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METHODOLOGY

Gain‑of‑function in Arabidopsis (GAINA) 
for identifying functional genes in Hevea 
brasiliensis
Han Cheng1,2*, Jing Gao1, Haibin Cai1, Jianshun Zhu1 and Huasun Huang1,2*

Abstract 

Background:  Forward genetics approaches are not popularly applied in non-model plants due to their complex 
genomes, long life cycles, backward genetic studies etc. Researchers have to adopt reverse genetic methods to char-
acterize gene functions in non-model plants individually, the efficiency of which is usually low.

Results:  In this study, we report a gain-of-function in Arabidopsis (GAINA) strategy which can be used for batch 
identification of functional genes in a plant species. This strategy aims to obtain the gain-of-function of rubber tree 
genes through overexpressing transformation ready full-length cDNA libraries in Arabidopsis. An initial transformation 
test produced about two thousand independent transgenic Arabidopsis lines, in which multiple obvious aberrant 
phenotypes were observed, suggesting the gain-of-function of rubber tree genes. The transferred genes were further 
isolated and identified. One gene identified to be metallothionein-like protein type 3 gene was further transferred 
into Arabidopsis and reproduced a similar aberrant phenotype.

Conclusion:  The GAINA system proves to be an efficient tool for batch identification of functional genes in Hevea 
brasiliensis, and also applicable in other non-model plants.
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Background
Mutants play important roles for identifying new genes 
with specific functions. Many methods have been applied 
to generate loss-of-function mutations, including the use 
of ethyl methanesulfonate, fast-neutron treatment, anti-
sense and RNA interference technology, and insertion 
mutations by a transposable element or T-DNA (Bolle 
et al. 2011). These methods have produced a large num-
ber of mutant pools in Arabidopsis (Alonso et  al. 2003; 
Berardini et  al. 2004; Lamesch et  al. 2012), rice (Zhang 
et al. 2006; Krishnan et al. 2009) and maize (Andorf et al. 
2015). However, these approaches do not likely discover 
the genes that are redundant or essential for early embryo 
development, as these mutations may cause embryo 
lethality that gives no offsprings. Gain-of-function 

strategy works efficiently to overcome these shortcom-
ings, which enhances gene expression to generate muta-
tion phenotypes (Weigel et  al. 2000; Nakazawa et  al. 
2003).

Activation tagging was the first and most widely used 
gain-of-function mutation method which utilizes the 
enhancer element from the cauliflower mosaic virus 
(CaMV) 35S gene. T-DNA containing four folds 35S 
enhancers is transferred into the Arabidopsis genome 
and activates the nearby gene transcription (Weigel et al. 
2000; Nakazawa et  al. 2003). Activation tagging now 
has been successfully applied in rice (Jeong et al. 2002), 
tomato (Mathews et al. 2003), poplar (Fladung and Polak 
2012) etc. A new strategy for activation tagging utilizes 
a recombinase reaction between two lines generated by 
the pEnLox/pCre vector system, which provides a new 
and easier way to analyze gain-of-function mutants 
(Pogorelko et  al. 2008). Another strategy such as SARE 
(Sense/Antisense RNA Expression) overexpresses genes 
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in sense or antisense manner directly at genome scale, 
which produces enhanced or suppressed mutants in the 
same mutant pools (Mou et al. 2002). The SARE system 
constructes an Arabidopsis cDNA library by inserting the 
cDNA fragments between the 35S promoter and NOS 
terminator. This expression library is then used to trans-
form Arabidopsis through an Agrobacterium-mediated 
way. The initial application of this system has isolated a 
mutant overexpressing the sense cDNA fragment of a 
choline biosynthesis-related PEAMT gene (Mou et  al. 
2002). However, the combination of gain-of-function and 
loss-of-function mutants in the same pool would increase 
the difficulty of mutants screening.

