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The present study determined the effects of dietary xylo-oligosaccharides (XOS)

supplementation on the morphology of jejunum and ileum epithelium, fecal microbiota

composition, metabolic activity, and expression of genes related to colon barrier function.

A total of 150 piglets were randomly assigned to one of five groups: a blank control

group (receiving a basal diet), three XOS groups (receiving the basal diet supplemented

with 100, 250, and 500 g/t XOS, respectively), as well as a positive control group, used

as a matter of comparison, that received the basal diet supplemented with 0.04 kg/t

virginiamycin, 0.2 kg/t colistin, and 3,000 mg/kg ZnO. The trial was carried out for 56

days. The results showed that the lowest dose tested (100 g/t XOS) increased (P < 0.05)

the ileal villus height, the relative amount of Lactobacillus and Bifidobacterium spp., and

the concentration of acetic acid and short-chain fatty acid in feces when compared with

the blank control group. In conclusion, dietary 100 g/t XOS supplementation modifies

the intestinal ecosystem in weaned piglets in an apparently overall beneficial way.

Keywords: colon barrier function, intestine morphology, metabolites, microbiota, weaned piglets, xylo-

oligosaccharides

INTRODUCTION

Weaning is a critical stage for piglets that is associated with alterations in the morphology,
architecture, and function of the gut, as well as changes in the enteric microbiota (1).
Weaned piglets consistently exhibit underdeveloped immune systems, digestive disorders, and
post-weaning diarrhea (2), all of which decrease growth performance and cause economic loss
for the swine industry (3). Antibiotics and ZnO have long been incorporated into the diets
of piglets to solve post-weaning problems (4), maybe by ameliorating the intestinal disorders
that are concomitant with weaning. However, their continuous use and misuse have led to the
emergence of drug resistance, the risk of residual antibiotics in animal products, and Zn-residues
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in the environment (5, 6). In addition, the use of antibiotics in
feed has been banned in China since 2020 to avoid development
of antibiotic resistance among pathogenic microorganisms (7).
Moreover, the country has also limited the amount of zinc oxide
in feed. These regulations promoted the exploration of natural
plant bioactive compounds, probiotics, prebiotics, and other
potential alternatives as feed additives to improve productivity,
welfare, and health of livestock and poultry (8).

Natural plant bioactive compounds can improve barrier
function and nutrient transport in the gastrointestinal and
have antimicrobial, antioxidant, and various pharmacological
effects (8). The consumption of probiotic bacteria contributes
to intestinal function by maintaining paracellular permeability,
enhancing the physical mucous layer, stimulating the immune
system, and modulating resident microbiota composition and
activity (9). Prebiotics are compounds that, from an overall
point of view, have the potential to influence positively
some physiological functions, consequently, animal health, and
well-being. Prebiotics may affect specifically and selectively
the intestinal bacteria composition and/or metabolic activity
(10). Dietary modulation of the gut microflora by prebiotics
is designed to improve health, and notably gut health, by
stimulating numbers and/or activities of the so-called beneficial
bacteria, such as the Bifidobacterium and Lactobacilli. These
beneficial bacteria may contribute to the increased resistance
to pathogenic bacteria and the stimulation of the immune
response (11).

It is well-known that, for instance, β-(2-1)-fructans, which
include inulin and fructo-oligosaccharides (FOS), are considered
as truly prebiotics, while xylo-oligosaccharides (XOS) are
considered as candidate prebiotics (12). The XOS is a functional
polymerized sugar made up of 2-8 xylose molecules bonded by
β-(1–4) glycosidic bounds. In addition to xylose molecules, XOS
is usually found in combination with other side groups such as α-
D-glucopyranosyl uronic acid or its 4-O-methyl derivative, acetyl
groups, or arabinofuranosyl residues, resulting in branched XOS
with diverse biological properties (10).

As pigs do not have endogenous enzymes in the small
intestine to digest XOS, it is expected that unabsorbed XOS
can reach the hindgut where they will be used for the growth
of favorable bacteria and be fermented by the microbiota (13)
leading to the production of various metabolites. Some studies
have shown that XOS preferentially stimulates the growth or
activity of advantageous bacteria such as Bifidobacterium and
other lactic acid bacteria in the gastrointestinal tract (14–16).
Liu et al. (17) found that XOS supplementation may increase
slightly ADFI, as well as the digestive enzyme trypsin and
amylase activity, and fecal microbial shedding of Lactobacilli,
while decreasing fecal E. coli counts. Chen et al. (18) have
reported that dietary XOS supplementation enhanced the growth
performance, improved intestinal morphology and modulated
the relative abundance of specific bacteria by changing the overall
microbial composition and bacterial metabolite production.

