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The perception of pain is shaped by somatosensory information
about threat. However, pain is also influenced by an individual’s
expectations. Such expectations can result in clinically relevant
modulations and abnormalities of pain. In the brain, sensory infor-
mation, expectations (predictions), and discrepancies thereof (pre-
diction errors) are signaled by an extended network of brain areas
which generate evoked potentials and oscillatory responses at dif-
ferent latencies and frequencies. However, a comprehensive pic-
ture of how evoked and oscillatory brain responses signal sensory
information, predictions, and prediction errors in the processing of
pain is lacking so far. Here, we therefore applied brief painful stim-
uli to 48 healthy human participants and independently modu-
lated sensory information (stimulus intensity) and expectations of
pain intensity while measuring brain activity using electroenceph-
alography (EEG). Pain ratings confirmed that pain intensity was
shaped by both sensory information and expectations. In contrast,
Bayesian analyses revealed that stimulus-induced EEG responses
at different latencies (the N1, N2, and P2 components) and fre-
quencies (alpha, beta, and gamma oscillations) were shaped by
sensory information but not by expectations. Expectations, how-
ever, shaped alpha and beta oscillations before the painful stimuli.
These findings indicate that commonly analyzed EEG responses to
painful stimuli are more involved in signaling sensory information
than in signaling expectations or mismatches of sensory informa-
tion and expectations. Moreover, they indicate that the effects of
expectations on pain are served by brain mechanisms which differ
from those conveying effects of sensory information on pain.
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The perception of pain emerges from the integration of sen-
sory information about threat and contextual factors such as

an individual’s expectations (1–3). For instance, expectations of
pain relief during placebo manipulations can yield substantial
and clinically highly relevant decreases of pain (4–6). Moreover,
expectations cannot only alleviate pain but also significantly influ-
ence the development (7) and prognosis of chronic pain (8, 9).
Thus, understanding how the brain translates sensory informa-
tion and expectations into pain promises important insights into
the neural mechanisms of pain in health and disease.

In the brain, pain is associated with the activation of an
extended network of brain areas (10, 11) which yields electro-
physiological responses at different latencies and frequencies
(12). These responses comprise evoked potentials including the
early N1 and later N2 and P2 components (13, 14) as well as
oscillatory responses at alpha (8 to 13 Hz), beta (13 to 30 Hz),
and gamma (40 to 100 Hz) frequencies (15). Electroencephalog-
raphy (EEG) and magnetoencephalography (MEG) studies have
provided important insights into the functional significance of
these responses. The early N1 response has been particularly
related to objective sensory information, while the later N2 and
P2 components (16, 17) as well as gamma oscillations (18, 19)
are more closely related to subjective pain perception. However,

results on how expectations shape the different responses are
inconsistent (20–29). Thus, a comprehensive assessment of how
different evoked and oscillatory brain responses signal sensory
information, expectations, and pain is lacking so far.

The predictive coding framework of brain function (30, 31) is a
general theory used to describe the encoding and integration of
sensory information and expectations (32). The framework pro-
poses that the brain continuously generates predictions about the
environment. These predictions are compared against sensory evi-
dence, and discrepancies produce prediction errors (PEs) that
serve to optimize future predictions. In this way, the brain
efficiently allocates its limited resources to events that are behav-
iorally relevant and useful for updating predictions [i.e., learning
processes (33)]. It has been suggested that predictive coding pro-
cesses are implemented by evoked potentials at different latencies
(34) and neuronal oscillations at different frequencies (35, 36). In
particular, it has been shown that already the earliest evoked
potential components are shaped by predictions (37, 38), whereas
later responses have been related to PEs (39). Moreover, alpha
and beta oscillations have been implicated in the signaling of
predictions, whereas gamma oscillations have been proposed to
signal PEs (35, 36, 40–42).

Significance

Pain is not only shaped by sensory information but also by
an individual’s expectations. Here, we investigated how
commonly analyzed electroencephalography (EEG) responses
to pain signal sensory information, expectations, and dis-
crepancies thereof (prediction errors) in the processing of
pain. Bayesian analysis confirmed that pain perception was
shaped by objective sensory information and expectations.
In contrast, EEG responses at different latencies (including
the N1, N2, and P2 components) and frequencies (including
alpha, beta, and gamma oscillations) were shaped by sen-
sory information but not by expectations. Thus, EEG
responses to pain are more involved in signaling sensory
information than in signaling expectations or prediction
errors. Expectation effects are obviously mediated by other
brain mechanisms than the effects of sensory information
on pain.

Author contributions: M.M.N. and M.P. designed research; M.M.N., L.T., V.D.H., and
E.S.M. performed research; M.M.N. contributed new reagents/analytic tools; M.M.N.,
F.E., and M.P. analyzed data; and M.M.N., L.T., V.D.H., E.S.M., C.G.A., F.E., and M.P.
wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: markus.ploner@tum.de.

This article contains supporting information online at http://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2116616119/-/DCSupplemental.

Published December 30, 2021.

PNAS 2022 Vol. 119 No. 1 e2116616119 https://doi.org/10.1073/pnas.2116616119 j 1 of 10

N
EU

RO
SC

IE
N
CE

https://orcid.org/0000-0001-6614-243X
https://orcid.org/0000-0002-5261-5459
https://orcid.org/0000-0001-6248-2250
https://orcid.org/0000-0002-8558-6447
https://orcid.org/0000-0003-3789-0644
https://orcid.org/0000-0002-7767-7170
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:markus.ploner@tum.de
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116616119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116616119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2116616119&domain=pdf&date_stamp=2021-12-30


Considering the preeminent role of the integration of sensory
information and expectations in the processing of pain, an appli-
cation of predictive coding frameworks to pain is obvious (15,
43–46). This is even more appealing as abnormally precise pre-
dictions and/or abnormal updating of predictions might figure
prominently in the pathology of chronic pain (47–49). Conse-
quently, recent functional magnetic resonance imaging ( fMRI)
studies have applied predictive coding frameworks to the process-
ing of pain (50, 51). The results revealed a spatial dissociation of
the encoding of stimulus intensity, predictions, and PEs in the
processing of pain. Most recently, a first EEG study applied a
predictive coding framework to oscillatory responses to noxious
stimuli (52). The findings indicated that alpha-to-beta and
gamma oscillations signal expectations and PEs in the processing
of pain, respectively. However, a model which comprehensively
describes how evoked potentials at different latencies—which are
the electrophysiological gold standard for assessing the cerebral
processing of pain—and oscillations at different frequencies sig-
nal sensory information, expectations, and PEs in the processing
of pain is lacking so far.