All these methods require the homogenization of 
the mutation allele, and an effective transgenic tech-
nique to produce enough transgenic lines for saturating 
the genome (Peters et  al. 2003). However, it is not easy 
to be achieved in the plants with a long life cycle such 
as the rubber trees (Hevea brasiliensis), which produce 
seeds at 4 or 5 years old (Priyadarshan and de Goncalves 
2003). Besides, rubber trees are highly heterozygous and 
recalcitrant to transform, let alone to produce plenty of 
transgenic lines for screening mutations (Montoro et al. 
2003; Jayashree et  al. 2003; Blanc et  al. 2006; Leclercq 
et al. 2010). So it is not feasible to utilize classical genetic 
approaches to identify genes in rubber tree. Here we 
report a new strategy to overexpress rubber tree genes in 
Arabidopsis, which has proved to be fast and effective for 
the identification of functional gene in H. brasiliensis.

Methods
Plant materials and growth conditions
Arabidopsis thaliana L. Heynh. ecotype Columbia  (Col-
0) was used in this study. Plant growth conditions were 
described elsewhere (Cheng et al. 2015).

Rubber tree (H. brasiliensis) clone 93-114 was used 
for RNA extraction (Cheng et  al. 2008). This genotype 
was not EST sequenced before this work. The seedlings 
were grown in a green house with 12  h light/12  h dark 
photoperiod (120 μE m−2 s−1). When the seedlings were 
about 1 m high, with the second whirl leaves stabilized, 
the leaves and bark were harvested and frosted in liquid 
nitrogen for RNA extraction.

Construction of pXCS‑LIB binary vector
The expression vector pXCS-LIB was derived from the 
pXCS-HAStrep (accession number AY457636), which 
was provided by Dr. Claus-Peter Witte (Witte et al. 2004). 
To generate pXCS-LIB, an adapter (AAGCTTGGCC 
ATTACGGCCAATAGGCCGCCTCGGCCGAATTC, 
HindIII and EcoRI sites underlined) was ligated into 
the HindIII and EcoRI site in pXCS-HAStrep. The 
new constructed plasmid was sequenced using primer 

LibSeq  (5′-TCCTTCGCAAGACCCTTCCT-3′) to con-
firm right structure. The pXCS-LIB was digested by SfiI, 
and then dephosphorylated by calf intestinal alkaline 
phosphatase (Takara). The digested pXCS-LIB fragment 
was recovered and used for cDNA library construction.

Construction of a rubber tree cDNA library in pXCS‑LIB
Rubber tree total RNA was extracted from mix sample 
of the leaf, bark and shoot tips by CTAB method (Cheng 
et al. 2015), and mRNA was isolated using a PolyATract 
mRNA Isolation System III (Promega). The cDNA was 
synthesized using the Clontech Creator SMART cDNA 
Library Construction Kit, and was then normalized with 
TRIMMER-DIRECT  cDNA Normalization Kit (Evro-
gen). The normalized cDNA was then digested by SfiI 
and fractioned using CHROMA SPIN-400 Columns. The 
cDNA longer than 300 bp was recovered and ligated into 
the SfiI digested pXCS-LIB fragments. The ligation prod-
ucts were ethanol precipitated and dissolved in 5 µL dou-
ble distilled water, and electroporated into 25  µL E.coli 
TOP10 competent cells using a Gibco BRL Cell Porator 
with the follow setting: capacitance 330 μF, voltage 350 V, 
impedance low ohms, charge rate fast, resistance 4  kΩ. 
After transformation, the cell was resuspended in 1  mL 
SOC medium and cultured at 37 °C for 45 min. One µL 
strain culture was diluted into 100  µL LB medium, and 
plated onto LB agar plate containing 50 mg/L carbenicil-
lin. After overnight culture, the clones were counted and 
the library titer was calculated.

For cDNA insertion size determination, clones were 
randomly picked up and subjected to PCR analysis with 
primer with primer F-p (5′-TCCTTCGCAAGACCC 
TTCCT-3′) and R-p (5′-TGAGGATGAGACCAACCG 
GC-3′). The products were resolved on agarose gel and 
the bands size was further calculated.

