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Abstract: Nowadays, wearables are a must-have tool for athletes and coaches. Wearables can provide
real-time feedback to athletes on their athletic performance and other training details as training load,
for example. The aim of this study was to systematically review studies that assessed the accuracy of
wearables providing real-time feedback in swimming. The Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines were selected to identify relevant studies. After
screening, 283 articles were analyzed and 18 related to the assessment of the accuracy of wearables
providing real-time feedback in swimming were retained for qualitative synthesis. The quality index
was 12.44 ± 2.71 in a range from 0 (lowest quality) to 16 (highest quality). Most articles assessed
in-house built (n = 15; 83.3%) wearables in front-crawl stroke (n = 8; 44.4%), eleven articles (61.1%)
analyzed the accuracy of measuring swimming kinematics, eight (44.4%) were placed on the lower
back, and seven were placed on the head (38.9%). A limited number of studies analyzed wearables
that are commercially available (n = 3, 16.7%). Eleven articles (61.1%) reported on the accuracy,
measurement error, or consistency. From those eleven, nine (81.8%) noted that wearables are accurate.

Keywords: wearables; sensors; swimming; monitoring; training

1. Introduction

In competitive sports, athletes spend a considerable amount of time refining the
technique. This enhancement in the technique will likely increase the odds of improv-
ing athletic performance at major competitions. Coaches, researchers, and performance
analysts usually focus on the athletes’ sports technique because it is highly correlated to
performance [1,2]. Hence, detailed and accurate information on the athletic performance
and technique in training and competition settings is paramount [3,4]. Additional training
details, such as training loads, are other topics of interest. In swimming sports, video
analysis is the mainstream procedure to assess the technique [5,6]. However, this assess-
ment procedure is challenging, has a steep learning curve, is very time-consuming, and is
potentially disruptive of training sessions and competition [7].

During the last two decades, alternatives to video-based assessment techniques have
been developed and have gained traction. These include wearables such as accelerometers,
gyroscopes, and magnetometers, which are all integrated into one single unit known as
“inertial measurement units” (IMUs) [8–10]. These sensors can provide a comprehensive
set of kinematic variables, such as acceleration (by accelerometers); angular velocity (by
gyroscopes); and, rotation, orientation, or heading (by magnetometers) [11]. Several other
kinematic and kinetic variables can be derived or extracted from the above-mentioned
data. As technology improves, wearables are becoming more affordable, user-friendly, and
readily available to end-users (i.e., swimmers, coaches, performance analysts, and applied
researchers). Technology developments have led to the compactness of sensors, which
can be a great advantage in terms of drag and body placement [10]. The wearable can be
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placed on a body landmark that: (1) does not increase significantly drag resistance; (2) does
not constrain the limbs’ actions; and (3) does not affect the swimmers’ displacement [10].
Incidentally, it is possible to set up several wearables concurrently on the body and increase
the number of variables of interest to measure [12]. Swimming wearables can provide
real-time details on lap count and stroke count per lap [13,14], swim speed and stroke
frequency [15,16], and upper limbs’ asymmetries [17]. They can also detect the stroke
being performed [18], as well as estimate the energetics [19] and the thrust produced by
the upper limbs [20]. Even though there is considerable interest in technology gathered
among end-users, it is unclear how accurate these wearables are.

The aim of this study was to systematically review the current body of knowledge on
the accuracy of wearables providing real-time feedback in the sport of swimming.

2. Materials and Methods
2.1. Literature Search and Article Selection

As of 10 February 2022, the Web of Science, ScienceDirect, and Scopus databases were
searched to identify studies that included any type of wearables in a swimming setting. As
an initial search strategy, the title, abstract, and keywords in the text were first identified
and read carefully for a first scan and selection of the articles. If one of these fields (title,
abstract, or keywords) was not clear on the topic under analysis, the complete article was
read and fully reviewed to determine its inclusion or exclusion. The PI(E)CO search strategy
used (P—patient, problem or population; I—intervention; E—exposure; C—comparison,
control, or comparator; O—outcomes) is presented in Table 1.

Table 1. PI(E)CO (P—patient, problem or population; I—intervention; E—exposure; C—comparison,
control, or comparator; O—outcomes) search strategy.

Population Intervention or Exposure Comparison (Design) Outcome

Swimmer * Validation Cross-sectional Performance
Identification Longitudinal Velocity
Development Experimental Stroke frequency
Measurement Exploratory Stroke rate

Reliability Descriptive Stroke count
Accuracy Randomized control trial Heart rate

Crossover Energy cost
Energy expenditure
Propelling efficiency

Froude efficiency
Stroke index

Critical velocity
Power

Mechanical power
Force

Propelling force
Propulsive force

Body roll
Speed

Real time
Feedback

Note: Asterisks denote truncation to retrieve words with different endings.