Abbreviations: AJ, adherens junctions; IL, interleukin; RT-qPCR, real-time

quantitative PCR; SCFA, short-chain fatty acids; TJ, tight junctions; XOS, xylo-

oligosaccharides; ZO, zonula occludens.

The increased population of Lactobacillus and decreased
abundance of Clostridium_sensu_stricto_1, Escherichia_Shigella,
and Terrisporobacter in piglets fed XOS 500 might be a
contributor for improved growth characteristics (18).

Our previous study showed that XOS can significantly
improve the growth of weaned pigs (19). The inclusion of
XOS in weaned pigs’ diets may enhance immune function
and improve the growth of the intestinal mucosa layer and
intestinal microbiota diversity (19). We hypothesized that dietary
supplementation with XOS may exert beneficial effects on the
jejunum and ileum morphology, fecal microbiota composition
and bacterial metabolite concentrations, as well as expression
of genes related to intestinal barrier function and cytokine
production in colon of weaned piglets. Therefore, the aim of this
study was to test this hypothesis and to determine what dose was
most beneficial for the intestinal health of the weaned piglets.

MATERIALS AND METHODS

Animals, Housing, and Treatment
A total of 150 Duroc × Landrace × Large White piglets weaned
at 21-day-old with an average body weight of 7.02 ± 0.05 kg
were used in this study. The piglets were randomly assigned to
one of five groups with six replicates per group and five piglets
per replicate. The five groups consisted of a blank control group
(receiving a basal diet), three groups receiving the basal diet
supplemented with 100, 250, or 500 g/t XOS group (XOS is
mixed in the basal diet as one of feed additives), as well as a
comparative group receiving a classical mixture of compounds
(the basal diet supplemented with 0.04 kg/t virginiamycin, 0.2
kg/t colistin, and 3,000 mg/kg ZnO). The XOS were provided by
Shandong Longlive Bio-technology Co. Ltd (Shandong, China),
which contain xylobiose, xylotriose, and xylotetraose at ≥35%.
The doses used for supplementation was according to the
manufacturer’s recommendations.

All pigs were housed in 2.0m × 2.5m pens with hard plastic
slatted flooring and had ad libitum access to drinking water and
the experimental diets. Each pen was equipped with a stainless-
steel feeder and a nipple drinker. The room temperature was
maintained at 25–27◦C. The composition and nutrient levels of
the basal diet are shown in Table 1. The trial lasted for 56 days.

Sample Collection and Preparation
At days 7, 21, and 56 of the trial, the feces were collected and
stored at −20◦C for analysis of short-chain fatty acids (SCFA)
and of the microbiota composition. At the end of the 56-day
trial period and 12 h after the last feeding, a medium-sized piglet
per replicate was sacrificed using general anesthesia with Zoletil
(15mg tiletamine/kg body weight, 15mg zolazepam/kg body
weight, intramuscular injection) (20). After intestine recovery,
samples of the jejunum, ileal, and colonic samples (∼2 cm)
were collected after washing with cold physiological saline, the
jejunum and ileum were immediately fixed in 10% neutral
formalin solution until further morphological analysis, and colon
samples were frozen in liquid nitrogen and then stored at−80◦C
until gene expression analysis.
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TABLE 1 | Composition and nutrient levels of the basal diet (fed-basis).

Ingredients Stages of the trial

7–28 days 29–40 days 41–56 days

Corn 55.0 220.0 695.0

Extruded corn 100.0 – –

Broken rice 180.0 250.0 –

Wheat flour 50.0 120.0 –

Glucose 50.0 30.0 –

Soybean meal (46% CP) 30.0 105.0 –

Soybean meal (43% CP) – – 160.0

Puffed soybean 100.0 100.0 –

Fermented soybean meal – 25.0 40.0

Soybean protein concentrate 25.0 – 20.0

Fish meal 50.0 30.0 10.0

Plasma 50.0 – –

Low-protein whey powder 225.0 50.0 –

Egg powder 10.0 5.0 –

Wheat bran – – 20.0

Soybean oil 20.0 10.0 15.0

Citric acid 15.0 15.0 –

Premixa 40.00 40.00 40.00

Total 1000.0 1000.0 1000.0

Nutrient componentb

DE (MJ/kg) 14.75 14.23 13.81

CP 18.43 18.02 16.59

EE 5.71 4.37 4.47

CF 1.68 2.31 2.76

Met 0.52 0.49 0.39

Cys 0.27 0.28 0.31

aThe premix provided the following per kg of the diet: VA 6 200 IU, VD3 700 IU, VE 88