Transfer the binary plasmid library into Agrobacteria 
and generation of transgenic plants
The cDNA library was amplified on two hundreds 
15 cm LB agar plates and all the clones were combined 
in 1000 mL liquid LB medium. The library plasmid was 
extracted from 100  mL of the amplified cDNA library 
using a Qiagen plasmid purification kit. This library plas-
mids were further introduced into Agrobacterium tume-
faciens strain GV3101 (pMP90RK) by electroporation, 
and transformants were screened on YEB agar plates sup-
plemented with 50 mg/L rifamycin, 20 mg/L gentamicin, 
50 mg/L kanamycin, and 50 mg/mL carbenicillin (Koncz 
and Schell 1986). Transformants were allowed to grow on 
plates for 3 days and then were pooled and cultured for 
2 h at 28 °C.

Arabidopsis Col-0 plants were transformed with these 
agrobacteria via flower dipping method (Clough and 
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Bent 1998). Plants prepared for transformation were 
grown on the medium composed vermiculite and peat-
moss (1:3) at 23  °C. Transformed plants were allowed 
to self-pollination and the seeds were harvested. Trans-
genic plants were selected by spraying 100  mg/L Basta 
(glufosinate ammonium) onto 5 d T1 plants for 3 times 
with 3 d intervals. The survived plants were cultured 
and the T2 seeds from each T1 plant were harvested 
individually.

Mutant screening and isolation of the transferred gene
T1 plants were examined for morphological aberrance. 
Individual T1 plants with specific phenotype were sub-
jected to further analysis. For each mutant line, segrega-
tion of phenotype and Basta resistance was performed in 
the T2 and T3 generations. The lines with a 3:1 segregat-
ing ratio was regarded as single T-DNA insertion.

The overexpressed genes were isolated by amplifying 
the genomic DNA of the mutants using primers LIB5 
(5′-ATGACGCACAATCCCACTATC-3′) and LIB3 
(5′-TGTAGAGAGAGACTGGTGATTTTTG-3′). The 
PCR products were cloned into pMD18-T (Takara) and 
sequenced.

Confirmation that the transferred gene leads to the mutant 
phenotype
To confirm the transferred gene induced the mutant phe-
notype, the PCR product of target gene was digested by 
SfiI and ligated into SfiI restrictive sites of pXCS-LIB vec-
tor. The constructed plasmid was introduced into Agrobac-
terium strain GV3101 (pMP90RK), and used to transform 
Col-0 wild type plants by flower dipping method. The T1 
and T2 phenotype of each gene was examined.

EST sequencing and COG annotation
EST sequencing was conducted with ABI 3730 platform 
at BGI Company (Beijing, China). The raw sequencing 
data were first cleansed to get rid of vector sequence, 
low quality ESTs and chimeric sequences. Then the 

clean ESTs were assembled with CAP3 program using 
the parameters: identity, 0.95; minimal overlap, 50  bp 
(Huang and Madan 1999). The assembled unigenes 
were then used for BLASTx searches (E-value  <  1e-5) 
and annotation against SWISSPROT, KEGG and COG 
databases.

Availability of data and materials
The datasets supporting the conclusions of this article are 
included within the article and its additional file. The EST 
sequences were submitted to GenBank as dataset.

Results
Overview of the GAINA system
The GAINA system overexpress rubber tree genes in 
Arabidopsis, and generate gain-of-function mutant pools 
for rubber tree genes. The gain-of-function mutant pools 
are then used for functional gene identification (Fig.  1). 
To obtain overexpression lines of rubber tree genes, 
a transgene-ready full length cDNA library was con-
structed. To fulfill this, we first constructed a binary vec-
tor designated as pXCS-LIB that is used for full length 
cDNA cloning in sense direction and is fully compatible 
with the Clontech Creator SMART cDNA Library Con-
struction Kit (Fig.  2) (Zhu et  al. 2001). The rubber tree 
full-length cDNAs were then cloned into the Sfil A and 
Sfil B sites, and resulted in the transgene-ready full length 
cDNA library. As the full length cDNAs were driven by a 
double 35S promoter and followed by a 35S poly A termi-
nator, the cloned cDNAs were expressible in plants when 
transferred as part of the T-DNA fragment. The trans-
formation ready cDNA library was then transformed 
into Arabidopsis in an Agrobacterium-mediated flower-
ing dipping method. Independent transgenic lines were 
collected and each contained at least one overexpressed 
rubber tree gene. These lines constitute the gain-of-func-
tion Arabidopsis mutant pools of the rubber tree genome 
information facilitating functional genes identification in 
this non-model species. 

