± 0.08 0.22 ± 0.04 0.11 ± 0.03 0.10 ± 0.03 1.51 ± 0.26 1.63 ± 0.26 ** 0.79 ± 0.10 0.83 ± 0.06 0.50 ± 0.07 0.51 ± 0.05

Rectus L 0.60 ± 0.15 0.54 ± 0.08 0.29 ± 0.09 0.24 ± 0.05 0.13 ± 0.03 0.11 ± 0.04 1.50 ± 0.26 1.65 ± 0.25 ** 0.76 ± 0.10 0.83 ± 0.07 ** 0.42 ± 0.09 0.43 ± 0.06
Rectus R 0.59 ± 0.14 0.54 ± 0.07 0.29 ± 0.08 0.25 ± 0.04 0.13 ± 0.03 0.12 ± 0.04 1.28 ± 0.26 1.45 ± 0.30 ** 0.76 ± 0.09 0.80 ± 0.06 ** 0.43 ± 0.10 0.44 ± 0.06
Insula L 0.49 ± 0.06 0.48 ± 0.05 0.24 ± 0.02 0.22 ± 0.04 0.11 ± 0.01 0.11 ± 0.04 1.69 ± 0.43 1.73 ± 0.21 0.84 ± 0.08 0.87 ± 0.06 0.48 ± 0.04 0.49 ± 0.04
Insula R 0.45 ± 0.07 0.43 ± 0.05 0.21 ± 0.03 0.20 ± 0.05 0.11 ± 0.01 0.10 ± 0.04 1.90 ± 0.34 1.97 ± 0.19 0.95 ± 0.13 1.04 ± 0.12 ** 0.51 ± 0.05 0.52 ± 0.04

Cingulum, Anterior L 0.50 ± 0.10 0.43 ± 0.06 ** 0.21 ± 0.02 0.20 ± 0.05 0.10 ± 0.01 0.10 ± 0.04 1.72 ± 0.30 1.76 ± 0.19 0.87 ± 0.09 0.88 ± 0.06 0.52 ± 0.08 0.54 ± 0.04
Cingulum, Anterior R 0.50 ± 0.07 0.47 ± 0.05 0.23 ± 0.02 0.23 ± 0.04 0.11 ± 0.01 0.11 ± 0.04 1.44 ± 0.33 1.39 ± 0.24 0.80 ± 0.05 0.80 ± 0.05 0.53 ± 0.05 0.53 ± 0.04

Cingulum, Middle L 0.68 ± 0.08 0.60 ± 0.07 ** 0.27 ± 0.04 0.24 ± 0.05 0.12 ± 0.02 0.11 ± 0.04 1.62 ± 0.41 1.65 ± 0.19 0.91 ± 0.46 0.83 ± 0.05 0.46 ± 0.09 0.46 ± 0.04
Cingulum, Middle R 0.69 ± 0.08 0.60 ± 0.06 ** 0.29 ± 0.05 0.26 ± 0.04 0.13 ± 0.02 0.12 ± 0.04 1.48 ± 0.46 1.53 ± 0.19 0.88 ± 0.45 0.79 ± 0.04 0.45 ± 0.09 0.45 ± 0.04

Cingulum, Posterior L 0.83 ± 0.08 0.77 ± 0.09 ** 0.37 ± 0.08 0.33 ± 0.06 0.15 ± 0.02 0.14 ± 0.05 1.46 ± 0.38 1.38 ± 0.24 0.77 ± 0.17 0.75 ± 0.06 0.40 ± 0.07 0.43 ± 0.06
Cingulum, Posterior R 0.91 ± 0.07 0.90 ± 0.08 0.50 ± 0.13 0.47 ± 0.09 0.19 ± 0.04 0.18 ± 0.04 1.31 ± 0.46 1.19 ± 0.21 0.74 ± 0.28 0.66 ± 0.06 0.35 ± 0.07 0.35 ± 0.07

Hippocampus L 0.49 ± 0.09 0.47 ± 0.06 0.26 ± 0.03 0.26 ± 0.05 0.14 ± 0.01 0.14 ± 0.04 1.77 ± 0.26 1.84 ± 0.27 0.99 ± 0.14 1.00 ± 0.17 0.55 ± 0.10 0.56 ± 0.05
Hippocampus R 0.50 ± 0.10 0.48 ± 0.07 0.26 ± 0.03 0.25 ± 0.05 0.14 ± 0.02 0.14 ± 0.04 1.79 ± 0.24 1.88 ± 0.24 ** 0.99 ± 0.17 1.02 ± 0.15 0.54 ± 0.11 0.56 ± 0.06

ParaHippocampus L 0.71 ± 0.10 0.68 ± 0.07 0.33 ± 0.03 0.34 ± 0.04 0.16 ± 0.01 0.17 ± 0.03 1.62 ± 0.31 1.60 ± 0.21 0.75 ± 0.09 0.74 ± 0.05 0.35 ± 0.08 0.37 ± 0.06
ParaHippocampus R 0.70 ± 0.11 0.68 ± 0.07 0.33 ± 0.05 0.34 ± 0.04 0.16 ± 0.02 0.17 ± 0.04 1.39 ± 0.29 1.30 ± 0.21 0.72 ± 0.09 0.71 ± 0.05 0.36 ± 0.08 0.36 ± 0.06
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Table 2. Cont.