IU, VK 4.4mg, VB2 8.8mg, Pantothenate 24.2mg, nicotinic acid 33mg, Chloride choline

330mg, Cu 10mg, Zn 100mg, Fe 145mg, Mn 40mg, Se 0.1mg, I 0.3mg. bNutrient

contents are calculated values. DE, digestible energy; CP, crude protein; EE, ether extract;

CF, crude fiber; Lys, lysine; Met, methionine; Cys, cysteine.

The Measurement of Jejunal and Ileal
Morphology
Histological slides were prepared from 3 cross-sections (5µm
thick) of each intestinal sample, which were processed in low-
melt paraffin and stained with hematoxylin-eosin. Villus height
(VH) and crypt depth (CD) were measured using the Olympus
BX-51 microscope (Olympus, Center Valley, PA, USA), and
VH:CD (V/C) ratio were calculated.

DNA Extraction and Fecal Microbiota
Analysis
Total microbial DNAwas extracted and purified using a QIAamp
DNA Stool Kit (Qiagen, Hilden, Germany) and stored at−80◦C.
The 16S rRNA gene sequences of Bacteroidetes, Bifidobacterium
spp., Escherichia coli, and Lactobacillus were cloned into the
pMD19-T vector (21). Gene sequences were amplified from fecal
total DNA using the primers listed in Table 2. A total of five
clones with 16S rRNA gene sequences belonging to different

TABLE 2 | 16S rRNA gene-targeted group-specific primers used in this study.

Items Sequence (5′–3′) Amplicon

length (bp)

Bacteroidetes F:GGARCATGTGGTTTAATTCGATGAT 126

R:AGCTGACGACAACCATGCAG

Bifidobacterium spp. F:TCGCGTCYGGTGTGAAAG 128

R:GGTGTTCTTCCCGATATCTACA

Escherichia coli F:CATGCCGCGTGTATGAAGAA 95

R:CGGGTAACGTCAATGAGCAAA

Lactobacillus F:AGCAGTAGGGAATCTTCCA 345

R:ATTCCACCGCTACACATG

R:ACGTCRTCCMCNCCTTCCTC

taxa were used as templates to test primer specificity. Standard
curves were constructed with DNA from representative species
for a concentration range of 102–1010 DNA copies/mL using
a Lightcycler 480II instrument (Applied Biosystems, Carlsbad,
CA, USA). The general microbial DNA extracted from feces
and specific DNA from recombinant microbiota were quantified
by RT-PCR. Reaction conditions were 2min at 50◦C, an initial
denaturation step at 95◦C for 5min, and then 40 cycles of
denaturation at 94◦C for 20 s, primer annealing at a species-
specific temperature for 30 s, and primer extension at 60◦C for
1 min (22).

Analysis of the Fecal Concentrations of
Metabolites
At time of euthanasia, the feces of each pigs were sampled,
homogenized, and centrifuged at 1,000× g for 10min (23).
A mixture of supernatant fluid and 25% metaphosphoric acid
solution (1:0.25ml) was prepared for determining the SCFA by
gas chromatography (24).

Analysis of mRNA Levels of Genes Related
to Barrier Function in Colonic Tissues
The analysis of mRNA levels of genes related to barrier function
in colonic tissues was conducted according to a previous study.
Total RNA was isolated from colonic samples using the TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) and treated with
DNAase. The RNA quality was checked by 1% agarose gel
electrophoresis followed by staining with 10µg/mL ethidium
bromide. TheOD260:OD280 ratio of extracted RNAwas between
1.8 and 2.0. Reverse transcription was performed using a Prime
Script RT reagent Kit with gDNA eraser (Takara, Dalian, China).
The mRNA levels of the selected genes in the colon tissues were
determined by real-time quantitative (RT-qPCR) as described
previously (25). