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Background: Heat stroke (HS) is a physically dysfunctional illness caused by hyperthermia.
Lung, as the important place for gas-exchange and heat-dissipation organ, is often first to
be injured. Lung injury caused by HS impairs the ventilation function of lung, which will sub-
sequently cause damage to other tissues and organs. Nevertheless, the specific mechanism
of lung injury in heat stroke is still unknown.
Methods: Rat lung tissues from controls or HS models were harvested. The gene expression
profile was identified by high-throughput sequencing. DEGs were calculated using R and
validated by qRT-PCR. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and cell-enrichment were performed using differential expression genes (DEGs).
Finally, lung histopathology was accessed by H&E staining.
Results: About 471 genes were identified to be DEGs, of which 257 genes were
up-regulated, and 214 genes were down-regulated. The most up-regulated and
down-regulated DEGs were validated by qRT-PCR, which confirmed the tendency of ex-
pression. GO, KEGG, and protein–protein interaction (PPI)-network analyses disclosed
DEGs were significantly enriched in leukocyte migration, response to lipopolysaccharide,
NIK/NF-kappaB signaling, response to reactive oxygen species, response to heat, and
the hub genes were Tnf, Il1b, Cxcl2, Ccl2, Mmp9, Timp1, Hmox1, Serpine1, Mmp8 and
Csf1, most of which were closely related to inflammagenesis and oxidative stress. Finally,
cell-enrichment analysis and histopathologic analysis showed Monocytes, Megakaryotyes,
and Macrophages were enriched in response to heat stress.
Conclusions: The present study identified key genes, signal pathways and infiltrated-cell
types in lung after heat stress, which will deepen our understanding of transcriptional re-
sponse to heat stress, and might provide new ideas for the treatment of HS.

Background
Heat stroke (HS) is a physically dysfunctional illness characterized by an elevated core body temperature
(>40◦C), feeling hot, central nervous system abnormalities (coma, fainting, and delirium), and even mul-
tiple organ dysfunction syndrome (MODS) [1–3]. Prolonged exposure to a hot environment or vigorous
physical exertion are the main cause of heat stroke. Excessive accumulation of heat in the body could lead
to tissue and organ damage, in severe cases, even heat stroke. With the global warming and the increas-
ing frequency and intensity of heat wave attacks, the incidence of heat stroke is increasing year by year
worldwide [4,5].
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Figure 1. Experimental protocol

Scheme of the experimental protocol for preconditioning and induction of heat stroke model. HS group rats were placed in a

pre-warmed incubator that was maintained at (40 +− 0.5)◦C and a relative humidity of (60 +− 5)% in the absence of food and water.

When the rectal temperature was reached 42◦C, rats were cooled at an temperature of (25 +− 0.5)◦C and a humidity of (35 +− 5)%

for temperature recovery. After 24 h, lungs were harvested for further examination.

Heat stroke is a lethal illness with high rate of morbidity and mortality, The 28-day and 2-year mortality rates of
heat stroke have been reported to be 58% and 71%, respectively [6]. Furthermore, heat stroke-related deaths have
been reported to increase yearly as the global warming. Actually, exposure to high ambient temperatures can lead to
a high incidence rate of heat stroke. In 2003, Western Europe suffered heat wave related disasters, killing more than
70,000 people [6]. Mostly recently, in 2010, heat waves in Russia caused more than 55,000 deaths [7]. By 2050s, the
number of death from heat stroke is expected to raise nearly 2.5 times the current annual deaths [8].

Lung, as the most important organ for heat dissipating and oxygen exchanging, has numerous capillary networks
that surround the alveoli. In the process of heat stroke, lung is one of the first affected and injured organ as its special
structure, and impaired lung functions could further induce and promote the damage of other important tissues and
organs as anoxia [9]. Although numerous reports have demonstrated that heat stroke causes injury to brain, small
intestine, and other organs [10], the effect of heat stroke on lung is not very clear yet.

High-throughput sequencing is an emerging methodology that can provide insight into the identification of
new disease-associated genes, pathways and networks that would not have been discovered with the traditional,
single-analysis methods. Recent studies using this technology have been widely applied in various biological process
such as development [11], airway disease [12,13], providing to be quite useful tools for the identification of potential
biomarkers and therapeutic targets. In the present study, unbiased high-throughput RNA sequencing was used to
evaluate the genome-wide expression of mRNA in the rat lung tissue following heat shocking.

Materials and methods
Animal model of heat stroke (HS) and tissue collection
Twenty Male Wistar rats (4 months old) were purchased from the Guangdong Medical Laboratory Animal Center
(Guangzhou, China), and their weights were approximately 250 g. The animals were raised in the Center of Exper-
imental Animals of Guangzhou medical University. The rats (5/cage) were housed under controlled environmental
condition (12-h light/dark cycle, 55 +− 5% humidity, 23◦C ambient temperature) with standard chow and water. All
animal experiments were performed in the Center of Experimental Animals, Guangzhou Medical University, and
they were approved by the Institutional Animal Care and Use Committee before the experiment. Heat stroke model
were established according to previously method [14]. Briefly, all rats were starved for 12 h before experimentation,
without any restriction on the ingestion of water. Twenty rats were randomly divided into two groups: control and HS.
Rats in HS group were placed in a pre-warmed incubator that was maintained at (40 +− 0.5)◦C and a relative humidity
of (60 +− 5)% in the absence of food and water. The rectal temperature was continuously monitored at 10-min inter-
vals with a rectal thermometer. When the temperature was more than 42◦C, rats were cooled at an temperature of (25
+− 0.5)◦C and a humidity of (35 +− 5)% for temperature recovery. The animals in the control group were sham-heated
at a temperature of (25 +− 0.5)◦C and humidity (35 +− 5)% for a time that was comparable to that of the HS groups.
Twenty-four hours after model building, the rats (10-control and 10-HS rats) were anesthetized by intraperitoneal
injection of pentobarbital sodium (35 mg/kg) and killed by decapitation. Then, lung tissue and blood were obtained
from each rat for the subsequently experiments (Figure 1).

RNA sequencing and data analysis
RNA extracted from lung tissue was used to construct mRNA libraries using the NEBNext Ultra II RNA Kit (Illumina
platform). The RNA-seq libraries were sequenced on the Hiseq Xten platform. Raw reads were exported as fastq for-
mat, and the obtained raw reads were pre-processed by removing the adaptors and sequencing primers using Trimmo-
matic [15]. Low quality reads were removed to generate clean data for subsequent analysis. Reference annotation files
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were downloaded from genome databases website (ftp://ftp.ensembl.org/pub/release-92/fasta/rattus norvegicus/).
All of the clean reads were mapped to the Rat reference sequence using TopHat2 [16]. The read count for each gene
was acquired based on the mapping results using Cufflinks and normalized to reads per kilobase of exon model per
million mapped reads (RPKM) [17,18]. Differential expression genes (DEGs) between heat stroke group and control
group were calculated using an R extension package ‘DESeq’ (www.bioconductor.org/packages/release/bioc/html/
DESeq.html) [19], and genes with estimated absolute log2-fold change ≥ 1 and P value ≤ 0.05 were considered to be
significantly differentially expressed. Volcano plot for all genes were drawn using R software package ‘ggplot2’, and
heatmap for 50 most significant DEGs was drawn using R extension package ‘Pheatmap’.

Enrichment of gene ontology (GO) terms and pathways
GO (Gene Ontology) analysis, including biological process (BP), cellular component (CC) and molecular function
(MF), was performed for features corresponding to DEGs in heat stroke samples using the R extension package ‘clus-
terProfler’. The statistically significance level of GO term was set as the adjusted P value less than 0.05. In addition,
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of DEGs was conducted to identify enriched
pathways with ‘clusterProfler’ as well.

Integration of protein–protein interaction (PPI) network
STRING (Search Tool for the Retrieval of Interacting Genes) database is an online tool designed for evaluating the
protein-protein interaction information. STRING (version 11.0) includes 24,584,628 proteins from 5090 organisms.
To identify the interactive relationships, DEGs were mapped to STRING, and minimum required interaction score >

0.4 was selected as significant. Subsequently, PPI networks were constructed using the Cytoscape software (Version
3.7.1). The plug-in cytoHubba was used to identify hub genes among DEGs.