FA MD

90th Percentile 50th Percentile 10th Percentile 90th Percentile 50th Percentile 10th Percentile

Brain Region Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up

Amygdala L 0.51 ± 0.08 0.53 ± 0.09 0.29 ± 0.04 0.30 ± 0.05 0.16 ± 0.02 0.16 ± 0.04 1.66 ± 0.30 1.67 ± 0.29 0.80 ± 0.12 0.78 ± 0.07 0.48 ± 0.08 0.47 ± 0.08
Amygdala R 0.54 ± 0.08 0.54 ± 0.08 0.31 ± 0.04 0.31 ± 0.05 0.17 ± 0.02 0.17 ± 0.04 1.47 ± 0.24 1.49 ± 0.31 0.77 ± 0.05 0.76 ± 0.06 0.47 ± 0.07 0.47 ± 0.08

Calcarine L 0.49 ± 0.07 0.50 ± 0.06 0.19 ± 0.02 0.20 ± 0.05 0.09 ± 0.01 0.09 ± 0.04 1.75 ± 0.17 1.80 ± 0.17 0.92 ± 0.08 0.94 ± 0.09 0.50 ± 0.06 0.51 ± 0.05
Calcarine R 0.57 ± 0.07 0.57 ± 0.06 0.24 ± 0.03 0.25 ± 0.04 0.10 ± 0.01 0.10 ± 0.04 1.60 ± 0.19 1.64 ± 0.20 0.83 ± 0.06 0.84 ± 0.06 0.48 ± 0.06 0.49 ± 0.04

Cuneus L 0.49 ± 0.05 0.50 ± 0.04 0.18 ± 0.02 0.19 ± 0.04 0.08 ± 0.01 0.08 ± 0.03 1.76 ± 0.17 1.78 ± 0.16 0.91 ± 0.08 0.91 ± 0.07 0.50 ± 0.04 0.51 ± 0.04
Cuneus R 0.57 ± 0.05 0.57 ± 0.05 0.24 ± 0.03 0.23 ± 0.05 0.09 ± 0.01 0.09 ± 0.04 1.60 ± 0.20 1.65 ± 0.20 0.80 ± 0.06 0.81 ± 0.06 0.47 ± 0.05 0.47 ± 0.04
Lingual L 0.54 ± 0.06 0.55 ± 0.05 0.26 ± 0.03 0.26 ± 0.04 0.12 ± 0.01 0.12 ± 0.04 1.45 ± 0.23 1.51 ± 0.20 0.80 ± 0.09 0.80 ± 0.05 0.48 ± 0.05 0.46 ± 0.04
Lingual R 0.61 ± 0.08 0.63 ± 0.06 0.30 ± 0.04 0.29 ± 0.04 0.13 ± 0.02 0.13 ± 0.04 1.39 ± 0.28 1.48 ± 0.22 0.77 ± 0.12 0.77 ± 0.05 0.42 ± 0.07 0.39 ± 0.06

SuperiorOccipital L 0.58 ± 0.06 0.56 ± 0.05 0.26 ± 0.05 0.22 ± 0.05 ** 0.09 ± 0.01 0.08 ± 0.04 1.54 ± 0.20 1.70 ± 0.21 ** 0.78 ± 0.05 0.83 ± 0.05 ** 0.48 ± 0.06 0.48 ± 0.05
SuperiorOccipital R 0.62 ± 0.06 0.60 ± 0.06 0.26 ± 0.05 0.22 ± 0.05 ** 0.09 ± 0.01 0.08 ± 0.04 1.54 ± 0.21 1.70 ± 0.20 ** 0.77 ± 0.04 0.83 ± 0.06 ** 0.47 ± 0.05 0.46 ± 0.05

MiddleOccipital L 0.53 ± 0.05 0.47 ± 0.04 ** 0.23 ± 0.04 0.20 ± 0.04 ** 0.09 ± 0.01 0.08 ± 0.04 1.38 ± 0.19 1.54 ± 0.19 ** 0.78 ± 0.04 0.83 ± 0.05 ** 0.53 ± 0.04 0.55 ± 0.03 **
MiddleOccipital R 0.51 ± 0.06 0.48 ± 0.05 ** 0.22 ± 0.03 0.19 ± 0.04 ** 0.09 ± 0.01 0.09 ± 0.04 1.43 ± 0.20 1.58 ± 0.20 ** 0.80 ± 0.05 0.86 ± 0.06 ** 0.51 ± 0.05 0.52 ± 0.04
InferiorOccipital L 0.50 ± 0.06 0.47 ± 0.05 ** 0.26 ± 0.04 0.23 ± 0.04 ** 0.11 ± 0.02 0.10 ± 0.04 1.20 ± 0.29 1.37 ± 0.20 ** 0.78 ± 0.13 0.80 ± 0.04 0.54 ± 0.07 0.55 ± 0.04
InferiorOccipital R 0.51 ± 0.09 0.50 ± 0.09 0.24 ± 0.04 0.23 ± 0.05 0.11 ± 0.01 0.11 ± 0.04 1.31 ± 0.26 1.45 ± 0.20 ** 0.78 ± 0.09 0.83 ± 0.08 0.50 ± 0.09 0.49 ± 0.07

Fusiform L 0.57 ± 0.06 0.55 ± 0.05 0.29 ± 0.03 0.28 ± 0.04 0.14 ± 0.02 0.14 ± 0.03 1.24 ± 0.29 1.32 ± 0.18 0.76 ± 0.05 0.77 ± 0.04 0.45 ± 0.07 0.46 ± 0.05
Fusiform R 0.65 ± 0.08 0.63 ± 0.06 0.32 ± 0.04 0.31 ± 0.04 0.15 ± 0.02 0.15 ± 0.04 1.17 ± 0.31 1.25 ± 0.20 0.71 ± 0.06 0.73 ± 0.05 0.37 ± 0.09 0.39 ± 0.05

Postcentral L 0.67 ± 0.05 0.65 ± 0.05 ** 0.28 ± 0.04 0.25 ± 0.04 ** 0.10 ± 0.01 0.10 ± 0.04 1.76 ± 0.17 1.81 ± 0.13 0.79 ± 0.04 0.83 ± 0.04 ** 0.39 ± 0.05 0.38 ± 0.05
Postcentral R 0.64 ± 0.05 0.61 ± 0.05 ** 0.25 ± 0.04 0.22 ± 0.05 ** 0.09 ± 0.01 0.09 ± 0.04 1.77 ± 0.15 1.83 ± 0.13 0.82 ± 0.05 0.88 ± 0.06 ** 0.42 ± 0.05 0.41 ± 0.05