To systematically investigate whether and how evoked and
oscillatory EEG responses to pain signal stimulus intensity,
expectations, and PEs, we applied brief painful stimuli to
healthy human participants and independently modulated sen-
sory information and expectations. We hypothesized that alpha/
beta and gamma oscillations signal predictions and PEs, respec-
tively. We further expected that already the earliest evoked
responses to noxious stimuli are shaped by predictions, whereas
later responses are also shaped by PEs. To test these hypothe-
ses, we performed Bayesian ANOVAs and model comparisons
on pain ratings and EEG responses. Pain ratings confirmed
that pain intensity was shaped by both sensory information and
expectations. In contrast, EEG responses at different latencies
(N1, N2, and P2 components) and frequencies (alpha, beta,
and gamma oscillations) were shaped by sensory information
but not by expectations. Together, these findings reveal that
commonly analyzed EEG responses to painful stimuli are more
sensitive to sensory information than to expectations or PEs.
Moreover, they indicate that expectations effects on pain are
served by other brain mechanisms than sensory effects on pain.

Results
To investigate how EEG responses to brief painful stimuli signal
stimulus intensity, expectations, and PEs in the processing of pain,
we employed a probabilistic cueing paradigm in 48 healthy human
participants. We applied brief painful heat stimuli to the left hand
and independently modulated stimulus intensity and expectations
in a 2 × 2 factorial design. To modulate stimulus intensity, we
applied painful stimuli of two different levels (high intensity [hi]
and low intensity [li]). To modulate expectations, the painful stim-
uli were preceded by one out of two visual cues. The high-
expectation (HE) cue was followed by a hi stimulus in 75% of the
trials and by a li stimulus in 25% of the trials. Vice versa, the low-
expectation (LE) cue was followed by a hi stimulus in 25% of the
trials and by a li stimulus in 75% of the trials. The experiment
thus comprised four trial types (Fig. 1A): high intensity, high
expectation (hiHE); high intensity, low expectation (hiLE); low
intensity, high expectation (liHE); and low intensity, low expecta-
tion (liLE). In each trial, the participants were asked to provide a
rating of the perceived pain intensity on a numerical rating scale
ranging from 0 (no pain) to 100 (maximum tolerable pain). In
addition, skin conductance responses (SCRs) were recorded. Fig.
1B shows the sequence of a single trial.

During the experiment, we recorded EEG and assessed the
most consistently observed EEG responses to painful stimuli
(12). Evoked EEG responses included the N1, N2, and P2
components. Oscillatory responses included stimulus-induced

changes of alpha, beta, and gamma oscillations. In addition, we
quantified brain activity before the painful stimulus, including
the stimulus preceding negativity [SPN (29)] and oscillatory
activity at alpha and beta frequencies.

Building upon previous investigations (50, 53), we made spe-
cific predictions how EEG responses signaling stimulus inten-
sity, expectations, PEs, or combinations thereof are modulated
across the four trial types (Fig. 2).

To formally test these predictions, we pursued two comple-
mentary approaches (50, 53). First, we performed repeated
measures ANOVAs (rmANOVAs) with the independent var-
iables stimulus intensity and expectation. In these rmANO-
VAs, responses signaling stimulus intensity and expectations
would manifest as main effects, whereas responses signaling
PEs would manifest as interactions. To quantify effects and
to facilitate interpretation of negative findings, we primarily
performed Bayesian rmANOVAs (54). In Bayesian rmANO-
VAs, the Bayes factor (BF) is the ratio between the likeli-
hood of the data given the effect of interest and the
likelihood of the data without the effect of interest. BF > 3
and BF > 10 indicate moderate and strong evidence in favor
of the effect of interest, whereas BF < 0.33 and BF < 0.1
indicate moderate and strong evidence against the effect of
interest, respectively (54). Complementing Bayesian infer-
ence, we also performed traditional frequentist rmANOVAs.
Detailed results of both Bayesian and frequentist rmANO-
VAs are provided in SI Appendix, Tables S1–S3. Second, we
employed Bayesian model comparisons based on single-trial
data to formally test which combination of stimulus intensity,
expectations, and PEs best explained the observed EEG
responses. Building upon previous studies (50, 53), we spe-
cifically compared models where stimulus intensity only (INT
model), stimulus intensity and expectations (INT+EXP), and
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Fig. 1. Experimental design. (A) Probabilities of high- and low-intensity
stimuli (p(hi) and p(li), respectively) in HE and LE trials. (B) Each trial started
with a central fixation cross with a varying duration of 1.5 to 3 s followed by
either a blue dot or yellow square as visual cue. Cues were presented for 1 s
and indicated the probability of a subsequent high-intensity painful stimulus
(0.75 for HE cue or 0.25 for LE cue). The association between the blue
dot/yellow square and high-intensity (hi)/low-intensity (li) painful stimuli
was balanced across participants. At 1.5 s after the offset of the cue pre-
sentation, a painful heat stimulus was applied (3.5 J for high-intensity
and 3.0 J for low-intensity stimuli). At 3 s after the onset of the painful
heat stimulus, participants were asked to verbally rate the perceived pain
intensity on a numerical rating scale (NRS) ranging from 0 (no pain) to
100 (maximum tolerable pain). In 10% of the trials, a match-to-sample
task ensured attention to the cues. In these catch trials, participants were
prompted to select the cue that had been displayed during the current
trial by a button press. Trials were separated by a break of 3 s, during
which a white fixation cross was presented.
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expectations and PE (EXP+PE) shaped the respective
responses. In line with a previous study (50), the PE was
defined as aversive PE, meaning that a PE occurs only if the
stimulus is more painful than expected. This model has been
shown to outperform models with absolute and signed PE
formulations (50) (see SI Appendix, Fig. S2 for Bayesian
model comparisons using absolute and signed PE
formulations).