Cell types enrichment analysis
To access the heterogeneous cellular landscape in the HS lung specimens, cell types enrichment analyzes were per-
formed. Rat gene symbols were first converted to their homologous symbols of human using an R extension package
‘biomaRt’. And then a gene signature-based method for identifying cell types from transcriptome profiles, the xCell
tool (http://xcell.ucsf.edu/), was performed [20]. It performs cell type enrichment analysis for 64 immune and stroma
cell types in the lung tissues. The composite score of immune cells, ImmuneScore, was obtained as well.

Histology
Wistar rats weighing about 250 g were anesthetized intraperitoneally with sodium pentobarbital. The lung was then
ventilated and in situ perfused with 0.9% NaCl until its turns white. Fresh lung was isolated and the right lung tissue
was fixed for 1 day in 4% freshly prepared paraformaldehyde. Subsequently, lung tissues were dehydrated through a
serial acetones gradient, embedded in paraffin wax blocks, and sections were cut at 5 μm thickness. Before Hema-
toxylin and Eosin (H&E) staining, lung tissue sections were dewaxed in xylene, and rehydrated through a decreasing
graded series of ethanol, and rinsed in water. Then, sections were stained with H&E. After staining, sections were
washed with water, and dehydrated with increasing concentration of ethanol and xylene.

RNA extraction, reverse transcription, and quantitative PCR
Total RNA was isolated from lung tissues using Trizol reagent (Life Technologies). Reverse transcription was per-
formed using the cDNA synthesis kit (PrimeScript™ RT reagent Kit with gDNA Eraser, TaKaRa), according to the
manufacturer’s instructions. The quantitative RT-PCR (qRT-PCR) was carried out using the SYBR Premix Ex Taq
(TB Green™ Fast qPCR Mix, TakaRa) and the ABI 7500 Real time PCR system as described previously [21,22].
A total of 20 genes, including ten top up-regulated and ten top down-regulated genes, were measured. GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) was used as an endogenous control. The relative gene expression was
calculated using the 2−��Ct method, which represents the difference of CT (Cycle Threshold) between the control
GAPDH products and the target gene products [23]. All samples were detected in triplicates, and means and stan-
dard deviations were estimated. Primers for Fbxw9 (F-box and WD repeat domain containing 9), Ccdc97 (coiled-coil
domain containing 97), Pmf1 (polyamine-modulated factor 1), Tomm6 (translocase of outer mitochondrial mem-
brane 6), Sele (selectin E), Ifnar2 (interferon alpha and beta receptor subunit 2), Fermt3 (fermitin family member 3),
Nudt16I1 (nudix hydrolase 16 like 1), Ltk (leukocyte receptor tyrosine kinase), and Fbxo40 (F-box protein 40) are
shown in Table 1.
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Table 1 List of oligonucleotide primers used in the present study

Primer name Forward (5′→3′) Reverse(5′→3′)

Fbxw9 GACGGACAGCGGACCGAATA AGAACTCGGCTGGGCTCCTT

Ccdc97 GACCTGCTGTTTCAGTCCTACCA GCCCCCATCTTTGCCATCC

Pmf1 ACCATCTCCAGGGTGAAACTCC CTCAGCCAGTTCCTGGTTCTT

Tomm6 GGCCGGTGAGAACTCCGA GGCTGAGGTGCCATCAAATC

Sele CTTTGACCCAACCTGCCCAC CGATGGCTTCTCGTTGTCCC

Ifnar2 CAGCCCACCAACCAACTACAC GCAGCGGCACACCGTTGA

Fermt3 AGCAGGCACGCTGGGATTT CCTTGAGTTCTGGGATGGTGGT

Nudt TCCACACCGTGTGGTGGC TTGGCAGTGCTGACGAAGG

Ltk CCATCAGGACAGCACCCAAC GGAATCCCCAGGAAGACCAA

Fbxo40 TGGACAAGTTTGGCAAGTGGG AGCCCTGTCATCTCAATGGTG

Statistical analysis
Statistical analyses were conducted using SPSS Statistics 22 and R software (version 3.3.3). Independent sample t test
was used for two group comparisons. All data are presented as mean +− standard deviation of at least three independent
experiments. A two-sided P value < 0.05 was taken as statistically significant.

Results
mRNA expression profile in heat stroke lung tissue
We first analyzed the profiling of mRNA in rat lung tissues by high-throughput sequencing. After the trimming of
the adaptor sequences and removal of low quality reads, about 6,000,000 clean reads were acquired for each sample,
of which almost 90% matched the Rattus norvegicus genome mentioned in the ‘Materials and Methods’ section. PCA
analysis, Volcano plots, and heatmap showed that the mRNA expression levels were clearly distinguished and clus-
tered between heat stroke lung specimens versus the control lung specimens. A total of 20,893 mRNAs were identified
from lung specimens, of which 16,398 mRNAs were annotated before and 4495 mRNAs were previously unknown
(21.5%). The annotated genes were selected for the subsequent analysis for this study. DEGs with statistical signif-
icance between the control group and heat stroke group were shown through fold change and P value. Based on a
criteria of a fold change ≥ 2 and P value ≤ 0.05, a total of 471 genes were identified to be differentially expressed
between control group and heat stroke group. About 257 genes were remarkably up-regulated, and 214 genes were
significantly down-regulated more than 2-fold in heat stroke group compared with control specimens group. Among
the most up-regulated genes were Fbxw9, CCdc97, Pmf1, Tomm6, and Sele. The most down-regulated genes were
ifnar2, Fermt3, Nudt16l1, Ltk, and Fbxo40 (Figure 2A). In addition, several heat stess proteins, HMOX1 (Heme Oxy-
genase 1, also known as Hsp32), Hspa1a (Heat Shock 70 KDa Protein 1A) and Hp (Haptoglobin), were also identified
to be differentially expressed in the present study (Figure 2A). A volcano plot of all genes is shown in Figure 2A,
and a cluster heatmap of 50 most change genes is in Figure 2B, including 25 most up-regulated genes and 25 most
down-regulated genes. The complete list of all DEGs and statistic symbols is available in online Supporting Informa-
tion Supplementary Table S1.

qRT-PCR validation of DEGs in heat stroke lung tissues
Independent assays were carried out using qRT-PCR on all heat stroke specimens for ten mostly changed genes and
several heat stress related genes. We validated the expression level of Fbxw9, Ccdc97, Pmf1, Tomm6, Sele, Ifnar2,
Fermt3, Nudt16I1, Ltk, and Fbxo40 (Table 1). The results showed that the tendency of gene expression was consist with
the RNA sequencing results, though the fold changes differed between RNA sequencing and qRT-PCR. A pearson
correlation of 0.88 was acquired between log2FC value of RNA sequencing and qRT-PCR �CT (Figure 3).

GO term enrichment analysis among DEGs
All DEGs were used to identify overrepresented GO categories. GO analysis results demonstrated that up-regulated
genes were significantly enriched in biological processes (BP), including leukocyte migration, response to lipopolysac-
charide, NIK/NF-kappaB signaling, response to reactive oxygen species and response to heat (Figure 4A and Table 2);
the down-regulated genes were significantly enriched in gas transport, multicellular organismal signaling, transmis-
sion of nerve impulse and homotypic cell–cell adhesion (Figure 4B and Table 2). For molecular function (MF), the
up-regulated genes were enriched in cytokine activity, receptor ligand activity and receptor regulator activity (Table
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Figure 2. Differential expression of genes between heat stroke group and control group

(A) Volcano diagram showing the up-regulated and down-regulated genes in heat stroke lung. The vertical axis represents the P

value for the difference between heat stroke group and control group, and the horizontal axis represents the fold change between

heat stroke group and control group. Blue points indicate genes that were down-regulated, and red points indicate genes that

were up-regulated. (B) Unsupervised cluster analysis comparing heat stroke group and control group. Each column represents an

experimental animal while each row indicates a gene. Genes with higher expression level in heat stroke group are shown in the

upper part, and genes with lower expression are shown in the lower part. The color in each cell represents standardized gene

expression values, red being high and blue low.

Figure 3. Expression levels of selected genes from RNA sequencing analysis (RNAseq, black bar) and their validation by

qRT-PCR (red bar)

R2 is the correlation of expression levels between log2FC value of RNA sequencing and qRT-PCR �CT.

2), and the down-regulated genes were enriched in oxygen binding, carbohydrate binding and iron ion binding (Table
2). In addition, GO cell component (CC) analysis showed that the up-regulated genes were significantly enriched in
extracellular matrix, and down-regulated genes were enriched in extracellular matrix, proteinaceous extracellular
matrix, external side of plasma membrane (Table 2).
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Figure 4. GO annotation of differential expressed genes

(A) Up-regulated DEGs; (B) Down-regulated DEGs.