SuperiorParietal L 0.59 ± 0.06 0.53 ± 0.05 ** 0.25 ± 0.05 0.20 ± 0.04 ** 0.08 ± 0.02 0.08 ± 0.04 1.69 ± 0.19 1.83 ± 0.13 ** 0.81 ± 0.04 0.88 ± 0.05 ** 0.47 ± 0.05 0.47 ± 0.05
SuperiorParietal R 0.57 ± 0.07 0.52 ± 0.07 ** 0.22 ± 0.06 0.19 ± 0.05 0.08 ± 0.01 0.08 ± 0.04 1.81 ± 0.17 1.82 ± 0.12 0.86 ± 0.08 0.90 ± 0.06 ** 0.46 ± 0.05 0.46 ± 0.07

InferiorParietal L 0.56 ± 0.05 0.53 ± 0.05 ** 0.24 ± 0.04 0.20 ± 0.04 ** 0.09 ± 0.01 0.08 ± 0.04 1.64 ± 0.19 1.77 ± 0.15 ** 0.81 ± 0.05 0.87 ± 0.04 ** 0.48 ± 0.04 0.47 ± 0.05
InferiorParietal R 0.54 ± 0.07 0.52 ± 0.06 0.20 ± 0.05 0.18 ± 0.05 0.08 ± 0.01 0.08 ± 0.04 1.68 ± 0.20 1.79 ± 0.17 ** 0.85 ± 0.08 0.91 ± 0.09 ** 0.48 ± 0.06 0.48 ± 0.06
SupraMarginal L 0.54 ± 0.05 0.52 ± 0.06 0.24 ± 0.03 0.23 ± 0.05 0.10 ± 0.01 0.10 ± 0.04 1.59 ± 0.31 1.66 ± 0.20 0.82 ± 0.08 0.84 ± 0.06 0.47 ± 0.05 0.48 ± 0.05
SupraMarginal R 0.51 ± 0.06 0.50 ± 0.05 0.20 ± 0.02 0.19 ± 0.04 0.09 ± 0.01 0.08 ± 0.04 1.69 ± 0.24 1.74 ± 0.14 0.84 ± 0.05 0.87 ± 0.05 ** 0.48 ± 0.06 0.49 ± 0.05

Angular L 0.52 ± 0.05 0.48 ± 0.05 ** 0.23 ± 0.04 0.20 ± 0.04 ** 0.08 ± 0.01 0.08 ± 0.04 1.45 ± 0.20 1.62 ± 0.18 ** 0.81 ± 0.05 0.85 ± 0.06 ** 0.56 ± 0.04 0.56 ± 0.04
Angular R 0.52 ± 0.06 0.50 ± 0.06 0.21 ± 0.03 0.19 ± 0.04 0.09 ± 0.01 0.08 ± 0.04 1.51 ± 0.19 1.64 ± 0.15 ** 0.82 ± 0.06 0.87 ± 0.05 ** 0.53 ± 0.05 0.53 ± 0.06

Precuneus L 0.50 ± 0.06 0.52 ± 0.05 0.20 ± 0.02 0.20 ± 0.04 0.09 ± 0.01 0.09 ± 0.04 1.74 ± 0.17 1.71 ± 0.16 0.87 ± 0.04 0.86 ± 0.04 0.50 ± 0.05 0.49 ± 0.05
Precuneus R 0.57 ± 0.07 0.57 ± 0.05 0.23 ± 0.03 0.23 ± 0.04 0.09 ± 0.01 0.09 ± 0.04 1.65 ± 0.18 1.69 ± 0.15 0.82 ± 0.05 0.83 ± 0.04 0.46 ± 0.05 0.46 ± 0.04

Paracentralobule L 0.65 ± 0.07 0.65 ± 0.07 0.31 ± 0.03 0.29 ± 0.04 0.11 ± 0.01 0.10 ± 0.03 1.63 ± 0.21 1.70 ± 0.19 0.74 ± 0.04 0.76 ± 0.04 0.40 ± 0.07 0.37 ± 0.07
Paracentralobule R 0.60 ± 0.08 0.59 ± 0.08 0.26 ± 0.04 0.25 ± 0.05 0.10 ± 0.01 0.10 ± 0.04 1.70 ± 0.25 1.74 ± 0.21 0.79 ± 0.08 0.81 ± 0.08 0.39 ± 0.08 0.37 ± 0.08

Caudate L 0.66 ± 0.10 0.58 ± 0.10 ** 0.29 ± 0.05 0.26 ± 0.06 ** 0.13 ± 0.02 0.12 ± 0.05 1.90 ± 0.42 2.17 ± 0.37 ** 0.81 ± 0.14 0.96 ± 0.25 ** 0.36 ± 0.08 0.42 ± 0.11 **
Caudate R 0.62 ± 0.10 0.59 ± 0.10 0.30 ± 0.04 0.28 ± 0.06 0.14 ± 0.02 0.14 ± 0.05 1.66 ± 0.44 1.82 ± 0.49 0.75 ± 0.08 0.84 ± 0.22 ** 0.37 ± 0.09 0.41 ± 0.10
Putamen L 0.83 ± 0.09 0.82 ± 0.09 0.46 ± 0.08 0.48 ± 0.06 0.24 ± 0.05 0.25 ± 0.04 0.96 ± 0.40 0.86 ± 0.10 0.58 ± 0.09 0.57 ± 0.08 0.22 ± 0.09 0.24 ± 0.09
Putamen R 0.76 ± 0.08 0.75 ± 0.07 0.43 ± 0.06 0.44 ± 0.05 0.23 ± 0.04 0.24 ± 0.03 1.00 ± 0.36 0.89 ± 0.08 0.64 ± 0.08 0.63 ± 0.06 0.29 ± 0.09 0.31 ± 0.08
Pallidum L 0.94 ± 0.15 0.98 ± 0.06 0.65 ± 0.16 0.68 ± 0.08 0.33 ± 0.09 0.36 ± 0.06 0.95 ± 0.56 0.79 ± 0.12 0.47 ± 0.29 0.40 ± 0.12 0.13 ± 0.17 0.08 ± 0.09
Pallidum R 0.92 ± 0.15 0.96 ± 0.07 0.60 ± 0.15 0.63 ± 0.09 0.31 ± 0.08 0.32 ± 0.06 0.99 ± 0.48 0.84 ± 0.13 0.50 ± 0.21 0.45 ± 0.11 0.13 ± 0.14 0.09 ± 0.07
Thalamus L 0.83 ± 0.06 0.80 ± 0.05 0.48 ± 0.05 0.46 ± 0.05 0.24 ± 0.04 0.22 ± 0.04 1.14 ± 0.51 1.27 ± 0.36 0.59 ± 0.08 0.61 ± 0.05 0.24 ± 0.06 0.27 ± 0.05
Thalamus R 0.82 ± 0.05 0.81 ± 0.05 0.48 ± 0.05 0.47 ± 0.05 0.25 ± 0.04 0.23 ± 0.04 1.07 ± 0.48 1.14 ± 0.33 0.60 ± 0.10 0.60 ± 0.05 0.25 ± 0.05 0.25 ± 0.05