The Effects of Stimulus Intensity, Expectations, and PEs on Pain
Ratings and SCR. Before analyzing EEG responses, we investi-
gated the effects of stimulus intensity, expectations, and PEs on
pain intensity ratings. We therefore calculated rmANOVAs
with the independent variables stimulus intensity and expecta-
tion. Results are shown in Fig. 3 and SI Appendix, Table S1.
BFs indicated strong evidence for main effects of stimulus
intensity (BF = 1.6 × 1026) and expectations (BF = 1.2 × 104).
Specifically, pain intensity was higher for hi than for li stimuli
and higher for HE than for LE trials. Bayesian rmANOVA
showed weak evidence against an interaction of stimulus inten-
sity and expectation (BF = 0.36). To further investigate the rela-
tionship between stimulus intensity, expectations, PEs, and pain
ratings, we tested INT, INT+EXP, and EXP+PE models against
each other. The comparisons showed strong evidence that the
INT+EXP model explained the data better than the INT
(BF = 7.8 × 1020) or the EXP+PE (BF = 2.8 × 10�45) model.
Thus, we found that stimulus intensity and expectations, but
not PEs shaped pain ratings.

We next investigated how stimulus intensity, expectations
and PEs shaped SCR. The rmANOVA for the SCR showed
strong evidence for a main effect of stimulus intensity (BF =
3.2 × 1012), i.e., the amplitude of SCRs was higher in hi than in
li trials (SI Appendix, Fig. S1 and Table S1). However, we found
inconclusive evidence regarding a main effect of expectation
(BF = 0.68) and weak evidence against an interaction of stimu-
lus intensity and expectation (BF = 0.24) on SCR. Bayesian
model comparisons of single-trial SCRs showed evidence that
the INT model explained the SCR just as well as the INT+EXP
model (BF = 1.0) and better than the EXP+PE (BF = 1.4 ×
10�4) model (Fig. 3).

Taken together, we found strong effects of stimulus inten-
sity on pain intensity ratings and SCRs. Moreover, we found
a strong effect of expectations on pain intensity but only
inconclusive evidence for an effect of expectations on SCRs.
Furthermore, we did not observe an interaction between
stimulus intensity and expectation in shaping pain ratings
and SCRs.

The Effects of Stimulus Intensity, Expectations, and PEs on EEG
Responses to Noxious Stimuli. To investigate the effects of stimu-
lus intensity, expectations, and PEs on EEG responses, we cal-
culated rmANOVAs as done for pain intensity ratings and
SCR. Bayesian rmANOVAs showed strong evidence for a main
effect of stimulus intensity on all EEG responses (BF > 1.2 ×
103). N1, N2, and P2 responses (Fig. 4 and SI Appendix, Table
S2) as well as poststimulus gamma oscillations and alpha and
beta suppressions (Fig. 5 and SI Appendix, Table S3) were
stronger in the hi than in the li conditions. Further analyses
with baseline correction of EEG responses yielded similar
results (SI Appendix, Table S4).

In contrast, we found moderate evidence against an expecta-
tion effect on all EEG responses (all BF < 0.22) apart from the
N1, where evidence was inconclusive (BF = 0.39). In addition,
we found moderate evidence against an interaction of stimulus
intensity and expectation for all EEG responses (all BF <
0.26). We, thus, observed that the most consistently observed
evoked and oscillatory EEG responses to noxious stimuli were
shaped by stimulus intensity but not by expectations or PEs.

To test for effects on brain activity other than the predefined
EEG responses, ANOVAs and cluster-based permutation tests
were performed across the poststimulus time period from 0 to
1 s, all frequencies, and all channels which corroborated the
results at alpha, beta, and gamma frequencies (SI Appendix,
Fig. S3). Accordingly, model comparisons for N1, N2, and P2,
alpha, beta, and gamma responses yielded stronger evidence
for the INT model than for the INT+EXP (BF < 0.10) and
EXP+PE (BF < 0.012) models, except for the N1, which
showed inconclusive evidence regarding the comparison of the
INTand the INT+EXP models (BF = 0.84). Thus, poststimulus
EEG responses were consistently modulated by stimulus inten-
sity but not by expectations.

Having found no expectation effects on EEG responses, we
further asked whether the expectation effect on pain ratings
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Fig. 2. Predicted response patterns for responses signaling stimulus inten-
sity (INT model), expectations (EXP model), prediction errors (PE model), or
combinations thereof (INT+EXP model, EXP+PE model).
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can be explained by a pattern of the different EEG responses
rather than each response in isolation. We therefore performed
a multiple regression analysis to test whether difference values
(HE � LE) of N1, N2, P2, and alpha, beta, and gamma
responses together capture the expectation effect on pain rat-
ings. However, the multiple regression model did not explain a
significant amount of variance in the data (F(6, 44) = 0.66;
P = 0.68; R2 = 0.094).

In summary, results from rmANOVAs and model compari-
sons convergingly showed that stimulus intensity shapes all
EEG responses. In contrast, we found evidence against an
effect of expectations and/or PEs on EEG responses. More-
over, expectation effects on pain ratings were neither captured
by any single EEG response nor by their combination.