KEGG pathway analysis among DEGs
KEGG analysis was performed to identify the enriched pathways in heat stroke. The up-regulated DEGs were en-
riched in TNF signaling pathway, cytokine–cytokine receptor interaction, and IL-17 signaling pathway, while the
down-regulated genes were enriched in Malaria, Natural killer cell mediated cytotoxicity, and Calcium signaling path-
way (Figure 5 and Table 3).

Hub genes from the PPI network
Based on the information in the STRING database, the top 10 hub nodes with higher degrees were identified. These
hub nodes included Tnf (Tumor Necrosis Factor), Il1b (Interleukin 1 Beta), Cxcl2 (C-X-C Motif Chemokine Ligand
2), Ccl2 (C-C Motif Chemokine Ligand 2), Mmp9 (Matrix Metallopeptidase 9), Timp1 (TIMP Metallopeptidase In-
hibitor 1), Hmox1 (Heme Oxygenase 1), Serpine1 (Serpin Family E Member 1), Mmp8 and Csf1 (Colony Stimulating
Factor 1), most of which were closely related to inflammagenesis (Figure 6A). In addition, the PPI network was further
analyzed using plug-ins MCODE to construct function modules. The most significant module was selected, and the
functional annotation of genes involved in this module was also analyzed (Figure 6B). Enrichment analysis showed
that genes were mainly associated with ‘response to stress’, ‘immune system process’, and ‘inflammatory response’
(Figure 6C).

Differential gene expression related to inflammation and oxidative stress
Expression of genes involved in inflammation and oxidative stress were largely induced in heat stroke lung. Gene
involved in ‘regulation of inflammatory response’ (Adora1, C6, Ier3, Ighg1, Il1b, Il1r2, Itga2, Lbp, Nlrp12, S100a8,
S100a9, Sema7a, Serpine1, Slamf8, Slpi, Socs3, Tnf, Tnfaip6, Tnfrsf11a, Tslp), ‘chronic inflammatory response’ (Ccl2,
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Table 2 GO enrichment analysis of DEGs in heat stroke lung tissue