Heschl L 0.63 ± 0.12 0.61 ± 0.13 0.28 ± 0.08 0.26 ± 0.08 0.13 ± 0.03 0.12 ± 0.05 1.81 ± 0.33 1.93 ± 0.28 0.92 ± 0.22 1.00 ± 0.29 0.38 ± 0.12 0.37 ± 0.12
Heschl R 0.64 ± 0.14 0.66 ± 0.12 0.28 ± 0.09 0.28 ± 0.08 0.13 ± 0.04 0.12 ± 0.05 1.76 ± 0.40 1.87 ± 0.38 0.89 ± 0.25 0.87 ± 0.27 0.33 ± 0.11 0.32 ± 0.12
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Table 2. Cont.

FA MD

90th Percentile 50th Percentile 10th Percentile 90th Percentile 50th Percentile 10th Percentile

Brain Region Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up

SuperiorTemporal L 0.64 ± 0.06 0.62 ± 0.05 0.27 ± 0.03 0.25 ± 0.05 0.11 ± 0.01 0.11 ± 0.04 1.67 ± 0.19 1.77 ± 0.16 ** 0.78 ± 0.06 0.79 ± 0.05 0.37 ± 0.05 0.37 ± 0.04
SuperiorTemporal R 0.62 ± 0.06 0.61 ± 0.05 0.26 ± 0.02 0.26 ± 0.04 0.11 ± 0.01 0.11 ± 0.04 1.55 ± 0.15 1.63 ± 0.15 ** 0.75 ± 0.04 0.77 ± 0.04 ** 0.40 ± 0.05 0.41 ± 0.04

SuperiorTemporalPole L 0.46 ± 0.11 0.44 ± 0.06 0.21 ± 0.04 0.21 ± 0.04 0.10 ± 0.02 0.10 ± 0.04 1.99 ± 0.27 2.03 ± 0.19 0.93 ± 0.15 0.91 ± 0.08 0.48 ± 0.09 0.50 ± 0.06
SuperiorTemporalPole R 0.46 ± 0.11 0.46 ± 0.06 0.23 ± 0.06 0.23 ± 0.04 0.11 ± 0.01 0.11 ± 0.04 1.75 ± 0.23 1.77 ± 0.18 0.84 ± 0.09 0.84 ± 0.06 0.49 ± 0.06 0.49 ± 0.06

MiddleTemporal L 0.57 ± 0.06 0.54 ± 0.04 ** 0.25 ± 0.02 0.23 ± 0.04 0.11 ± 0.01 0.10 ± 0.04 1.40 ± 0.18 1.52 ± 0.16 ** 0.77 ± 0.04 0.80 ± 0.04 ** 0.44 ± 0.06 0.46 ± 0.04
MiddleTemporal R 0.52 ± 0.08 0.50 ± 0.06 0.22 ± 0.02 0.22 ± 0.04 0.10 ± 0.01 0.10 ± 0.04 1.42 ± 0.17 1.52 ± 0.16 ** 0.79 ± 0.05 0.82 ± 0.05 ** 0.46 ± 0.09 0.48 ± 0.05

MiddleTemporalPole L 0.52 ± 0.14 0.47 ± 0.06 0.27 ± 0.10 0.25 ± 0.04 0.13 ± 0.05 0.12 ± 0.04 1.40 ± 0.29 1.44 ± 0.24 0.78 ± 0.13 0.81 ± 0.06 0.49 ± 0.09 0.51 ± 0.06
MiddleTemporalPole R 0.56 ± 0.13 0.49 ± 0.08 0.29 ± 0.10 0.25 ± 0.04 0.13 ± 0.03 0.12 ± 0.03 1.28 ± 0.21 1.36 ± 0.21 0.75 ± 0.11 0.80 ± 0.05 0.47 ± 0.10 0.50 ± 0.07

InferiorTemporal L 0.68 ± 0.11 0.61 ± 0.05 ** 0.31 ± 0.04 0.28 ± 0.04 ** 0.13 ± 0.01 0.13 ± 0.04 1.17 ± 0.25 1.26 ± 0.18 ** 0.71 ± 0.06 0.75 ± 0.04 ** 0.39 ± 0.08 0.42 ± 0.04
InferiorTemporal R 0.62 ± 0.13 0.57 ± 0.06 0.28 ± 0.06 0.26 ± 0.04 0.12 ± 0.01 0.12 ± 0.04 1.27 ± 0.28 1.37 ± 0.17 0.73 ± 0.09 0.78 ± 0.04 ** 0.43 ± 0.06 0.44 ± 0.04

SupeiorSemilunar L 0.36 ± 0.06 0.37 ± 0.07 0.19 ± 0.02 0.20 ± 0.04 0.10 ± 0.01 0.11 ± 0.04 1.80 ± 0.22 1.73 ± 0.18 0.97 ± 0.09 0.90 ± 0.11 ** 0.57 ± 0.07 0.57 ± 0.05
SupeiorSemilunar R 0.45 ± 0.11 0.41 ± 0.09 0.21 ± 0.02 0.22 ± 0.04 0.11 ± 0.01 0.12 ± 0.03 1.78 ± 0.25 1.67 ± 0.21 0.92 ± 0.09 0.88 ± 0.13 0.49 ± 0.10 0.54 ± 0.12