The inclusion criteria were: (1) studies written in English; (2) experimental research de-
signs; (3) studies published in a peer-reviewed journal; (4) studies which assess swimming
wearables; (5) studies which recruit healthy and able-bodied swimmers; and (6) studies
which report on the use of swimming wearables streaming data to provide real-time
feedback. Exclusion criteria included: (1) studies not written in English; (2) review pa-
pers, conference papers, and books; (3) studies published in non-peer reviewed journals;
(4) studies not related to swimming wearables; (5) studies which recruited disabled swim-
mers or participants with any pathology; and (6) studies not related to the topic in question
(e.g., not clearly stated “real-time” or streaming or the sample was not clearly described).
Figure 1 depicts the PRISMA flow diagram for identifying, screening, and checking eligi-
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bility, which then helps to determine inclusion of the articles. A total of 18 articles [21–38]
were included in the qualitative synthesis.
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2.2. Quality of the Articles

The articles selected were screened for quality assessment by an instrument proposed
and developed for this scientific field [39,40]. Two independent reviewers read all articles
retained for qualitative synthesis and scored the 8 items. Each item was scored 2 points
if the answer was “yes”, 1 point if the answer was “partial”, and no points if the answer
was “no” [39,40]. Hence, the quality ranges between 0 (lowest quality) and 16 (highest
quality). Afterwards, the Cohen’s kappa (K) was computed to assess the agreement between
reviewers. It was interpreted as: (1) no agreement if K ≤ 0; (2) none to slight agreement if
0.01 < K ≤ 0.20; (3) fair if 0.21 < K ≤ 0.40; (4) moderate if 0.41 < K ≤ 0.60; (5) substantial if
0.61 < K ≤ 0.80; and (6) almost perfect if 0.81 < K ≤ 1.00.

3. Results

The quality index was 12.44 ± 2.71 points. The Cohen’s kappa yielded an almost
perfect agreement between reviewers (K = 0.851, p < 0.001). Table 2 summarizes the
aims of the studies, the participants´ demographics, and the swim strokes. From the
18 articles included for qualitative synthesis, eight (44.4%) [21,23–25,30,31,34,38] assessed
wearables exclusively in front crawl, six (33.3%) [26,27,29,32,33,35] assessed wearables
exclusively in all four swim strokes, two assessed wearables for the tumble turn in front
crawl (11.1%) [36,37], one just assessed wearables in breaststroke (5.5%) [22], and another
one assessed wearables in butterfly stroke (5.5%) [28]. Overall, 177 swimmers were recruited
in all studies (103 males, 62 females, and 12 that the authors failed to note the sex of
the participants). Four articles recruited elite-level swimmers (22.2%) [29,32,34,37], two
articles recruited international-level participants (11.1%) [33,35], four articles recruited
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national-level/semi-professional participants (22.2%) [22,28,35,38], one article recruited
local-level participants (5.5%) [31], and three articles recruited local/non-expert swimmers
(16.7%) [22,25,36]. Conversely, six articles (33.3%) [21,23,24,26,27,30] did not report the
swimmers’ competitive level.

Table 2. List of the articles selected for qualitative synthesis, including the article aim, the participants’
demographics, and the swim stroke analyzed.

Source Aim Participants Swim Stroke

Dadashi et al. [21] To present an automatic algorithm to detect main stroke
temporal features using IMUs.

Five males and two females: 18.7 ± 5.3 years;
177.4 ± 4.8 cm height; 67.7 ± 5.7 kg body mass. Front crawl.

Dadashi et al. [22]
To propose a Bayesian framework to estimate
breaststroke swimming velocity using a wearable IMU
without a priori knowledge of pool length.

Eight well-trained national-level swimmers (six
males and two females): 20.7 ± 3.5 years;
181.0 ± 7.9 cm height; 74.1 ± 7.3 kg body mass.
Seven recreational swimmers (three males and
four females): 14.2 ± 1.0 years; 166.5 ± 12.0 cm
height; 55.5 ± 12.2 kg body mass.

Breaststroke.

Engel et al. [23] To transfer the findings from the video analysis data to
the data measured with an IMU.

Six female (14.8 ± 0.9 years) and four male
(16.0 ± 0.7 years) swimmers. Front crawl.

Fantozzi et al. [24]
To develop and validate an easy-to-use tool for
stroke-by-stroke evaluation of a swimmer’s integrated
timing of stroking, kicking, and breathing.

Twelve male swimmers: 19.1 ± 2.3 years;
76.7 ± 3.7 kg body mass; 179.0 ± 5.2 cm height. Front crawl.

Hagem et al. [25]
To present a wrist mounted accelerometer and optical
wireless communications to display goggles to give
real-time feedback to a swimmer during swimming.

One recreational swimmer (male). Front crawl.

Hagem et al. [26]

To present a smart serial or standard infrared system
tested for short-range swimming applications based on
stroke rate feedback to maintain the stroke rate at a
predetermined swim plan.

One swimmer. Front crawl.

Hagem et al. [27]

To present a system to provide real-time feedback for
swimmers during swimming based on optical wireless
communication in the visible spectrum for pacing the
swimmer according to the coach instructions.

One swimmer (male). Front crawl, breaststroke,
backstroke, and butterfly.

Jeng [28]

To (1) use open software and hardware to develop a
low-cost, portable IMU for swimming movement
research; (2) conduct a study in a real-world scenario;
and (3) use the developed IMU to analyze the influence
of interaction effects among swimmers’ characteristics
and breathing patterns on butterfly-stroke
swimming efficiency.