Term ID Term nGenes P value Term name Type

GO:0050900 BP 26 8.20E-13 Leukocyte migration Up

GO:0032496 BP 27 2.45E-10 Response to lipopolysaccharide Up

GO:0071621 BP 14 5.23E-10 Granulocyte chemotaxis Up

GO:0038061 BP 10 7.98E-06 NIK/NF-kappaB signaling Up

GO:0000302 BP 16 9.62E-06 Response to reactive oxygen species Up

GO:0009408 BP 9 9.73E-06 Response to heat Up

GO:0031012 CC 17 3.95E-05 Extracellular matrix Up

GO:0005125 MF 13 1.11E-07 Cytokine activity Up

GO:0048018 MF 18 4.30E-07 Receptor ligand activity Up

GO:0005126 MF 13 3.97E-05 Cytokine receptor binding Up

GO:0030414 MF 9 6.43E-05 Peptidase inhibitor activity Up

GO:0030246 MF 13 1.11E-04 Carbohydrate binding Up

GO:0015669 BP 5 1.82E-07 Gas transport Down

GO:0035637 BP 9 4.73E-06 Multicellular organismal signaling Down

GO:0019226 BP 6 6.69E-05 Transmission of nerve impulse Down

GO:0034109 BP 6 1.37E-04 Homotypic cell–cell adhesion Down

GO:0031012 CC 18 2.83E-07 Extracellular matrix Down

GO:0005578 CC 14 2.60E-06 Proteinaceous extracellular matrix Down

GO:0009897 CC 13 4.92E-05 External side of plasma membrane Down

GO:0031225 CC 7 1.05E-04 Anchored component of membrane Down

GO:0098552 CC 15 1.03E-03 Side of membrane Down

GO:0019825 MF 5 3.26E-07 Oxygen binding Down

GO:0030246 MF 14 9.82E-07 Carbohydrate binding Down

GO:0005506 MF 9 7.04E-05 Iron ion binding Down

GO:0004896 MF 7 9.05E-05 Cytokine receptor activity Down

GO:0140104 MF 5 1.04E-04 Molecular carrier activity Down

Table 3 KEGG enrichment analysis of DEGs in heat stroke lung

ID nGenes P value Description Type

rno04668 13 2.45E-09 TNF signaling pathway Up

rno04060 19 2.6E-09 Cytokine–cytokine receptor interaction Up

rno04657 10 5.18E-07 IL-17 signaling pathway Up

rno04380 11 1.16E-06 Osteoclast differentiation Up

rno05144 8 1.22E-06 Malaria Up

rno05323 8 3.35E-05 Rheumatoid arthritis Up

rno05418 10 3.61E-05 Fluid shear stress and atherosclerosis Up

rno04064 8 6.52E-05 NF-kappa B signaling pathway Up

rno04145 11 6.92E-05 Phagosome Up

rno04640 7 0.000318 Hematopoietic cell lineage Up

rno05144 5 0.000198 Malaria Down

rno04650 6 0.000261 Natural killer cell mediated cytotoxicity Down

rno04020 8 0.000363 Calcium signaling pathway Down

rno05143 4 0.000588 African trypanosomiasis Down

rno04022 7 0.000902 cGMP–PKG signaling pathway Down

rno04925 5 0.002064 Aldosterone synthesis and secretion Down

rno04060 8 0.002894 Cytokine–cytokine receptor interaction Down

Il1b, Orm1, S100a8, S100a9, Thbs1, Tnf), and ‘acute inflammatory response’ (Adora1, C6, Hp, Ighg1, Il1b, Itih4,
Lbp, Orm1, S100a8, Tnf, Tnfrsf11a) were significantly up-regulated in heat stroke lung (Figure 7). In addition, Genes
associated with oxidative stress, including ‘response to reactive oxygen species’ (Fosl1, Gch1, Glrx, Hk3, Hmox1, Hp,
Il1b, Mmp9, Nr4a3, Olr1, Prdx5, Ptprn, Serpine1, Sod2, Thbs1, Tnf), ‘response to decreased oxygen levels’ (Adora1,
Angptl4, Ankrd1, Aqp3, Ccl2, Cygb, Hmox1, Hp, Il1b, Itga2, Mmp9, Pdk3, Pdlim1, Plat, Serpine1, Socs3, Sod2, Tnf),
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Figure 5. KEGG annotation of differential expressed genes

(A) Up-regulated DEGs; (B) Down-regulated DEGs.

and ‘response to oxidative stress’ (Cygb, Fosl1, Gch1, Glrx, Hk3, Hmox1, Hp, Il1b, Mmp9, Nr4a3, Olr1, Prdx5, Ptprn,
Serpine1, Slc7a11, Sod2, Thbs1, Tnf), were also markedly induced after heat stress (Figure 8).

Immune microenvironment in heat stroke lung
xCell was performed to estimate of different cell types in the heat stroke lung. We found significant enrichment of
Basophils, Macrophages, Megakaryocytes, and Monocytes in heat stroke lung tissue (Figure 9). Among the enriched
cell types, heat stress markedly up-regulated the estimate enrichment scores of Megakaryotyes (5.0-fold, P value =
0.0132) (Figure 9A), Monocytes (2.7-fold, P value = 0.0475) (Figure 9B), Macrophages (3.5-fold, P value = 0.011)
(Figure 9C), and Basophils (1.8-fold, P value = 0.0347) (Figure 9D). Inversely, CD4 T cells, CD8 T cells, and NK
cells were showed a reduction trend in heat stroke lung (Figure 9), among these, the estimate enrichment scores of
CD4+ naı̈ve T-cells (0.57-fold, P value = 0.0066) (Figure 9E), CD8+ Tcm (0.32-fold, P value = 0.035) (Figure 9F),
CD8+ Tem (0.32-fold, P value = 0.0233) (Figure 9G), NK cells (0.36-fold, P value = 0.0092) (Figure 9H) and Tregs
(0.56-fold, P value = 0.0168) (Figure 9I) were reduced with statistical significance.

Effects of heat stress on lung histopathologic changes
The effects of heat-mediated lung histopathologic changes were evaluated by H&E staining. As shown in Figure 10,
heat stress-challenged rat showed markedly inflammatory cell infiltration and disorganized alveolar structure in lung
sections. Inflammatory cells in the perialveolar, peribronchial, and perivascular were significantly elevated, and the
alveolar structure was partly damaged after heat stress (Figure 10).