Fig. 1  Overview of GAINA system. Workflow of gain-of-function strategy for identification functional genes in rubber tree
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Construction of a rubber tree cDNA library
The key point of GAINA system is to construct a high-
quality transformation ready cDNA library with uniform 

abundance and broad representation. To achieve this 
goal, the RNA was extracted from mixed samples of 
leaf, bark and shoot tips, then the cDNA was further 

Fig. 2  The construction of expressible full-length cDNA library. A adapter with Sfil A and Sfil B restrictive sites was introduced into pXCS-HAStrep 
to generate binary vector pXCS-lib, which was fully compatible with Clontech Creator SMART cDNA Library Construction Kit. Then the full-length 
cDNA library was constructed in this vector
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normalized. Besides, the cDNAs should contain intact 
CDS in the sense direction which ensures the cloned 
cDNAs are expressed and translated correctly. To meet 
these criteria, we constructed a normalized full-length 
cDNA library using the SMART™ and TRIMMER™ tech-
nology (Zhu et al. 2001; Bogdanov et al. 2010). The nor-
malized full-length cDNA fragments were then cloned 
into the Sfil restrictive site in sense direction and trans-
formed into TOP10 competent cells. An aliquot of the 
cDNA library is titrated which demonstrated this library 
contained 1.4 × 106 clones.

To evaluate the quality, diversity and insertion length 
of the constructed full length cDNA library, we ran-
domly picked up thirty-six clones and analyzed with PCR 
amplification. As shown in Fig. 3, all the selected clones 
contained effective insertions. The cDNA insert length 
ranged from 0.5 to 2  kb with an average size of 1  kb, 
demonstrating this library was of high quality and rich 
diversity.

EST sequence analysis
The normalized full length cDNA library was subjected 
to EST sequencing from the 5′ terminal using Sanger 
sequencing technology. Totally 25020 EST sequences 
were obtained, of which 22585 were high-quality 
sequences. Using a CAP3 assembly program (Calikowski 
and Meier 2006), the ESTs obtained were assembled into 
12114 unigenes (3233 contigs and 8881 singlets), with a 
redundancy rate of about 46 %. The EST sequencing data 
demonstrated a high quality and wide representation of 
this library for rubber tree transcriptomes.

The ESTs sequences were also annotated using blastx 
against SWISSPROT, KEGG and COG databases. Fig-
ure  4 showed a profile of COGs annotation of all uni-
genes. Totally 3127 genes were annotated with COG 
database (e-value cut-off 1E-05), belonging to 757 
COG ids. These COGs fell into 23 COGs classes, with 

posttranslational modification (16.9  %), translation 
(15.5 %) and general function prediction (14.5 %) as the 
major part. The COGs classes’ diversity of the annotated 
unigenes demonstrated the library represented genes 
with versatile functions.

Multiple gain‑of‑function lines with visible phenotype 
aberrance
The full length cDNA library was amplified on LB agar 
plates and the plasmids were extracted and transferred 
into Agrobacterium strain GV3101 (pMP90RK). The 
Agrobacteria were then used to transform Arabidopsis 
seedlings with flower-dip method. Each independent 
overexpression line was selected and regarded as one 
gain-of-function line of a particular gene. Totally about 
2000 independent gain-of-function lines were obtained 
in an initial round of screening. Among these lines, 
more than one hundred plants showed obvious phe-
notype aberrance. As shown in Fig. 5, typical aberrant 
phenotypes included large-sized rosette leaves, small-
sized rosette, twist leaves, short siliques etc. (Fig.  5b–
g). The diverse aberrant phenotype of the transgenic 
lines indicated that the gain-of-function of rubber tree 
genes could result in Arabidopsis phenotype changes 
and thus be applicable to identify genes of particular 
interest.