Four semi-professional females (average height:
167.2 cm, average body mass: 59.6 kg, average
years: 20.8 years). Five semi-professional males
(average height: 176.6 cm, average body mass:
74.8 kg, average years: 21.4 years)

Butterfly.

Le Sage et al. [29]
To present a system for automatically capturing the lap
count, stroke count, and stroke rate of the swimmer with
the results relayed to the coaches in real time.

Four elite swimmers, for each of the four strokes. Front crawl, breaststroke,
backstroke, and butterfly.

Lee et al. [30]
To evaluate the accuracy of the information on lap count,
stroke count, and energy expenditure provided by
wearable devices (Apple and Garmin) during swimming.

40 males (38.7 ± 11.05 years) and 38 females
(39.1 ± 10.67 years) able to swim at
various speeds.

Front crawl.

Mangia et al. [31]
To instrumentally validate IMUs and to describe the use
of IMUs for multi-body joint kinematics in clinical and
sport applications (including swimming).

Six male regional-level swimmers:
26.1 ± 3.4 years, 77.0 ± 10.1 kg of body mass,
182.5 ± 8.8 cm of height.

Front crawl.

Pan et al. [32] To implement a designed scheme on a water-proof
Android smartphone. Five elite swimmers. Front crawl, breaststroke,

backstroke, and butterfly.

Pla et al. [33]
To evaluate the validity and the reliability of a swimming
sensor to assess swimming performance and
spatial–temporal variables.

Six international male open-water swimmers
(18 ± 3 years).

Front crawl, breaststroke,
backstroke, and butterfly.

Rowlands et al. [34]

To present a case study in which inertial sensor
time-series data from an elite and sub-elite swimmer
were compared using visualization techniques to
highlight differences in their action and performance.

Two competent swimmers (one elite and one
sub-elite). Front crawl.

Shell et al. [35]
To independently validate a wearable inertial sensor
designed to monitor training and performance metrics
in swimmers.

Four males (one national- and three
international-level) and six females (one national-
and five international-level).

Front crawl, breaststroke,
backstroke, and butterfly.

Slawson et al. [36] To establish characteristics seen in acceleration which
pertained to phases of the tumble turn. One amateur-level triathlete (male). Front crawl (tumble turn).

Slawson et al. [37] To establish the features of tumble turn performance that
could be identified in tri-axis acceleration traces. One elite male triathlete (23 years). Front crawl (tumble turn).

Stamm et al. [38] To investigate the swim velocity and the acceleration
symmetry using IMUs.

Eight national-level male swimmers (aged
between 17 and 18 years). Front crawl.



Sensors 2022, 22, 3677 5 of 14

Table 3 consolidates the details on the assessed sensor, the anatomical landmark where
it was placed, variables analyzed, and the main findings of the studies. Fourteen studied
accelerometers (77.8%) [21–27,29,32,33,35–38], seven studied microcontroller units (MCUs)
(38.9%) [22,25–29,37], six studied IMUs (33.3%) [21–24,28,31], three studied visual feedback
(16.7%) [25–27], and just one studied a gyroscope (5.5%) [34].

Table 3. Summary of the sensors selected, its specifications (size and weight), the body’s placement,
variables analyzed, and the main findings.

Source Sensor Specifications Body’s Placement Variables Findings

Dadashi et al. [21]

Three wireless
waterproofed IMUs
(each with a 3D
accelerometer and a
3D gyroscope).

n/a Both wrists and
lower back.

Duration of the arm
pull, duration of the
arm-push, duration
of the recovery, and
index of coordination.

It was possible to validate the estimation
of front-crawl temporal phases extracted
from IMUs. The automatic phase detection
method provides timely feedbacks that can
be used by sport scientists and coaches.
This approach can be modified to fit event
detection problems in other types
of locomotion.

Dadashi et al. [22])

One waterproofed IMU
(with a 3D accelerometer
and a 3D gyroscope, a
battery, a memory unit,
and an MCU).

Dimensions:
50 × 40 × 16 mm.
Weight: 36 g.

Lower back. Velocity.

This study reported an accurate estimation
of velocity that relies on the learning of the
mapping between compact representation
of the inertial signals and target cycle
velocity measured by a tethered reference.
The method provides immediate feedback
on the variability of swimmer’s
performance that a coach can use to
provide tailored feedback to the swimmer
during training.

Engel et al. [23]
One IMU (with a 3D
accelerometer and a
3D gyroscope).

n/a Lower back.

Phases of the arm
stroke, roll angle, and
angular velocity of
the hip.

It was shown that athletes with different
skill levels show the same characteristics in
their IMU data, which is fundamental for
the development of algorithms and for the
analysis of the front-crawl swimming
stroke, not only considering frequency and
number of strokes, but also access to
intra-cyclic parameters.

Fantozzi et al. [24]

Five triaxial IMUs
equipped with an
accelerometer
and gyroscope.

n/a Head, forearms,
and shanks.

Wrist entry, head
entry, head exit, and
leg downbeat.

A protocol for integrated analysis of
stroking, kicking, and breathing using
inertial sensors in front-crawl swimming
was developed and validated in
comparison with a video-analysis
technique. All investigated accuracy
parameters highlighted strong agreement
with the gold standard.

Hagem et al. [25]

Acceleration sensors
with an MCU and
memory for data
recording. A system
with pre-programmed
feedback (audio, tactile,
and visual).

n/a Wrist and head
(eyes—goggles).