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 6. Protein–protein interaction network and a significant module

(A) Protein–protein interaction network of differential expressed genes. Each rectangle represents a gene and the lines represent

interaction relationship between genes. The color of each rectangle indicates the number of connectivity, red being high and blue

low. (B) The most significant module selected from protein–protein interaction network. (C) The enriched pathway of the most

significant module.

Discussion
Respiration, circulation, liver, and the gastro-intestinal tract are frequently attacked and damaged by heat stroke,
which are also the main process for the cause of death [1,24]. Clinical manifestations of heat stroke include acute
respiratory distress syndrome (ARDS), circulation failure. Despite rapid cooling and organ support, approximately
75% of patients with severe heat stroke ultimately developed MODS [25,26]. As the important place for gas exchange,
respiratory system is the most important heat dissipation organ of the body, and is most vulnerable to heat stroke
[25]. Pulmonary edema and atelectasis caused by lung injury can impair the ventilation function of the lung, leading
to hypoxemia and causing damage to other tissues and organs, even MODS. Therefore, a better understanding of the
lung injury mechanism after heat exposure is beneficial for the early prevention and treatment of heat stroke.

In the present study, we investigated the transcriptional profiles of rat lung after heat stress, and found that 263
up-regulated DEGs and 214 down-regulated DEGs between heat stroke and normal lung tissue. These up-regulated
DEGs were obviously enriched in heat stress, inflammatory response, and oxidative stress, which were intimately
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Figure 7. Inflammatory response genes and their relative expression in heat stroke

Genes involved in (A) ‘regulation of inflammatory response’, (B) ‘chronic inflammatory response’, and (C) ‘acute inflammatory

response’ were significantly induced in heat stroke, respectively. RNA sequencing data from heat stroke lungs and normal controls

(n = 5 per group); data are presented in histogram with mean +− SEM.

related to stress response. In addition, cell enrichment analysis and histopathological analysis also found several in-
flammatory cells, such as monocytes, macrophages and megakaryocytes, were infiltrated into lung after heat stress.
Accordingly, our results demonstrated that several inflammatory pathways and inflammatory cells were enriched in
rat lung after heat stress, which will provide potential diagnosis and treatment targets for heat stroke.

Pathologically, heat stroke is characterized by the dysfunction of thermal regulation, abnormal expression of heat
stroke proteins, and destruction of the intestinal barrier [27]. In fact, the specific mechanism involved in heat stroke
is very complicated, including a myriad of heat cytotoxicity, tissue abnormalities, and system inflammatory [10].
In consistency with other studies, our results revealed that several heat stroke proteins, including HMOX1, Hspa1a
and Hp, were significantly up-regulated after heat exposure. HMOX1, which converts toxic heme to biliverdin, is
a well-known gene involved in protein aggregation response under heat stress, and HOMX1 transcription refers to
a lot of biological components and the activation of these components is crucial in the transcriptional regulation
of HMOX1 under heat stress [28,29]. Hspa1a belongs to heat shock protein family A (Hsp70), and is important for
mobilizing cytoprotection against heat stress [30]. Hp is an acute phase protein and its expression level was previously
reported to be significantly elevated under heat stress in blood [31]. Meanwhile, pathway enrichment analysis also
verified that pathway-related to heat response is obviously enriched.

Inflammatory injury following heat stress was the predominant pathological feature of heat stroke. Accumulat-
ing evidences have demonstrated that inflammatory damage following heat stress rather than physical burns is the
main cause of organ injury in heat stroke patients and animals. Despite rapid cooling and symptomatic treatment,
heat stroke always led to lethal systemic inflammatory response syndrome (SIRS), which was regarded as a response

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 8. Oxidative stress genes and their relative expression in heat stroke

Genes involved in (A) ‘response to reactive oxygen species’, (B) ‘response to decreased oxygen levels’, and (C) ‘response to

oxidative stress’ were significantly induced in heat stroke, respectively. RNA sequencing data from heat stroke lungs and normal

controls (n = 5 per group); data are presented in histogram with mean +− SEM.