The Effects of Expectations on EEG Activity before the Noxious
Stimuli. Lastly, expectations might not only influence poststimu-
lus responses to a painful stimulus but also shape brain activity
in anticipation of the painful stimulus. We utilized the high
temporal resolution of EEG to disentangle these effects. Spe-
cifically, we analyzed the SPN reflected by the average ampli-
tude at Cz during 500 ms directly preceding the laser stimulus.
In addition, we analyzed oscillatory brain activity during two
prestimulus phases [i.e., during cue presentation and between
cue presentation and painful stimulus (Fig. 6A and SI
Appendix, Table S5)]. Bayesian-dependent samples Student’s t
tests showed evidence against an expectation effect on the SPN
(BF = 0.17). In contrast, expectations significantly influenced
oscillatory brain activity at alpha and beta frequencies (Fig. 6B

and SI Appendix, Table S5). In particular, the cue-induced
decrease in alpha oscillations was stronger for HE trials than
for LE trials (BF = 98.8 for the cue presentation phase, BF 2.0
for the phase between cue presentation and painful stimuli). In
addition, the cue-induced decrease in beta oscillations was
stronger for HE than for LE trials (BF = 8.5 for the phase
between cue presentation and pain stimulus). These results
were corroborated by cluster-based permutation tests, which
were performed less restrictively across time, frequencies, and
all channels (SI Appendix, Fig. S2). The cluster-based permuta-
tion tests were performed separately for the period of cue
presentation and for the period closely preceding the painful
stimulus. We thus found that expectations shaped neuronal
oscillations at alpha and beta frequencies before the pain-
ful stimulus.

Discussion
In the present study, we observed that sensory information sig-
nificantly shaped the perception of pain and EEG responses
commonly associated with pain. Expectations, in contrast, mod-
ulated the perception of pain but not associated EEG
responses. Bayesian hypothesis testing confirmed that the
observed lack of expectation effects on EEG responses can
indeed be interpreted as an absence of effects. These findings
indicate that commonly analyzed EEG responses to painful
stimuli are more involved in signaling sensory information than
in signaling expectations or mismatches of sensory information
and expectations. Moreover, they indicate that the effects of
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expectation on pain are served by different brain mechanisms
than those conveying effects of sensory information on pain
and are not well captured by commonly analyzed EEG
responses to noxious stimuli. We will discuss the implications of
these findings for understanding the functional significance of
EEG responses to pain, particularly in the context of predictive
coding frameworks of brain function, and for understanding
how the brain mediates expectation effects on pain.

The Functional Significance of Pain-Associated EEG Responses. Our
observation that stimulus intensity shapes EEG responses to
noxious stimuli is in accordance with previous studies which
nearly uniformly showed such effects. Expectation effects, on
the other hand, were limited to pain ratings and not found for
EEG responses in the present study. At first glance, this con-
trasts with previous studies, which have shown that expectations
significantly modulate EEG responses (20–27). However,
expectation effects in those studies were weaker and less

consistent than stimulus intensity effects. Moreover, limited sta-
tistical power (56) and publication bias (57) might have resulted
in an overestimation of expectation effects across the literature.
Thus although expectations can, in principle, shape EEG
responses, the present findings indicate that these responses
are more sensitive to stimulus intensity effects than to expecta-
tions. Whether this fundamental difference generalizes from
expectations to other contextual modulations of pain remains
to be determined. Moreover, whether these observations
are specific for EEG responses to pain or generalize to
EEG responses to sensory events from other modalities
remains unclear.

Pain-Associated EEG Responses in a Predictive Coding Model of
Brain Function. As the interaction of sensory evidence and pre-
dictions crucially shapes the perception of pain, predictive cod-
ing frameworks of brain function have been increasingly
applied to the processing of pain (15, 43–46). Based on these
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considerations, recent functional imaging studies have started
to investigate how the brain encodes sensory information, pre-
dictions, and PEs in the processing of pain (50, 51). The results
have revealed a spatial dissociation between brain areas encod-
ing stimulus intensity, predictions, and PEs. More precisely, a
dissociation was found in the insular cortex where posterior
parts signaled sensory information, whereas anterior parts addi-
tionally signaled predictions and PEs. The present study was
inspired by these investigations and adapted their paradigm for
EEG. We particularly aimed to assess how evoked and oscilla-
tory brain responses at different latencies and frequencies
encode sensory information, expectations, and PEs. Based on
previous anatomical and physiological evidence (35, 36, 41, 42),
we specifically hypothesized that alpha/beta and gamma oscilla-
tions signal predictions and PEs, respectively. We further
expected that already the earliest laser-evoked responses are
shaped by predictions (37, 38), whereas later responses are also
shaped by PEs (39).

Our observed prestimulus effects support the idea that
alpha/beta oscillations are indeed involved in signaling predic-
tions also in the context of pain. However, Bayesian hypothesis
testing of poststimulus effects provided evidence against the
hypothesis that predictions and PEs shape evoked and oscilla-
tory responses to noxious stimuli. This contrasts with the results
of a recent EEG study (52), which showed that poststimulus
alpha/beta oscillations and gamma oscillations were shaped by
predictions and PEs, respectively. This difference between the
previous and the present study might be due to different dura-
tions of the employed noxious stimulation models. The previ-
ous study used contact-heat stimuli of a few-seconds duration,
whereas the present study used radiant-heat laser stimuli of a
few-milliseconds duration. Laser stimuli are a standard tool for
research on the brain mechanisms of pain and for the clinical
assessment of nociceptive pathways (58). They yield a highly
synchronized activation of nociceptive afferents, resulting in a
short and clear-cut pain sensation. These stimuli therefore offer
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the opportunity to not only detect non–phase-locked oscillatory
responses but to also to record phase-locked evoked responses
and to determine their role in signaling sensory information,
expectations, and PEs as previously done in other modalities
(59, 60). However, predictive coding concepts propose that the
precision of sensory information and predictions crucially
determines their weight in further processing (43). Thus the
brief laser stimuli of the present study might yield sensory
information with a high precision and weight, which in turn
might result in a relative down weighting of predictions. Hence,
for very brief and clear-cut stimuli, the influence of sensory
information might outweigh the influence of predictions and
PEs on EEG responses.