Phases of the arm
stroke, and
stroke rate.

The wearable data acquisition, processing,
and feedback system was designed,
implemented, and tested based on visible
light communication in order to give a
real-time feedback to a swimmer during
swimming. Acceleration data were used
for stroke rate determination and optimum
transmission time in the stroke cycle.

Hagem et al. [26]

An accelerometer sensor
and an MCU at the
receiver side that saves
the data, decides based
on preset conditions,
and sends feedback to a
display mounted on
the goggles.

n/a Wrist and head
(eyes—goggles).

Stroke count, time,
stroke rate, stroke
length, velocity, and
stroke duration.

A short-range optical wireless transceiver
was designed and implemented for
real-time swimmer feedback applications.
The system was based on using an encoder
and a decoder with an optical transceiver.
The information transmitted was the time
duration of one complete stroke, which
was updated every stroke and presented to
the swimmer using an RGB LED mounted
on the goggles.

Hagem et al. [27]

Transmitter that
includes an MCU unit
with memory.
Three-axis
accelerometer, power
supply, and battery
charging circuit are
included in the
circuit board.

Dimensions:
transmitter—
35 × 35 mm2;
receiver—
45 × 30 mm2.

Wrist and head
(eyes—goggles). Stroke rate.

A second-generation system was designed
and implemented. The system was tested
with different swim speeds (slow and fast)
and different strokes (freestyle, backstroke,
breaststroke, and butterfly) to validate the
system. These experiments were used to
optimize the system and verify that the
complete system was viable under
different conditions, strokes,
and swimmers.
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Table 3. Cont.

Source Sensor Specifications Body’s Placement Variables Findings

Jeng [28]

Charging and power
supply circuits, as well
as MCU and IMU data
storage circuits.

Dimensions:
53 × 29 × 5 mm.
Weight: 15 g
(before
water case).

Head.
Pitch and roll angles
of the butterfly stroke
breathing pattern.

To investigate the influence of breathing
motions on swimming speed during the
butterfly stroke, an IMU was developed. It
was showed that significant interaction
effects exist between age and average
breathing time, significantly influencing
swimming efficiency. It also indicated that
significant interaction effects exist between
gender and the number of breaths taken
and between gender and average
maximum breathing angle. These results
demonstrate the efficacy of the proposed
IMU, which could be effectively applied to
help coaches and researchers analyze and
enhance swimmers’ performance.

Le Sage et al. [29]

An MCU in
combination with an RF
transceiver,
and a tri-axis
accelerometer and
dual-axis gyroscope.

The packaging
(containing all
systems) has a
combined mass
of 110 g.
Dimensions:
15 × 9 cm.

Lower back.
Stroke count, stroke
rate, and
stroke duration.

A novel approach to monitoring free
swimming performance with embedded
real-time filtering and signal processing
was developed. The system exhibits many
advantages over current analysis
techniques since it offers the opportunity
to provide feedback to coaches,
performance analysts, and sports scientists
in real time, as well as more rapid feedback
to swimmers.

Lee et al. [30] Apple Watch S2 and
Garmin Fenix 3HR. n/a Wrist.

Lap count, stroke
count, energy
expenditure.

The error rate of lap counting and stroke
counts at various swimming speed were
within 10% for Apple and about 20% for
Garmin. The criterion measurements and a
95% equivalence test showed that the lap
counts and the strokes counts recorded by
Apple were within the equivalence zone
for all of the exercise intensities measured.
Bland–Altman plots showed confidence
intervals with relatively small deviations
in lap counts and the stroke counts for
Apple, and energy expenditure for Garmin.
However, the error rate of estimating
energy expenditure was higher for Apple
than for Garmin. Apple and Garmin
wearable watches accurately measure lap
counts and stroke counts. However, the
accuracy of estimating EE is poor at slow
to medium swimming speeds.

Mangia et al. [31] Seven IMUs.

Dimensions:
48.4 × 36.5 ×
13.4 mm. Weight:
<22 g.

Thorax, arms,
forearms,
and hands.

Phases of the arm
stroke, arm pull
duration, arm push
duration,
non-propulsive phase
duration, and
stroke rate.

The use of IMUs can provide several
advantages over more expensive and
bulky systems, such as (1) simpler and
faster setup preparation; (2) less
time-consuming processing phase, and (3)
the chance to record and analyze a higher
number of strokes without limitations
imposed by the camera’s volume
of acquisition.

Pan et al. [32]

A module that gathers
linear acceleration
values from the
accelerometer every
n millisecond.

n/a Palm of the hand. Stroke count and
stroke identification.

A swimming analysis scheme to count and
identify swim strokes using an
accelerometer was proposed. The stroke
analysis phase identifies stroke styles and
counts strokes by finding correlated
segments, which can be taken as
swimmers’ strokes. It was implemented
the designed scheme on a waterproof
Android platform. The experiment results
indicate that the designed scheme can
effectively identify stroke styles and count
strokes with more than 87% and 94%
accuracies on average, respectively.

Pla et al. [33]

TritonWear (triaxial
accelerometer, triaxial
gyroscope, and
triaxial magnetometer).

n/a Head.

Lap time, stroke
count, velocity, stoke
rate, stroke length,
and stroke index.

The accuracy of spatial–temporal variables
with the use of the TritonWear was high in
international open-water swimmers. This
device may help coaches to analyze
spatial–temporal variables during swim
training to determine their relationship
with performance. The ease of use, the
good accessibility, and the ease in
understanding the results of this device
allow the coaches to give quick feedbacks
and advice to the swimmer during
swim training.
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Table 3. Cont.

Source Sensor Specifications Body’s Placement Variables Findings

Rowlands
et al. [34] Gyroscope. n/a Lower back. Angular velocity of

the body roll.

The body roll velocity was captured from
the gyroscopic sensor and was used to
visualize the time-series data. The
visualization techniques that were
investigated were time series overlay,
phase space portraits (two different
methods), ribbon plots, and wavelet
scalograms. Obvious differences were
observable in all the visualization methods.
It was found that all the methods were
able to give useful information on the
consistency of the stroke cycle. Each of the
visualization techniques also showed that
the consistency was higher in the elite
swimmer than the sub-elite swimmer
which was expected. Therefore, these
techniques do show merit due to the extra
information that can be provided on the
swimming action.

Shell et al. [35]

TritonWear (triaxial
accelerometer, triaxial
gyroscope, and
triaxial magnetometer).

n/a Head. Distance, stroke
count, velocity.

The wearable device investigated in this
study does not accurately measure
distance, stroke count, and velocity
swimming metrics, or detect stroke type.
Its use as a training monitoring tool in
swimming is limited.

Slawson et al. [36] Accelerometer. n/a Lower back.
Acceleration on the
turn approach,
rotation, and glide.

Using vision data, it was possible to
determine turning phases based on
acceleration characteristics. This enabled
more complete analysis of turning
performance as the approach, rotation, and
glide could be individually identified. This
is a proactive method to alert users to
events, rather than the coach or
biomechanist, who have to analyze every
output to judge whether something is
of significance.

Slawson et al. [37]

MCU,
analogue-to-digital
converter with an
associated sensor,
triaxial accelerometer,
biaxial gyroscope,
digital interface (to
enable the connection of
additional memory),
crystal oscillator, radio
components,
and power.

Dimensions:
90 × 40 mm. Lower back.

Acceleration on the
turn approach,
rotation, and glide.

Using the visual data, it was possible to
understand the turning phases in
acceleration space. Rotation information,
last stroke to wall, and first stroke after the
turn timing could be automatically
distinguished from the captured
acceleration data. Turning information,
automatically cropped from the raw data
stream within these stroke time limits,
enabled a more complete analysis of
turning performance than what has been
previously possible, as the approach,
rotation, and glide features could be
individually identified and quantified.

Stamm et al. [38]

Triaxial accelerometer,
triaxial gyroscope,
and radio
frequency capabilities.

n/a Lower back.
Stroke rate, stroke
duration,
and velocity.

Considering the small and light weight of
the used sensor, it can be nearly used
during every swimming session. This
offers the opportunity to all athletes and
coaches to record as many swimming
sessions as they want without complex
and bulky equipment. It allows arm
symmetry investigations in different ways
(stroke rate, acceleration, and velocity) and
offers the possibility of keeping track of
training progress or injury recovery.
Furthermore, it brings up the opportunity
to identify symmetry problems in
swimming styles and helps to adjust the
swimmers´ style if necessary.

3D—three dimensions; IMU—inertial measurement unit; LED—light-emitting diode; MCU—microcontroller unit;
RF—radio frequency; RGB—red, green, blue; n/a—not applicable or not disclosed.

About the anatomical landmark, eight studies placed the wearable on the lower back
(44.4%) [21–23,29,34,36–38], seven on the head (38.9%) [24–28,33,35], and five on the wrist
(27.8%) [21,25–27,30] (Table 3). Overall, the articles identified and/or measured variables
related to kinematics and kinetics (e.g., duration of the stroke, stroke count, stroke rate,
speed) during the arm stroke. Nonetheless, there were three articles that analyzed variables
related to the swimmer’s body roll while performing the arm stroke (16.7%) [23,28,34], and
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two during the tumble turn (11.1%) [36,37]. One article estimated the energy expenditure
(5.5%) [30]. Eleven articles (61.1%) [21,22,24,26,27,29–33,35] reported outputs related to
accuracy, measurement error, or consistency. Seven papers (38.9%) [23,25,28,34,36–38] did
not report any information about the reliability and only describe the sensors’ features and
specifications. Three articles (16.7%) [30,33,35] selected commercially available wearables
and remaining are non-commercial apparatus (i.e., in-house built) (Table 3). From the 11 ar-
ticles that described accuracy or measurement errors: (1) 9 [21,22,24,26,27,29,31–33] (81.8%)
reported that the wearable under study could accurately monitor the swim; (2) 1 article [30]
(9.1%) conveyed mixed findings depending on the variables measured, and; (3) 1 article [35]
(9.1%) noted that the wearable used was not accurate. Detailed information on the accuracy
of the outputs can be found in Table 4.

Table 4. Summary of the accuracy of the outputs.