Isolation of the transferred gene
The inserted rubber tree genes were then cloned from 
Arabidopsis gain-of-function lines using PCR method. 
Four lines (phenotype 5C to 5F) were characterized, 
each of which contained only one T-DNA insertion. 
Then the cloned fragments were subjected to sequenc-
ing, and were then annotated. The annotation results are 
listed in Table 1, in which two of them were genes with 
known functions, whereas the other two were annotated 
as unknown function. The sequences of the cloned genes 

Fig. 3  Size distribution of cDNA fragments in constructed full-length cDNA library. Thirty-six random selected clones were subjected to PCR ampli-
fication to determine the inserted fragment size
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were shown in Additional file 1: Data 1, Additional file 2: 
Data 2.

To test if overexpression of the rubber tree genes could 
reproduce the phenotypes found in the gain-of-function 
mutant pools, the phenotype 5D gene (metallothionein-
like protein type 3) was re-overexpressed in Arabidopsis. 
The transgenic seedlings also displayed twisted leaves 
phenotype as found in gain-of-function mutant pools 
(Fig.  5h). These results demonstrated that the gain-of-
function phenotype found in Fig. 5d did come from the 
overexpression of the transferred rubber tree metal-
lothionein-like protein type 3 gene.

Discussion
Chemical and physical mutation is the most frequently 
used method to generate mutants. Though saturating a 
genome is relatively easy for chemical and physical muta-
tion, it is difficult to map the mutation site, thus makes it 
very difficult to clone the target genes. Though some new 
methods for mapping the mutation emerged recent years, 
such as TILLING etc. (Till et al. 2003), it is still not easy 
to work in non-model plants. T-DNA insertion has been 
proved to be very convenient for the cloning of mutated 
target genes. However, the loss-of-function strategy 
makes this method to be limited in model plants. For the 
less-studied long life span trees, the T-DNA insertion 
mutation is not easy to be achieved. In non-model plants, 
overexpression in Arabidopsis is an alternative method to 

characterize the gene functions, which has been success-
fully applied in many plant species (Foucart et  al. 2009; 
Kalamaki et al. 2009; Jiang et al. 2016). This gain-of-func-
tion strategy is very useful for the plants with low trans-
formation efficiency.

In this study, we adopt a gain-of-function method 
(GAINA) to overexpress the rubber tree full-length cDNA 
library in Arabidopsis, and generate thousands of gain-of-
function lines. These lines contain overexpressed rubber 
tree genes, and therefore can be used to identify genes with 
particular functions. The key of the GAINA system is to 
construct a full-length cDNA library in the sense direction, 
which ensures the successful expression after transferred 
into Arabidopsis. First we constructed a transformation-
ready binary vector pXCS-lib which is compatible to full-
length cDNA library construction. The full-length cDNA 
library was then cloned into pXCS-lib plasmid and utilized 
to transform Arabidopsis. To ensure the cDNA library 
mostly represent the rubber tree genes, a mixed RNA sam-
ple from several tissues was used for library construction. 
A normalization step was further used to gain uniform 
abundance for each gene in the library. These measures 
guaranteed the maximum likelihood to obtain gain-of-
function mutation lines for each rubber tree genes. The 
EST sequencing of the full-length cDNA library also con-
firmed the wide representation of the constructed library.

Another key of the GAINA system is to generate 
enough Arabidopsis transgenic lines, which maximizes 

Fig. 4  Cluster of orthologous groups annotation profile for unigenes of 25020 sequenced EST. Totally 12114 unigenes were subjected to annota-
tion by blastx program against SWISSPROT, KEGG and COG databases. The classes definition, number of unigenes in each class and the percentage 
of each class were listed in the right
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the coverage of the rubber tree genes. In the initial 
experiment, two thousands independent transgenic 
lines were obtained, in which aberrant phenotypes 
were observed in many lines. This also demonstrated 
that the GAINA strategy was effective to identify 

functional genes in the rubber trees, especially for the 
genes involved in organ development, abiotic stress 
resistance. The next job is to obtain more GAINA 
transgenic lines, and to cover more rubber tree genes 
in this system.