InfeiorSemilunar L 0.39 ± 0.12 0.37 ± 0.10 0.21 ± 0.03 0.21 ± 0.06 0.11 ± 0.02 0.12 ± 0.04 1.63 ± 0.24 1.58 ± 0.30 0.84 ± 0.07 0.91 ± 0.24 0.54 ± 0.10 0.60 ± 0.17
InfeiorSemilunar R 0.42 ± 0.11 0.37 ± 0.12 0.22 ± 0.04 0.21 ± 0.05 0.12 ± 0.02 0.12 ± 0.04 1.67 ± 0.26 1.63 ± 0.37 0.86 ± 0.23 1.00 ± 0.39 0.50 ± 0.11 0.64 ± 0.38

Alae L 0.51 ± 0.18 0.47 ± 0.13 0.25 ± 0.10 0.23 ± 0.06 0.14 ± 0.05 0.13 ± 0.05 2.17 ± 0.43 2.14 ± 0.24 1.19 ± 0.35 1.31 ± 0.31 0.51 ± 0.18 0.60 ± 0.22
Alae R 0.55 ± 0.18 0.56 ± 0.14 0.28 ± 0.10 0.27 ± 0.06 0.15 ± 0.06 0.14 ± 0.04 2.02 ± 0.42 2.02 ± 0.28 1.02 ± 0.32 1.08 ± 0.29 0.43 ± 0.16 0.43 ± 0.14

Quadrangular L 0.50 ± 0.14 0.50 ± 0.07 0.27 ± 0.09 0.26 ± 0.04 0.13 ± 0.02 0.14 ± 0.03 1.68 ± 0.25 1.58 ± 0.24 0.85 ± 0.12 0.80 ± 0.08 0.47 ± 0.09 0.45 ± 0.06
Quadrangular R 0.51 ± 0.16 0.51 ± 0.08 0.28 ± 0.10 0.27 ± 0.05 0.14 ± 0.02 0.15 ± 0.04 1.79 ± 0.25 1.64 ± 0.25 ** 0.89 ± 0.15 0.83 ± 0.09 0.47 ± 0.10 0.45 ± 0.07

LobulusSimplex L 0.39 ± 0.09 0.38 ± 0.05 0.22 ± 0.04 0.22 ± 0.04 0.12 ± 0.02 0.12 ± 0.03 1.60 ± 0.22 1.53 ± 0.20 0.89 ± 0.10 0.83 ± 0.07 0.55 ± 0.07 0.54 ± 0.04
LobulusSimplex R 0.44 ± 0.11 0.43 ± 0.05 0.25 ± 0.05 0.25 ± 0.04 0.13 ± 0.02 0.14 ± 0.03 1.53 ± 0.20 1.39 ± 0.19 ** 0.84 ± 0.10 0.78 ± 0.06 ** 0.51 ± 0.08 0.50 ± 0.05

Biventral L 0.51 ± 0.11 0.39 ± 0.12 ** 0.29 ± 0.07 0.23 ± 0.07 ** 0.16 ± 0.04 0.14 ± 0.05 1.08 ± 0.48 1.48 ± 0.51 ** 0.70 ± 0.11 0.96 ± 0.38 ** 0.49 ± 0.10 0.65 ± 0.33
Biventral R 0.54 ± 0.13 0.41 ± 0.15 ** 0.29 ± 0.06 0.24 ± 0.07 ** 0.16 ± 0.04 0.13 ± 0.05 1.13 ± 0.47 1.47 ± 0.47 ** 0.73 ± 0.19 0.95 ± 0.37 ** 0.47 ± 0.12 0.63 ± 0.32
Biventral L 0.66 ± 0.11 0.52 ± 0.13 ** 0.38 ± 0.06 0.28 ± 0.07 ** 0.18 ± 0.04 0.15 ± 0.04 1.08 ± 0.38 1.32 ± 0.43 0.64 ± 0.07 0.81 ± 0.29 ** 0.40 ± 0.08 0.51 ± 0.21
Biventral R 0.72 ± 0.12 0.62 ± 0.16 0.41 ± 0.07 0.34 ± 0.09 ** 0.20 ± 0.03 0.18 ± 0.06 0.92 ± 0.27 1.12 ± 0.34 0.61 ± 0.09 0.71 ± 0.24 0.34 ± 0.08 0.43 ± 0.23

Tonsil L 0.76 ± 0.11 0.64 ± 0.13 ** 0.39 ± 0.07 0.31 ± 0.07 ** 0.17 ± 0.03 0.16 ± 0.04 1.52 ± 0.33 1.74 ± 0.30 ** 0.69 ± 0.15 0.83 ± 0.23 ** 0.32 ± 0.09 0.40 ± 0.17
Tonsil R 0.76 ± 0.12 0.66 ± 0.14 ** 0.40 ± 0.06 0.33 ± 0.07 ** 0.18 ± 0.03 0.16 ± 0.04 1.41 ± 0.24 1.64 ± 0.31 ** 0.66 ± 0.10 0.80 ± 0.22 ** 0.31 ± 0.12 0.36 ± 0.16

Flocculus L 0.86 ± 0.19 0.60 ± 0.20 ** 0.58 ± 0.17 0.29 ± 0.09 ** 0.23 ± 0.10 0.14 ± 0.05 ** 1.54 ± 0.50 2.00 ± 0.39 ** 0.69 ± 0.27 1.08 ± 0.35 ** 0.35 ± 0.22 0.47 ± 0.28
Flocculus R 0.84 ± 0.16 0.57 ± 0.20 ** 0.53 ± 0.18 0.25 ± 0.10 ** 0.20 ± 0.12 0.13 ± 0.05 ** 1.67 ± 0.51 2.02 ± 0.43 ** 0.75 ± 0.28 1.15 ± 0.30 ** 0.40 ± 0.23 0.51 ± 0.21

Lingula 0.44 ± 0.17 0.47 ± 0.15 0.23 ± 0.08 0.26 ± 0.08 0.13 ± 0.06 0.15 ± 0.07 1.92 ± 0.46 1.90 ± 0.32 1.25 ± 0.40 1.25 ± 0.36 0.75 ± 0.35 0.75 ± 0.31
CentralLobule 0.49 ± 0.13 0.50 ± 0.11 0.23 ± 0.04 0.24 ± 0.05 0.12 ± 0.02 0.13 ± 0.04 2.16 ± 0.26 2.07 ± 0.15 1.22 ± 0.38 1.11 ± 0.19 0.50 ± 0.12 0.49 ± 0.12