In the present study, we performed direct Bayesian model
comparisons to assess the role of EEG responses in the signal-
ing of sensory evidence, expectations, and PEs in the processing
of pain. While our results reveal that evoked and oscillatory
EEG responses—which are commonly used to assess brain pro-
cesses related to pain for research and clinical practice—are
more involved in signaling sensory evidence than expectations
or PEs, it is important to note that these findings do neither
argue in favor of nor against predictive coding models of brain
function. Our findings should thus not discourage the applica-
tion of predictive coding frameworks to the processing of pain
but rather encourage the search for brain features—other than
the commonly analyzed EEG responses—that signal predic-
tions and PEs in the processing of pain. Such future approaches
might build upon recent predictive coding models for nocicep-
tive processing in animals (61) and for the perception of stimuli
from other modalities in humans (40).

Brain Mechanisms of Expectation Effects on Pain. Our observation
of expectation effects on the perception of painful stimuli with-
out effects on associated EEG responses support that neither
evoked nor oscillatory EEG responses to noxious stimuli repre-
sent a reliable correlate of pain (62). This dissociation might
also be relevant for the search for brain-based biomarkers of
pain (63). Instead, our findings indicate that EEG responses
rather represent a correlate of sensory processing, which is not
always sensitive to contextual modulations. Thus, other pro-
cesses not captured by commonly analyzed EEG responses to
noxious stimuli likely contribute to contextual modulations of
pain. These processes might include cognitive evaluation, pain
affect, decision making, and reward processing. Such higher-
level processes might be less strictly time locked to noxious
stimuli and might therefore not be captured by commonly ana-
lyzed EEG responses. Furthermore, these processes might take
place in deeper brain areas such as the striatum, medial tempo-
ral lobe areas, and the brainstem, which are involved in expec-
tation effects on pain (64–67) but are not well captured by
EEG. Moreover, expectation effects might not manifest in
evoked potentials and/or oscillatory responses on the sensor
level, as these are a mixture of neural responses from different
brain areas but might only manifest in certain brain areas. Thus
source space analyses—which can help to disentangle mixtures
of neural responses from different brain areas—might be more
sensitive to expectation effects than sensor space analysis.
Moreover, such source space analyses also allow for analyzing
connectivity between sources. Considering the high complexity
of the pain experience and its cerebral substrates, such connec-
tivity analyses are particularly promising. However, source
space analyses of EEG signals are inherently ambiguous, and
common EEG approaches to the cerebral processing of pain
therefore rely on sensor space as done in the current study.

In this way, the current EEG findings complement fMRI
studies showing that the influence of contextual factors includ-
ing expectations and placebo effects on pain are mediated by
spatial patterns other than those capturing sensory processing

(68–70). This is also in accordance with previous fMRI studies
on predictive coding in the processing of pain, which showed
that the nociceptive sensitive neurologic pain signature was
mostly shaped by stimulus intensity rather than expectations
(50, 51). Moreover, expectation effects on pain are likely not
homogenous. For instance, it has been shown that expectation
effects induced by social information and associated learning
(71) as well as positive and negative expectation effects (66)
differ fundamentally.

Conclusions. The present results indicate that commonly analyzed
EEG responses to noxious stimuli are more sensitive to sensory
processes than to expectations or mismatches between sensory
processes and expectations. This finding provides insights into
the functional significance of the complex spatial– temporal–spec-
tral patterns of brain activity associated with pain. Moreover, our
observations might motivate and guide further investigations on
how the brain signals sensory information, predictions, and PEs
in the processing of pain. Understanding these processes might
also have implications for understanding the brain mechanisms
of chronic pain, which have been related to abnormally precise
predictions (47–49).

Materials and Methods
Participants. This study was performed in healthy human participants who
were recruited through advertisements on an online platform of the Technical
University of Munich. Prior to any experimental procedures, all participants
gavewritten informed consent. The study protocol was approved by the Ethics
Committee of the Medical Faculty of the Technical University of Munich and
preregistered at ClinicalTrials.gov (NCT04296968). The study was conducted in
accordance with the latest version of the Declaration of Helsinki and followed
recent guidelines for the analysis and sharing of EEG data (72).

Inclusion criteria were age above 18 y and right-handedness. Exclusion cri-
teria were pregnancy, neurological or psychiatric diseases, severe internal dis-
eases including diabetes, skin diseases, current or recurrent pain, regular
intake of medication (aside from contraception and thyroidal medication),
previous surgeries at the head or spine, metal or electronic implants, and any
previous side effects associated with thermal stimulation.

A priori sample size calculations using G*Power (73) determined a sample
size of 36 participants for a rmANOVA design with one group and four meas-
urements (see Procedure for conditions), a power of 0.95, an alpha of 0.05,
andmedium effect sizes of f = 0.25. This corresponds to an η2 (proportion vari-
ance explained) of 0.06 (74). Overall, 58 healthy human participants (29
females, age: 24.0 ± 4.3 y [mean ± SD]) were recruited. Nine participants were
excluded due to either the absence of pain or low pain ratings [<10 on a
numerical rating scale from 0 (no pain) to 100 (maximum tolerable pain)] dur-
ing the familiarization run (n = 8), excessive startle responses in response to
painful stimulation during the training run (n = 1), or technical issues with the
response box used during catch trials (n = 1). The final sample comprised 48
participants (all right-handed, 23 females, age: 23.7 ± 3.4 y). Average clinical
anxiety and depression scores obtained using the Hospital Anxiety and
Depression Scale (75) were below clinically relevant cutoff scores of 8/21 (76)
(anxiety: 3.0 ± 2.1; depression: 0.9 ± 1.1).