Source Accuracy of the Outputs

Dadashi et al. [21]
The mean difference between the wearable and video-based systems (accuracy) was always lower than 0.8 frames in detecting the start of
each phase. The standard deviation of the difference (precision) was always lower than 2.7 frames (which is on average equivalent to 5.1%
of the cycle duration). Bland–Altman analysis also yielded a good agreement, where more than 80% of the plots were within the 95CI.

Dadashi et al. [22]
It was showed that the linear least squares method has poor generalization characteristic for the study’s purpose; however, the Gaussian
process and the Bayesian approach are equally accurate methods. The lower computational cost of the Bayesian model suggests it as the
preferable method because computational resource is one of the main concerns in standalone wearable platforms.

Engel et al. [23] n/a

Fantozzi et al. [24]

The respective average RMSEs and 90th percentile of absolute errors for IMU vs. video-based analysis were 0.1 and 1.5% for wrist entry, 0.7
and 8.0% for head exit, 0.1 and 2.2% for head entry, and 0.1 and 1.8% for leg downbeat. Linear regression between methods revealed a
nearly perfect agreement (r > 0.90 for wrist entry, head exit, head entry, and leg down beat). Bland–Altman showed that more than 80% of
the plots were within the 95CI.

Hagem et al. [25] n/a

Hagem et al. [26]
For front-crawl stroke, the results showed that LED4 (center of the wrist) and LED6 (outside top edge of the wrist) contributed to 55% and
95% of link availability, respectively. For the remaining swim strokes, the results in water showed that breaststroke had generally a high
link availability.

Hagem et al. [27]

The results from the swim style test experiment showed that breaststroke had the highest received data with 60.3%, and 54.3%, 50.5%, and
45.25% for the freestyle, butterfly, and backstroke, respectively. The air test showed that the system is error-free for 70 cm with the top-view
LEDs and 35 cm with the side view mounted on the wrist strap. The swim test for different strokes showed that breaststroke was the best
with 60.3% error-free received data compared to other swim strokes.

Jeng [28] n/a

Le Sage et al. [29]

The difference in the real-time processing in butterfly, in comparison to the manual digitization, was determined to be on average
0.07 cycles·min−1. The mean difference was calculated as 0.34 cycles·min−1 for backstroke, 0.25 cycles·min−1 for breaststroke, and
0.10 cycles·min−1 for freestyle. The standard deviation for all four strokes fell under 2 cycles·min−1. Butterworth filter with selected cutoff
frequencies can be utilized to minimize the noise components of the signal and allow simple feature extraction algorithms to provide an
accurate determination of the stroke characteristics of the swimmer.

Lee et al. [30]

For lap counts and stroke counts, the mean absolute percentage error of Apple was within 10% (lap counts: 0.5 to 6.1%, stroke counts: 6.2 to
9.3%); however, Gamin was about 21% (lap counts: 0 to 20.6%, stroke counts: 6.8 to 17.6%). Both devices showed higher error rates when
the speed was slower. Apple overestimated energy expenditure at all speeds. The mean absolute percentage error of speeds between
0.4 m·s−1 and 1.0 m·s−1 were vigorous (32.70% to 151.66%), but the mean absolute percentage error (17.93%) became lower at the speed of
1.2 m·s−1. Garmin showed a mean absolute percentage error of 17.9% to 32.7%. Both wearables showed a tendency to gradually decrease
the mean absolute percentage error as the intensity of exercise increases.

Mangia et al. [31] The instrumental tests quantified a dynamic orientation estimation accuracy of about 6◦ . This accuracy was lower than that obtained with
the standard stereophotogrammetric system. Nonetheless, it was considered enough to provide useful information about swimming.

Pan et al. [32] The designed scheme can effectively identify stroke styles and count strokes with more than 87% and 94% accuracy on average, respectively.

Pla et al. [33]

The mean absolute percentage error in the 800 m freestyle showed a high level of accuracy for lap time, stroke count, swim speed, stroke
rate, stroke length, and stroke index (with all variables under 5% of mean absolute percentage error), in comparison to video recordings (0.9,
3.3, 0.7, 2.9, 4.5 and 4.8%, respectively). In the medley test (i.e., four swim strokes), sensors showed a high level of accuracy for lap time with
a mean absolute percentage error of 2.2, 3.2, 3.4, and 4.1% in butterfly, backstroke, breaststroke, and freestyle, respectively. No stroke count
error was found in the butterfly stroke. The accuracy was 2.4% in breaststroke, 4.9% in freestyle, and 7.1% in backstroke. The mean absolute
percentage error of speed and stroke rate were under 5% in all swim strokes.

Rowlands et al. [34] n/a

Shell et al. [35]

The total distance swam was underestimated by the device in comparison to video analysis. When benchmarked to video analysis, the
absolute error was consistently higher for total and mean stroke count, as well as the mean velocity. Across all sessions, the device
incorrectly detected the total time spent in backstroke, breaststroke, butterfly, and freestyle as 51%. The device did not detect the time spent
in drills.