Culmen 0.43 ± 0.11 0.44 ± 0.07 0.22 ± 0.05 0.22 ± 0.05 0.12 ± 0.02 0.12 ± 0.04 1.85 ± 0.27 1.79 ± 0.17 0.99 ± 0.14 0.95 ± 0.09 0.55 ± 0.10 0.54 ± 0.07
Declive 0.38 ± 0.09 0.35 ± 0.07 0.18 ± 0.03 0.18 ± 0.05 0.10 ± 0.02 0.10 ± 0.05 2.05 ± 0.28 1.89 ± 0.16 ** 1.20 ± 0.20 1.11 ± 0.13 0.62 ± 0.11 0.63 ± 0.08

FoliumTuber 0.33 ± 0.07 0.41 ± 0.07 ** 0.19 ± 0.03 0.23 ± 0.05 ** 0.10 ± 0.02 0.12 ± 0.04 1.75 ± 0.29 1.55 ± 0.29 ** 1.07 ± 0.21 0.86 ± 0.11 ** 0.67 ± 0.13 0.57 ± 0.09 **
Pyramid 0.49 ± 0.09 0.54 ± 0.10 0.27 ± 0.04 0.30 ± 0.06 ** 0.14 ± 0.02 0.16 ± 0.04 1.22 ± 0.41 1.10 ± 0.20 0.78 ± 0.24 0.69 ± 0.06 0.48 ± 0.08 0.45 ± 0.07

Uvula 0.68 ± 0.12 0.61 ± 0.13 0.39 ± 0.08 0.33 ± 0.07 ** 0.21 ± 0.05 0.17 ± 0.06 ** 1.01 ± 0.45 1.37 ± 0.32 ** 0.65 ± 0.25 0.71 ± 0.11 0.36 ± 0.11 0.37 ± 0.11
Nodule 0.66 ± 0.16 0.53 ± 0.19 ** 0.35 ± 0.10 0.24 ± 0.06 ** 0.18 ± 0.05 0.13 ± 0.03 ** 1.71 ± 0.51 2.19 ± 0.31 ** 0.79 ± 0.26 1.30 ± 0.41 ** 0.37 ± 0.16 0.62 ± 0.33 **

Diffusivity is expressed in 10−3 mm2/sec; **, denotes p < 0.01 with correction for multiple comparison by using Bonferroni method (0.01/696); L, left hemisphere; R, right hemisphere; MD,
mean diffusivity, FA, fractional anisotropy.
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Table 3. Statistical results of each assessment from the regression model. The statistical results, including adjusted R2 and F values, are depicted for each assessment.
The averaged adjusted R2 and the mean average errors between predicted and observed values are calculated from cross validation and blind validation.

UPDRS_TOTAL LEDD PDQ39 SI MHY UPDRSI UPDRSII UPDRSIII UPDRSIV

Adjusted R2 0.94 0.89 0.88 0.86 0.57 0.92 0.93 0.92
F Test 994 528 479 390 87.9 780 834 716
LOOCV

Mean Adjusted R2 0.939 ± 0.002 0.891 ± 0.004 0.881 ± 0.004 0.871 ± 0.003 0.573 ± 0.012 0.923 ± 0.003 0.928 ± 0.002 0.917 ± 0.006
MAE 4.39 ± 3.57 138.70 ± 112.38 8.08 ± 5.39 0.40 ± 0.25 0.97 ± 0.76 1.74 ± 1.31 3.21 ± 2.31 0.61 ± 0.48

5-fold CV
Mean Adjusted R2 0.944 ± 0.011 0.898 ± 0.006 0.882 ± 0.013 0.877 ± 0.009 0.592 ± 0.051 0.930 ± 0.007 0.933 ± 0.005 0.919 ± 0.021
MAE 4.94 ± 1.67 135.64 ± 23.99 7.15 ± 1.32 0.39 ± 0.07 1.06 ± 0.15 2.05 ± 0.46 3.35 ± 0.33 0.67 ± 0.12

Blind validation
Adjusted R2 0.76 0.42 0.54 0.1 0.01 0.82 0.62 0.32
MAE 8.72 ± 6.24 348.17 ± 202.22 17.44 ± 11.44 1.02 ± 0.93 2.19 ± 2.28 3.06 ± 2.24 7.46 ± 4.07 2.10 ± 1.77
MAE in % 4.38 ± 3.14 53.09 ± 44.45 11.18 ± 7.33 20.40 ± 18.63 13.66 ± 14.27 5.88 ± 4.31 6.90 ± 3.77 9.11 ± 7.68

LOOCV, leave-one-out cross validation; MAE: mean absolute error; UPDRS: Unified Parkinson’s Disease Rating Scale; MHY: Modified Hoehn and Yahr staging; LEDD: levodopa equivalent
daily dose; PDQ39SI: Summary Index of 39-item PD Questionnaire. The percentage change in MAE (MAE in %) was calculated as MAE divided by the maximum range from the
corresponding assessment. However, in LEDD, MAE in % was calculated as MAE divided by the observed LEDD from each individual.
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3.3. Prediction of the Clinical Outcome

The clinical outcome can be calculated from the equations of linear regression, as listed in Table 4
(UPDRS and each sub-category) and Table 5 (MHY, LEDD, and PDQ39SI). Dependent variables and
the corresponding unstandardized coefficients for each clinical outcome are also reported. The clinical
changes in individual patients could be calculated by the combination of diffusion parameters calculated
from multiple brain regions, which showed that all regression models involved the cerebellum. Notably,
both the total score and the motor subscale of UPDRS could be predicted by diffusion parameters
measured from several overlapping regions, including the caudate, rectus, and, most pronounced,
the cerebellum. In Category II, the predictive regions were most notably the visual cortex, thalamus,
insula, cingulum, hippocampus, and cerebellum.