to endotoxin and bacterial infection [32]. Ameliorating pulmonary inflammation by Xuebijing, a Chinese medicinal
herbs approved for use in the treatment of sepsis, could delay the development of heat stroke and increase the survival
time after heat exposure [24,33]. In the present study, our findings revealed that a myriad of pro-inflammatory genes
and several inflammatory-related pathways were distinctively enriched in lung under heat stress. Among these signif-
icantly up-regulated genes, 27 in 257 genes were involved in inflammagenesis. Several well-known pro-inflammatory
genes, including IL1B, Tnf, CCL2 and CXCL2, were significantly up-regulated in heat exposure lung. Intriguingly,
Hp, a protein related to lung defense [34], was also found to be involved in the progress of inflammation upon heat
stress. We speculated that the elevated expression of Hp may reduce lung injury associated with exposure to heat
stress. Analogous mechanisms have been reported to be involved in lung injury caused by pneumonia and others
[35,36]. Moreover, several inflammatory-related pathways, including response to bacterium (GO:0009617), response
to lipopolysaccharide (GO:0032496) and NIK/NF-kappaB signaling (GO:0038061), were also obviously enriched.
Consistently, further cell enrichment analysis and histopathological analysis showed several inflammatory cells, in-
cluding monocytes, macrophages and megakaryocytes, were infiltrated into lung after heat stress.

In addition to inflammatory damage, the hazard of oxidative stress in heat stroke has not been paid enough at-
tentions. Recent studies provide that oxidative stress plays a significant role in the pathogenesis of heat stroke. Chen
et al. Reported ischemic and oxidative damage to the hypothalamus is involved in the pathogenesis of heat stroke,
and ischemic, hypoxic and oxidative damage to the hypothalamus might be responsible for the occurrence of MODS
through hypothalamic–pituitary–adrenal axis mechanisms [37,38]. The protective effects of heat shock protein, which

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 9. Immunity cells in heat stroke lung

Immune cell fractions were detected for each specimen. Mean value and standard deviations for each cell subset including

Megakaryotyes (A), Monocytes (B), Macrophages (C), Basophils (D), CD4+ naı̈ve T-cells (E), CD8+ Tcm (F), CD8+ Tem (G), NK

cells (H), and Tregs (I) were calculated for each group and compared using t-test; *P<0.05; **P<0.01.

was significantly induced after heat exposure, was related to the attenuation of oxidative damage [39,40]. Attenuat-
ing oxidative damage by quercetin therapy improved outcomes of heat stroke in rats [41]. Our results showed a lot
of oxidative stress genes (28 in 257), such as Aqp3, Cygb, SOD2, and Hmox1, were significantly up-regulated in the
lung of heat exposure rat. Further study showed these genes were mainly enriched in ‘response to reactive oxygen
species’, ‘response to oxidative stress’ and ‘response to decreased oxygen levels’. Aqp3 was reported to mediate hy-
drogen peroxide uptake to regulate down intracellular signaling [42]. Cygb was induced by hydrogen peroxide and
played a protective role in oxidative stress [43]. SOD2 was induced uniquely in response to conditions of oxidative
stress, underscoring the importance of protecting the energy-producing machinery within the mitochondria from
oxidative damage [44]. Hmox1 was a crucial enzyme in heme catabolism that is induced by oxidative stress and had
important anti-inflammatory and antioxidant effects through its metabolites in the lung [45,46]. In both in vivo and
in vitro studies demonstrated that Hmox1−/−-deficient mice were more susceptible to oxidative injury, and exoge-
nous delivery of Hmox1 was shown to offer protection effects upon hyperoxia-induced injury in the rat lung [47,48].
Therefore, the oxidative stress response to heat exposure appears to be an important component of the heat stroke
syndromes, and can be considered in relation to the effects of heat cytoxicity.

12 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).
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Figure 10. Effects of heat exposure on histopathological change in lung tissues in heat stroke

Inflammation was evaluated in the lung tissues by analyzing inflammatory cell infiltration using H&E. (A) Control group; (B) Heat

stroke group.

Conclusion
In summary, the present study provided an extensive analysis of DEGs and revealed a series of targets and pathways
involved in inflammatory response and oxidative stress. This findings add to significant insights into the understand-
ing the pathogenesis mechanism of heat stroke.
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