Procedure. To investigate how noxious stimulus intensity, expectations, and
PEs relate to the cerebral processing of a painful stimulus and the preceding
brain activity, the experiment incorporated two noxious heat stimulus intensi-
ties (hi and li) and two visual cues (HE and LE) resulting in four experimental
conditions. HE cues were followed by hi stimuli in 75% of trials (hiHE) and li
stimuli in 25% of trials (liHE). Conversely, LE cues were followed by li stimuli in
75% of trials (liLE) and by hi stimuli in 25% of trials (hiLE; Fig. 1A). The
sequence of events for each trial is depicted in Fig. 1B. After a fixation period
with a duration of 1.5 to 3 s, a visual cue (blue dot or yellow square) was pre-
sented for 1 s. At 1.5 s after the offset of the cue presentation, a brief painful
heat stimulus was applied. At 3 s after the noxious stimulus, participants were
prompted to rate the perceived pain intensity of the preceding painful heat
stimulus on a numerical rating scale ranging from 0 (no pain) to 100 (maxi-
mum tolerable pain); a rating of 1 on this scale thus already indicates a mini-
mally painful percept. To ensure sustained attention to the visual cues, a
match-to-sample task was incorporated in 10% of the trials. In these catch tri-
als, HE and LE cues were shown simultaneously after the pain rating and par-
ticipants were asked to identify the cue of the current trial by a button press

N
EU

RO
SC

IE
N
CE

Nickel et al.
Temporal–spectral signaling of sensory information and expectations in the
cerebral processing of pain

PNAS j 7 of 10
https://doi.org/10.1073/pnas.2116616119



(left versus right, according to the position of the cue on the screen). Partici-
pants successfully focused on the task during the whole experiment as indi-
cated by an average accuracy of 95.6 ± 0.1% during the match-to-sample task
in catch trials. Trials were separated by 3 s, during which a white fixation cross
was presented. The experiment consisted of four runs with 40 trials each (hiHE
[n = 15], hiLE [n = 5], liLE [n = 15], liHE [n = 5]), resulting in total trial numbers
of hiHE [n = 60], hiLE [n = 20], liLE [n = 60], liHE [n = 20]. Runs were separated
by short breaks of∼3min. Contingencies of visual cues and stimulus intensities
(i.e., whether a blue dot or a yellow square predicted hi/li stimuli and whether
the blue dot/yellow square was presented either on the left or right side of
the catch trial screen) were balanced across participants.

Prior to the main experiment, we applied a sequence of 10 heat stimuli
with different intensities to familiarize the participants with the painful stimu-
lation and the intensity rating procedure. Furthermore, participants were
explicitly informed about the contingencies between cues and stimulus inten-
sities and participated in a training run with 16 trials using the same experi-
mental setup and contingencies as in the main experiment. The information
and the training run were designed to ascertain that all participants were
aware of the contingencies and to minimize learning during the main experi-
ment. During the experiment, participants were seated in a comfortable chair
and wore protective goggles and headphones playing white noise to cancel
out ambient sounds.

Stimulation. Painful stimuli were applied to the dorsum of the left hand using
a neodymium yttrium aluminum perovskite laser (Nd:YAP, Stimul 1340, DEKA
M.E.L.A. srl) with a wavelength of 1,340 nm, a pulse duration of 4 ms, and a
spot diameter of ∼7 mm (19). Stimulus intensity was set to 3.5 J for hi stimuli
and 3 J for li stimuli (19). To avoid tissue damage and habituation/sensitiza-
tion, the stimulation site was slightly changed after each stimulus.

Recordings and Preprocessing. EEG data were recorded using actiCAP snap/
slim with 64 active sensors (Easycap) placed according to the extended 10-20
system and BrainAmpMRplus amplifiers (Brain Products). All sensors were ref-
erenced to FCz and grounded at Fpz. The EEGwas sampled at 1,000 Hz (0.1-μV
resolution) and band-pass filtered between 0.016 and 250 Hz. Impedances
were kept below 20 kΩ.

Preprocessing was performed using BrainVision Analyzer software (version
2.1.1.327, Brain Products). EEG data were downsampled to 500 Hz after low-
pass filtering with a cutoff frequency of 225 Hz. To detect artifacts and to
compute independent component (IC) weights, a 1-Hz high-pass filter (fourth-
order Butterworth) and a 50-Hz notch filter removing line noise were applied.
EEG data of all runs were concatenated. IC analysis based on the extended
infomax algorithm was applied to the filtered EEG data ranging from �4.2 to
3.2 s with respect to laser stimulus onset and resulted in 64 ICs. ICs represent-
ing eye movements and muscle artifacts were identified (77). Subsequently,
the identified ICs were subtracted from the unfiltered EEG, and data segments
of 400 ms centered around data samples with amplitudes exceeding ±100 μV
and data jumps exceeding 30 μV were automatically marked for rejection.
Remaining artifacts were identified by visual inspection and manually marked
for rejection. All electrodes were rereferenced to the average reference.
Finally, data were exported to Matlab (version R2019b, Mathworks), and fur-
ther analyses were performed using FieldTrip [version 20200128 (78)]. We seg-
mented the EEG data into 7-s epochs ranging from �4 to 3 s with respect to
the laser stimulus onset. All epochs including marked artifacts or trials in
which the laser stimulus was not perceived as painful (pain rating = 0) were
excluded from further analysis. To match the number of trials between both
hi and both li conditions, respectively, the condition with the lowest trial
count was identified for every participant, and the same number of trials was
randomly drawn from the other conditions (maximum number = 20 trials).
Further analyses were based on 17.7 ± 1.6 (range: 14 to 20) trials for hiHE/hiLE
conditions and 15.3 ± 4.4 (range: 4 to 20) trials for liHE/liLE conditions for each
participant.