In the assessment of life quality (PDQ39SI), the adjusted R2 was 0.88 at both validations, mostly
predicted by diffusion indices measured in the occipital lobe, cingulum gyrus, quadrangular and
biventral lobules in the cerebellum, rolandic, insula, caudate, paracentral gyrus, temporal, frontal
lobe, and lingula of cerebellum vermis. Regions that entered into the regression model of LEDD
were located in the paracentral gyrus, frontal lobe, Heschl gyrus, postcentral, occipital lobe, cuneus,
thalamus, temporal lobe, precuneus, and parahippocampal gyrus, alae, biventral, and tonsil lobules
of cerebellum.
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Table 4. Equation with dependent variables and the corresponding unstandardized coefficients in the regression model of UPDRS and its categories. Table 4 shows the
dependent variables and corresponding unstandardized coefficients for the total score and Category I–IV of UPDRS from which clinical changes in individual patients
can be calculated by the combination of diffusion parameters.

UPDRS_TOTAL =

+67.84 * Nodule(FA50) +48.82 * Tonsil L(MD10) +11.53 * Lingula(MD10)
+79.50 * RolandicOperculum R(FA50) +19.28 * Rectus L(MD90) +222.21 * Quadrangular R(FA10)
−23.12 * Amygdala L(FA90) +10.08 * Heschl L(MD90) −7.38 * Flocculus R(MD90)
−80.25 * ParaHippocampus L(FA50) +57.31 * Biventral R(FA10) +60.29 * Cuneus R(FA50)
+6.09 * Alae R(MD50) −118.61

UPDRS_I =

+3.64 * Hippocampus L(MD90) +18.70 * Olfactory R(FA10) +36.22 * SuperiorSemilunar R(FA10)
−1.83 * SuperiorFrontal, Medial R(MD90) +12.01 * Thalamus R(MD10) −31.55 * RolandicOperculum L(FA10)
+3.89 * Biventral R(FA90) +19.83 * FoliumTuber(FA10) −8.39 * SuperiorTemporalPole R(FA50)
−2.72 * SuperiorFrontal, Orbital L(MD90) −44.07 * InferiorParietal R(FA10) −6.69 * Culmen(MD10)
−3.82 * InferiorFrontal, Orbital R(FA90) +1.74

UPDRS_II =

+8.87 * Nodule(FA50) −9.99 * Lingual L(MD10) −21.90 * Thalamus R(FA50)
+63.89 * RolandicOperculum R(FA50) +60.38 * Quadrangular R(FA10) −54.70 * Insula L(FA50)
+78.06 * Cingulum, Middle R(FA10) +21.55 * Bivnetral R(FA10) +4.78 * Hippocampus L(MD90)
−19.08 * Uvula(FA10) +3.03 * Rectus L(MD90) −4.79 * Heschl L(FA90)
+1.20 * Lingula(MD10) −15.43

UPDRS_III =

+44.92 * Nodule(FA50) +33.65 * Tonsil L(MD10) −17.12 * Heschl R(FA90)
+2.39 * Lingula(MD50) −6.27 * Flocculus R(MD90) +18.90 * SuperiorTemporalPole R(MD50)
+93.69 * Quadrangular R(FA10) −55.96 * ParaHippocampus L(FA50) +8.14 * Heschl L(MD90)
−23.69 * Caudate R(MD10) +11.13 * Rectus L(MD90) +58.03 * Cuneus R(FA50)
+5.47 * Lingula(MD10) −56.224

UPDRS_IV =

−0.87 * FoliumTuber(MD90) −4.84 * CentralLobule (MD10) −11.18 * Postcentral R(FA90)
+9.65 * InferiorOccipital R(FA50) +28.43 * InferiorFrontal, Orbital L(FA10) −23.17 * Caudate L(FA10)
+21.73 * RolandicOperculum R(FA10) −31.30 * MiddleFrontal, Orbital R(FA10) −1.34 * SuperiorFrontal, Orbital L(MD90)
−23.42 * LobulusSimplex L(FA10) +11.19 * Cuneus L(FA50) +16.83 * Cingulum, Anterior R(FA50)
−21.21 * InferiorFrontal, Opercular R(FA10) +10.32

UPDRS: Unified Parkinson’s Disease Rating Scale; MD, mean diffusivity; FA, fractional anisotropy; R, right hemisphere; L, left hemisphere; 90, 90th percentile; 50, 50th percentile; 10,
10th percentile; * indicated multiplication.
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Table 5. Equation with dependent variables and the corresponding unstandardized coefficients in the regression model of LEDD, MHY, and PDQ39SI. Table 5 shows
the dependent variables and corresponding unstandardized coefficients for LEDD, MHY, and PDQ39SI from which clinical changes in individual patients can be
calculated by the combination of diffusion parameters.

LEDD =

+1347.19 * ParacentralLobule R(MD10) +3997.05 * InferiorFrontal, Opercular L(FA10) +728.10 * Tonsil R(MD50)
+372.00 * Heschl L(FA90) −1602.36 * Biventral L(FA10) −753.08 * MiddleFrontal R(MD90)
+2118.39 * Postcentral R(MD50) −1431.37 * SuperiorOccipital L(MD50) +2573.81 * Cuneus R(FA50)
+486.64 * SuperiorFrontal, MedialOrbital R(MD90) −1853.35 * Thalamus L(FA50) +1547.72 * InferiorFrontal, Triangular R(FA50)
+298.36 * Alae R(MD10) −1597.47

PDQ39SI =

+370.38 * Quadrangular R(FA10) +208.71 * RolandicOperculum R(FA50) +44.90 * SuperiorTemporal R(MD90)
+125.00 * Cingulum, Anterior R(MD10) −10.77 * Biventral L(MD90) +46.65 * Cingulum, Posterior R(MD10)
+10.55 * Lingula(MD50) −107.68 * MiddleOccipital L(MD10) +78.75 * Biventral R(FA10)
+73.82 * ParacentralLobule L(MD10) −28.89 * Caudate L(MD10) −71.872 * Insula R(MD10)
+279.08 * SuperiorFrontal, Medial R(FA10) −211.64