Slawson et al. [36] n/a

Slawson et al. [37] n/a

Stamm et al. [38] n/a

RMSE—root mean square error; IMU—inertial measurement unit; 95CI—95% confidence intervals; LED—light
emitting diode; n/a—not applicable or not clearly disclosed.
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4. Discussion

The aim of this study was to systematically review the current body of knowledge
on the accuracy of wearables providing real-time feedback in the sport of swimming. The
quality of the research was 12.44 ± 2.71. Most articles assessed in-house built wearables in
front crawl, and measured swimming kinematics, placed on the lower back or the head,
as well as the accuracy, measurement error, and consistency. The majority of the articles
reported the wearables as accurate.

The quality was assessed on a scale from 0 to 16 points and the articles included had
an overall score of 12.44 ± 2.71. Thus, the articles in the synthesis are deemed as being
of “good” quality, or at least being closer from the upper limit of the scale. Nonetheless,
the item where the articles were lacking better scores were related to negative findings.
Overall, the articles did not report or elaborate on potential concerns or issues whenever
using the analyzed wearables. For sports in general, it was shown that discrepancies can
be found in the amount of details given in the studies that used wearable sensors [41]. On
the other hand, it was pointed out that wearables can provide accurate information about
biomechanical parameters [41]. Besides that, authors reported mostly in-house built wear-
ables. It is possible that they only published their findings after the final solution was fully
developed and implemented, thus solving any accuracy issues. Moreover, future research
could focus on the independent assessment of wearables developed by third parties.

The articles included in this systematic review recruited swimmers with different
demographics, i.e., from the recreational to elite level. From the 12 articles that described
the swimmers´ demographic, 8 recruited elite, or international, or national swimmers,
or semi-professional-level swimmers. The remaining ones recruited local or non-expert
swimmers. Thus, researchers are prone to recruit swimmers with high expertise. This
might happen because expert swimmers will be able to deliver the requested task with a
good level of proficiency. That said, recruiting participants with different backgrounds is a
competitive advantage when assessing the accuracy of sensors catering to a wide range
of swimmers.

Near half of the articles retained for analysis (n = 8, 44.4%) [21,23–25,30,31,34,38]
assessed the wearables exclusively in the front-crawl stroke. Indeed, front crawl is the
fastest swim stroke [42] and has the largest number of competitive events [43–46]. Thus, it
receives the largest interest among researchers in comparison to the other three competitive
strokes (backstroke, breaststroke, and butterfly stroke). The studies aimed to develop or use
wearables to monitor the stroke kinematics, including lap count, stroke count, stroke phase
detection and its duration (even during breathing), swimming velocity, stroke rate, stroke
length, and stroke index. Lap and stroke count are variables that are important for coaches
to monitor the training volume, a training load parameter [47,48]. Conversely, literature
reports that stroke kinematics (e.g., stroke rate, stroke length, stroke phase durations, etc.)
play a major role in swimming performance [1,2,4]. Thus, the devices under study can
be used on a daily basis by end-users to monitor the training load (e.g., volume) and
swim technique (e.g., stroke rate, stroke length, stroke phase durations, etc.) with the
ultimate goal of enhancing performance. Articles that assessed the four swim strokes
concurrently [26,27,29,32,33] revealed that breaststroke [22] or butterfly stroke [28] had
similar outputs. As for the articles that assessed the tumble turn during the front-crawl
stroke, the main focus was to analyze the acceleration in each phase of the turn [36] and to
establish the features of the tumble turn performance that could be identified by tri-axis
acceleration time-series [37]. In swimming, the turns account for a meaningful contribution
to the final race time [46,49]. These days, the turn is a key-phase of the swimming race.
Most coaches and swimmers are aware how important is this phase to final race time.
Therefore, providing end-users immediate feedback on the turn performance, can be an
added value of these wearables.

Incidentally, none of the articles provided data on swimming propulsion. Propulsion
is a main determinant of swimming velocity [50]. Moreover, propulsion data can also
provide insights on the swimmers’ symmetrical/asymmetrical limb actions [51]. However,
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research on propulsion-selected equipment suggest that the set-up, collection, extraction,
and handling of data are time-consuming and require a high level of expertise. As far as our
understanding goes, literature does not provide information on the development or appli-
cation of wearables that are friendly for end-users. Thus, there is an opportunity to develop
wearables than can provide data on the swimmers’ propulsion in a straightforward fashion.

Most articles studied accelerometers. The selection of this type of sensors may be
related to the type of task to be performed and assessed, as well as the technology available
at a given point in time. For instance, studies on the tumble turn [36,37] used accelerometers
and gyroscopes, and the article on the body roll [34] only used a gyroscope. Interestingly,
most recent articles developed IMUs, combining the accelerometer, gyroscope, and magne-
tometer. Integrating these three types of sensors enables a more comprehensive analysis,
such as speed, direction, acceleration, specific force, angular rate, and magnetic fields
surrounding the device [52]. Moreover, these units provide great self-independence, can
work in all environments, and provide good real-time estimation [10,31]. For a seamless
experience by the user, the design and development of swim wearable technology faces
extra challenges in comparison to available on-land solutions. The fact that the hardware
(i.e., the sensor collecting bio-signal) end-users are under water leads to an added constrain.
The frequency of limbs´ actions and the ready access to data by streaming it to a third-party
device, during or upon collection, should also be considered. Hence, in future pieces of
research, authors are encouraged to share details on signal frame rate, feedback delay,
wireless communication, among other specifications.