Skin conductance data were recorded using two Ag/AgCl electrodes
attached to the palmar distal phalanges of the left index and middle finger.
Data were recorded using the GSR-MR module with constant voltage of 0.5 V
and a BrainAmp ExG MR amplifier (Brain Products) with low-pass filtering at
250 Hz and a sampling frequency of 1,000 Hz. Subsequent offline analysis
included low-pass filtering at 1 Hz using a fourth-order Butterworth filter,
downsampling to 500 Hz, and a visual artifact inspection. Finally, data were
exported and segmented into 14-s epochs ranging from �4 to 10 s with
respect to the laser stimulus. Identical epochs as for the EEG analyses were
selected. Furthermore, we had to exclude additional epochs of skin conduc-
tance data comprising marked artifacts. As a result, further analyses of skin
conductance data were based on 17.7 ± 1.8 (range: 14 to 20) and 17.6 ± 1.6
(range: 14 to 20) trials for hiHE and hiLE conditions, respectively, and 15.2 ±

4.7 (range: 4 to 20) and 15.2 ± 4.8 (range: 4 to 20) trials for liHE and liLE condi-
tions, respectively.

Time-Domain Analysis of EEG Data. To quantify the amplitudes of laser-
evoked N1, N2, and P2 responses, EEG data were band-pass filtered between
1 and 30 Hz (fourth-order Butterworth), and a baseline correction was applied
using the time interval between �3.3 and �2.8 s before the painful stimulus.
The selected baseline interval preceded the visual cue to avoid expectation
effects during the baseline period. To investigate the amplitude of the N1, the
data were rereferenced to Fz. First, the latencies of all laser-evoked responses
were assessed for each participant using the average across all trials and condi-
tions. We used a peak/trough detection procedure within the time windows
120 to 20, 180 to 30, and 250 to 500 ms (19) for the N1, N2, and P2, respec-
tively. Second, to obtain the amplitudes of the average evoked responses, tri-
als were averaged separately for each condition. Amplitudes of N1, N2, and
P2 were assessed by averaging a 30-ms window centered at respective laten-
cies determined in the previous step. Amplitudes of N1 and N2/P2 were
extracted at channel C4 (79) and Cz, respectively. Finally, single-trial estimates
of N1, N2, and P2 amplitudes were obtained accordingly by averaging single-
trial data across the same 30-ms windows centered at the latencies identified
in step one. For the N1, three participantswere excluded from statistical analy-
ses due to a lack of a response in step one.

Besides laser-evoked poststimulus responses, we were interested in presti-
mulus differences in brain activity induced by the expectation of high or low
stimuli. Hence, we investigated the SPN by averaging the amplitude at Cz
across the 500-ms interval directly preceding the laser stimulus (29). All HE and
LE trials were averaged separately for each participant. A low-pass filter with
a cutoff frequency of 30 Hz (fourth-order Butterworth) and a baseline correc-
tion using the time interval between�3.3 and�2.8 s were applied. No further
high-pass filter was applied to take low frequencies of the SPN into account.
As a consequence, five participants had to be excluded from this analysis due
to sweating artifacts, which could be corrected by high-pass filtering when
laser-evoked responses were analyzed.

Time–Frequency Analysis of EEG Data. To quantify the power of laser-induced
oscillatory responses, data were transformed to the time–frequency domain.
To this end, we applied a fourth-order Butterworth high-pass filter of 1 Hz
and a band-stop filter of 49 to 51 Hz to dampen line noise. Subsequently, a
fast Fourier transformation was applied to Hanning-tapered EEG data with a
moving time window of 500-ms length for the frequencies from 1 to 30 Hz
and a window of 250-ms length for the frequencies from 31 to 100 Hz. The
step size was set to 20ms. We chose a longer window for lower frequencies to
retrieve more accurate power estimates, including at least four cycles for fre-
quencies above 8 Hz. To obtain average responses at different frequency
bands, time–frequency data were averaged across trials separately for each of
the four conditions. Responses at alpha (8 to 12 Hz), beta [13 to 30 Hz (72)],
and gamma [70 to 90 Hz (80)] frequency bands were quantified using the
time windows 500 to 900, 300 to 600 (81, 82), and 150 to 350 ms (80), respec-
tively. Alpha and beta power was estimated at sensors Cz, C2, C4, CPz, CP2,
and CP4 covering the somatosensory cortex (19, 81, 82). Gamma power was
retrieved at sensor Cz (19). Average responses at the different frequency
bands were assessed by calculating the mean power estimates across the
selected frequencies, time windows, and channels (region of interest, ROI).
Consequently, we obtained three power values for each condition (i.e., 12
power values for each participant). Single-trial responses of different fre-
quency bands were quantified by averaging across the same time–frequency
sensor selection as for the average responses for each trial. All power values
were not baseline corrected (see SI Appendix, Table S1 for results with base-
line correction using the interval �750 to �250 ms preceding the laser stimu-
lus as baseline).

In addition to oscillatory poststimulus responses, we were interested in
prestimulus differences in oscillatory brain activity induced by the expectation
of hi or li stimuli. Prestimulus alpha (8 to 12 Hz) and beta (13 to 30 Hz) power
were obtained using the mean power across the time windows �2.5 to�1.5 s
as well as �1.25 to �0.25 s and the sensors Cz, C2, C4, CPz, CP2, and CP4. We
chose these timewindows to investigate power differences during cue presen-
tation (�2.5 to �1.5 s) and closely before laser stimulus onset (�1.25 to �0.25
s). Data immediately preceding the laser stimulus were not analyzed to avoid
confounding prestimulus power estimates with poststimulus activity due to
the 500-ms sliding window.