Fig. 5  T1 generation lines showed obvious phenotype aberrance. a Col-0 seedlings. b–g Independent transgenic lines show phenotype aberrance. 
b Enlarged rosette size; c Small rosette size; d Twisted rosette leaves; e Short silique; f Round rosette leaves; g Slim inflorescence and few trichomes. 
The photos were taken at 22 days after germination for a, b, c, d, f. WT wild type phenotype, 5E phenotype of 5E mutant, 5G phenotype of 5G 
mutant. Bar 1 cm
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In this study, four rubber tree genes are identified 
using GAINA system. The transferring of these genes 
caused visible phenotype aberrances in Arabidopsis 
(Fig.  5). Among these identified genes, only one (MT3) 
was previously well characterized. MT3 is low molecular 
weight, cycteine-rich proteins that bind metals such as 
Zn, Cu or Cd, and is proposed to participate in a vari-
ety of processes including metal ion homeostasis and 
tolerance (Benatti et al. 2014). MT3 is also suggested to 
protect cells against oxidative stress (Akashi et al. 2004). 
The overexpression of the rubber tree MT3 gene caused 
twisted leaves in GAINA system. This phenotype was 
reproduced in an independent HbMT3 transgene experi-
ment, which further confirmed the connection between 
phenotype and HbMT3 overexpression, though the detail 
mechanism is yet to be unraveled.

Nowadays, there were numerous studies that trans-
ferred the non-model plants genes into Arabidopsis and 
characterized their functions (Foucart et  al. 2009; Kal-
amaki et al. 2009; Polashock et al. 2010; Jiang et al. 2016; 
Wang et al. 2016; Liu et al. 2016). We also characterized 
rubber tree HbCBF1 gene which showed conserved func-
tions in regulating CBF pathway in Arabidopsis (Cheng 
et  al. 2015). These studies utilized the reverse genetic 
approach to characterize gene functions. The GAINA 
system provides a forward genetic approach for batch 
identification of functional genes in non-model plants, 
which will greatly facilitate the genetic study in these spe-
cies. However, a shortcoming of the GAINA system is 
that this method will not likely identify rubber tree spe-
cific genes, such as those involved in rubber biosynthesis, 
latex development. The study of these genes should rely 
on the molecular biology research progresses in H. bra-
siliensis (Kush et al. 1990; Duan et al. 2010; Chow et al. 
2012). Even so, the GAINA system offers a powerful for-
ward genetic tool for gene studies, which will greatly help 
researchers to identify genes that involved in particular 
functions in non-model plant species.

Conclusion
In this study, we report a gain-of-function in Arabidop-
sis (GAINA) systemthat overexpresses a rubber tree 
full-length cDNA library in Arabidopsis, and generates 
thousands of transgenic lines. These gain-of-function 
lines prove to be beneficial for the functional identifica-
tion of rubber tree genes. Therefore, the GAINA system 
offers a powerful forward genetic tool for functional gene 
study and the identification of genes involved in particu-
lar pathways in non-model plant species.
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Table 1  The identification of the inserted genes in the gain-of-function lines in Fig. 5

The ID phenotype 5C to phenotype 5F refer to the lines in Fig. 5c–f respectively

ID Phenotype Annotation Sequences Accession number 
of predicted gene

Species origin References

Phenotype 5C Small rosette and 
leaves

Mitochondrial sub-
strate carrier family 
protein

Supplemental
Data Phenotype 5C

XP_002314452.2 Populus trichocarpa Tuskan et al. (2006)

Phenotype 5D Twist rosette leaves Metallothionein-like 
protein type 3

Supplemental
Data Phenotype 5D

At3g15353 Arabidopsis Hassinen et al. (2009), 
Benatti et al. (2014)

Phenotype 5E Short silique Unknown function Supplemental
Data Phenotype 5E

At1g55160 Arabidopsis Dunkley et al. (2006)

Phenotype 5F Round leaves, late 
flower

Unknown function Supplemental
Data Phenotype 5F

OAY30768.1 Manihot esculenta n.a.
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