Regarding the anatomical landmarks, where the sensors were set up, the place of
choice depends on the variables of interest. To measure swim velocity, wearables were
placed on the lower back [22] (i.e., waist level, which can be a good proxy of the swimmer’s
center of mass [53]), or the head (which is the landmark used to measures the swimmer’s
velocity in race settings [49]). Studies where the wearable was placed on the upper-limb
(forearm, wrist, or palm of the hand) aimed to measure the stroke count, stroke rate, and
duration, and also helped to identify the stroke phases [21,24–27,30–32]. When the aim
was to count the kicking (legs’ downbeat), the wearables were placed on the shanks [24].
Notwithstanding, a major concern around the use IMUs is where they should be placed.
Mistakes concerning the placement of IMUs are more challenging than manufacturing
variations, environmental conditions, synchronization, or integration drift [54]. Therefore,
users must be mindful and careful about the body landmark where the wearable should be
placed to yield the expected output.

Only three articles [30,33,35] selected commercially available wearables and the re-
maining used non-commercial equipment (i.e., in-house built). Hence, wearables are still in
early stages of the innovation cycle, are at the development stage, and are not available to
end-users. Another key topic concerns the accuracy or measurement error of wearables [41].
Indeed, it was claimed that commercial wearables may not be suitable for professional
use due to the low level of accuracy [55]. Thus, the three articles aimed to learn about the
accuracy of commercial wearables [30,33,35]. Overall, the study by Lee et al. [30] noted
that the error rate of lap count and stroke count at various swimming speeds were within
10% for Apple and about 20% for Garmin. On the other hand, the error rate of estimating
energy expenditure was higher for Apple than Garmin. Thus, the authors suggested that
Apple and Garmin wearables can accurately measure lap counts and stroke counts, but
the energy expenditure estimation is poor at slow or medium speeds. Two studies aimed
to assess the validity of the same wearable [33,35]. However, they presented different
outputs. Pla et al. [33] reported that the accuracy of the spatial–temporal variables (stroke
count, swim speed, stroke rate, stroke length, and stroke index) was high in international
open-water swimmers. Conversely, Shell et al. [35] noted that the total swim distance was
underestimated by the wearable in comparison to video analysis. Moreover, the authors
pointed out that the absolute error in a set of spatial–temporal variables was consistently
higher, in comparison to video analysis [35]. Altogether, it seems that commercial wearables
should undergo deeper and comprehensive benchmark analyses, in comparison to the
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gold-standard methods, in order to gain a better insight on its accuracy. The remaining arti-
cles [21,22,24,26,27,29,31,32] that used non-commercial wearables and measured accuracy
or measurement errors noted that the wearables under study were accurate. Overall, the
measured parameters were related to spatial–temporal variables, following identification
and determination of the stroke phases. Therefore, based on the data gathered by this
systematic review, one can suggest that non-commercial wearables (i.e., in-house-built)
seem to report better accuracy than commercial solutions. However, it must be pointed
out that seven articles (38.9%) [23,25,28,34,36–38] studying non-commercial wearables did
not report any information on the reliability. As aforementioned, the main advantage of
using such wearables is to spend less time collecting and handling data, thus providing the
user with immediate feedback [10,41]. However, based on the findings from this system-
atic review, it seems that the accuracy of commercially available wearables has room for
improvement. Conversely, in-house built systems should move on to other stages of the
innovation cycle, thus making them more user-friendly and independently tested.

Overall, it was pointed out that there is potential for wearable technology to be used
for long-term monitoring in sports [41], and specifically in swimming. Notwithstanding,
wearables can become a tool with pivotal importance in other settings before the user can
reach competitive and high-performance levels. This technology can eventually become
a mainstream tool in teaching swimming and drowning prevention [56]. Such solutions
can be used for tracking and locating the user in water, as well as for drowning detection,
and can even deployed as anti-drowning systems. They can also play an important role
in health settings; for injury prevention, wearables can provide coaches and athletes with
the ability to observe and analyze biomechanical risk factors over a defined exposure time,
for example [31,41]. This information can be even more important when delivered in real
time. It must be pointed out that one of the “outcomes” of the PI(E)CO strategy was “real-
time”. We chose to add this outcome because literature reports the immediate feedback
(i.e., in real-time) as one of the main advantages in using wearables [33,41]. However, when
performing this systematic review, several articles, e.g., [57–59], were not retained because
they did not mention this. The main goal of these studies is to understand the validity and
accuracy of wearables that provide readily available feedback to coaches and athletes with
valuable information that can help them improve their performance. Thus, the competitive
advantages of swimming wearables are: (1) they are user-friendly, by decreasing the level
of expertise needed to set up the device, as well as collect and handle data; (2) they are
less time-consuming, thus providing immediately feed-back; and (3) they can provide data
with higher accuracy. Thus, future studies about wearables in swimming or any other sport
should clearly mention if the wearable is user-friendly, and if it can provide real-time or
immediate feedback as well as improved accuracy.

5. Conclusions

The articles retained in this systematic review on the use of wearables in swimming
mainly assessed in-house built solutions in the front-crawl stroke; measured swimming
kinematics, placed on the lower back or the head; and evaluated the accuracy, measurement
error, or consistency. The majority of the articles reported the wearables as accurate.
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