Analysis of Skin Conductance Data. To quantify SCRs, epochs of skin conduc-
tance data were averaged across trials for each condition and participant.
Amplitudes were defined as peak amplitudes of the maximal peak within a
time window from 1 to 7.8 s poststimulus following a peak detection
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procedure (79, 82) and a baseline correction using skin conductance data at
time point zero of the laser stimulus onset. Prior to the quantification of SCRs,
we identified nonresponders by averaging skin conductance data across all tri-
als and conditions for each participant. If the detected global amplitude was
below 0.05 μS, participants were defined as nonresponders (83). Based on
these criteria, 17 participants were classified as nonresponders and excluded
from further analysis of SCR data.

Statistical Analyses. Statistical analyses were performed using the statistical
software packages JASP [version 0.14.1 (84)] and R [version 3.6 (85)]. Moti-
vated by previous findings (50, 53), we investigated five different response
patterns (Fig. 2), which vary with respect to the integrated predictors. Specifi-
cally, the predictors stimulus intensity (INT), expectation (EXP), PE, a linear
combination of stimulus intensity and expectation (EXP+INT) as well as a lin-
ear combination of expectation and PE (EXP+PE) were investigated. The latter
has been termed the predictive coding model (43). To investigate these pat-
terns, we computed rmANOVAs for each poststimulus response (pain rating,
N1, N2, P2, alpha, beta and gamma-power, and SCR) as dependent variable
using stimulus intensity (hi versus li) and cue (HE versus LE) as factors. Bayesian
rmANOVAs were performed as these allow to specifically evaluate evidence
for the null hypothesis of no effect (54). In Bayesian rmANOVAs, the BF is
defined as ratio between the likelihood of the data given a model including
the effect of interest and the likelihood of the data given an equivalent model
with the effect of interest removed. BF < 0.33 and BF< 0.10 indicatemoderate
and strong evidence in favor of the absence of the effect of interest, respec-
tively. BF > 3 and BF > 10 indicate moderate and strong evidence in favor of
the effect of interest, respectively (54). For all Bayesian statistics, default Cau-
chy priors were chosen in JASP. Complementing Bayesian inference, we also
conducted frequentist rmANOVAs with the same factors. Post hoc dependent
samples Student’s t tests were performed if a statistically significant interac-
tion was observed. To test for additional effects outside the predefined ROIs,
we performed cluster-based permutation tests across time, frequencies, and
all channels (see SI Appendix for details).

Furthermore, on a single-trial level, we performed formal pairwise model
comparisons to test which model explains poststimulus responses best. Models
including stimulus intensity and expectation (INT+EXP) as well as expectation
and PE (EXP+PE) as predictors were compared to the model solely including
stimulus intensity (INT), respectively. Additionally, the EXP+PE model was
compared with the INT+EXP model. Linear mixed effects models included
either stimulus intensity, expectation, PE, or combinations thereof as fixed
effects and participants as random effects. In contrast to the rmANOVA
approach, linear mixed effects models are based on single-trial data and
account for differences in trial numbers and variability between subjects.
Moreover, the different models can be explicitly formulated and compared.

We used the R package BayesFactor [version 0.9.12 (86)] to compute BFs for
model comparisons. These BFs quantify the evidence for one model over
another model as a ratio of two likelihoods (i.e., the likelihood of the data
given each model). Stimulus intensity was coded as 1 for hi stimuli and as 0 for
li stimuli. Expectation was coded as the probability of a following hi stimulus
[i.e., 0.75 for hi cue conditions (hiHE and liHE) and 0.25 for li cue conditions
(hiLE and liLE)]. Finally, the PE was defined as aversive PE, meaning that a PE
occurs only if the outcome (stimulus intensity) is more painful than expected.
Specifically, the aversive PE was selected because a previous study by Geuter,
Boll, Eippert, and Buchel (50) demonstrated that models incorporating the
aversive PE explained brain responses to pain better than absolute and signed
PEs. Hence, it was coded as difference between stimulus intensity and expecta-
tion [i.e., PE = 1 to 0.25 for hiLE, PE = 1 to 0.75 for hiHE, and PE = 0 for for liHE
and liLE (50); see SI Appendix, Fig. S2 for Bayesian model comparisons using
additional absolute and signed PE formulations].

To complement univariate analyses using single poststimulus responses as
outcome variables and to investigate whether a combination of N1, N2, P2,
alpha, beta, and gamma power can predict the expectation effect on pain rat-
ings, we computed difference values of pain ratings, N1, N2, P2, alpha, beta,
and gamma power by subtracting average values of the LE trials fromHE trials
for each participant. Subsequently, we tried to predict difference values of
pain ratings (dependent variable) based on difference values of N1, N2, P2,
alpha, beta, and gamma power (independent variables) using multiple regres-
sion. Prior to the analysis, all difference values were z-transformed across par-
ticipants to adjust the data to the same scale.

Finally, we investigated whether cue-induced expectations affected brain
activity preceding the laser stimulus. To this end, we performed Bayesian-
dependent samples Student’s t tests comparing the average amplitude of the
SPN between HE and LE trials. Similarly, we compared alpha and beta power
during two prestimulus windows, one during cue presentation and one closely
preceding the painful laser stimulus. Again, these tests were accompanied by
Bayesian-dependent samples Student’s t tests to estimate the evidence for the
null hypothesis. To test for additional effects outside the predefined ROIs, we
performed cluster-based permutation tests across time, frequencies, and all
channels (see SI Appendix for details).

Data Availability. All data in EEG-BIDS format (87) and code are available
at the Open Science Framework (https://osf.io/jw8rv/).
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