MHY =

+8.02 * Nodule(FA50) +10.74 * Angular L(MD50) +1.99 * RolandicOperculum L(FA90)
−2.70 * ParacentralLobule R(FA90) +9.83 * Cuneus L(FA50) +0.55 * Lingula(MD50)
+1.37 * Heschl L(MD10) −6.39 * Insula R(MD10) +2.22 * Amygdala R(MD10)
+0.56 * Caudate L(MD90) −1.43 * SuperiorFrontal, Orbital R(MD90) +9.87 * FoliumTuber(FA10)
−5.85 * Rectus R(FA10) −9.14

LEDD: levodopa equivalent daily dose; PDQ39SI: Summary Index of 39-item PD Questionnaire; MHY: Modified Hoehn and Yahr staging; MD, mean diffusivity; FA, fractional anisotropy;
R, right hemisphere; L, left hemisphere; 90, 90th percentile; 50, 50th percentile; 10, 10th percentile; * indicated multiplication.
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4. Discussion

4.1. Major Findings and Clinical Impacts

The study proposes a multivariate approach to examine the potential prognostic performance of
diffusion MRI on later disease severity, LEDD, and PDQ-39 of patients with PD. The results of our
study indicate that the clinical outcome over a 2-year follow-up period can be confidently predicted
by baseline diffusion parameters measured in parcellated regions from the whole brain. Importantly,
diffusion parameters were found to predict the clinical trajectory of PD over time on an individual
patient basis. The results were blind-validated by using an independent sub-dataset, establishing the
validity of prognostic prediction by features from diffusion MRI.

Diffusion imaging can be easily incorporated into routine MRI examination, which has often
been prescribed in patients suspected of having PD to rule out concomitant brain disorders. Here, we
show the prognostic value of our approach by using different diffusion parameters in patients with
PD. The proposed machine learning algorithm might help facilitate the development of an artificial
intelligence-based computer-aided prognosis in patients with PD using diffusion tensor imaging.
Diffusion tensor imaging can be objective and does not require extensive cooperation from the
patient [25]. Our study demonstrates the value of adding this step to routine imaging examinations.
This might significantly contribute to the confidence of neurologists on the diagnosis and prognosis
of PD.

4.2. Prediction of Motor Function

Owing to their paramount pathogenetic role in PD, the substantia nigra, in particular the basal
ganglia, has been the subject of intense MRI investigation [26–29]. However, the detection of structural
changes in the middle temporal gyrus more than in the basal ganglia may improve diagnostic
accuracy [10,30]. Our study shows that during the follow-up period, changes in diffusivity can occur
in extensive cortical regions, for example, middle frontal gyrus, superior and middle occipital gyri,
as well as nodule and tonsil in the cerebellum. Because microenvironmental alterations generally
precede structural brain changes, diffusion parameters are expected to have higher predictive power
than conventional morphometric measures.

The cerebellum appeared in many of our regression models, notably the quadrangular lobule of
the cerebellum and lingula of the vermis. The basal ganglia are characterized by a relevant disynaptic
projection to the cerebellar cortex [31]. Patients of PD with either tremor [32] or pain [33] showed
damage in these regions. Reciprocal connections between the basal ganglia and cerebellum have
been identified and may account for some of the clinical symptoms observed in PD [34]. Our study
might suggest that the cerebellum could play an essential role in the disease progression of the motor
symptoms in PD.

Regions found to be predictive of prognosis could form the keynodes within an interconnected
network, for example, frontal-hippocampus and cerebellum-basal ganglia–thalamus networks.
Brain connectivity within a whole neural network is altered in PD patients [35]. Therefore, affected
regions might extend beyond observed pathogenesis, leading to changes in related motor and higher
cognitive functions [36]. Our approach, which comprehensively assessed the damage throughout the
whole brain, might potentially provide a more accurate prediction of the functional decline.

4.3. Prediction of Non-Motor Functions

Interestingly, the functions of these brain regions reflect well-known alterations in memory,
language, and executive functions that occur in PD [37]. Our findings also suggest that both the
thalamus and frontal lobe may be involved in the prediction of LEDD and the hippocampus in the
prediction of UPDRS I. The functions of these memory- and cognitive-related areas involve regulation
of sensory–motor, emotional and memory functions [38,39], and socio-emotional processing [40].
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Although PD is predominantly considered to be a motor disorder, the extensive brain regions identified
in our regression analysis supports the hypothesis that the disease process is multifocal in nature [41].

Because non-dopaminergic and non-motor symptoms tend to emerge later during the course of
PD, their potential role as targets of cognitive training is attracting increasing attention [42]. Therefore,
in order to effectively predict clinical outcome, it would be reasonable to assess the damage from
a comprehensively neural network, rather than a few selected regions of interest.

Because non-motor symptoms in PD often precede motor abnormalities such as cognitive
impairment, and are associated with worse prognosis [43], patients should be carefully monitored
for potential early interventions [44,45]. We show that the clinical outcome in motor and non-motor
symptoms can be confidently predicted by the diffusion characteristics in a combination of multiple
brain regions. Our study might provide novel evidence of diffusion MRI as an effective and non-invasive
prognostic tool.

4.4. Study Limitation

The main limitation in our study is the nature of our data-driven approach that enters the diffusion
parameters into regression models, which makes it difficult to establish a direct causal relationship
between the underlying function of an affected brain region and longitudinal changes in clinical
severity. Further research aimed at disentangling the complex neural networks associated with clinical
deterioration over time is therefore required.

Because only 82 patients were included in the final analysis, the generalizability of the study
might be restricted. Our study presents a method, which selects features from the whole brain rather
than a few pathophysiology related areas, to effectively predict the clinical outcome of patients with
PD. Our observations of the involvement from additional brain regions might prompt further research
into the role of progressive diffuse microstructural brain damage in the natural history of PD and to
investigate the potential effect from chronic pharmacotherapy with an increased number of participants
in the future study.

5. Conclusions

In conclusion, baseline parameters from diffusion tensor measurements from the whole brain of
PD patients can accurately predict the decline in clinical outcomes over a 2-year period in individual
patients, notably in the total and Category II of UPDRS.
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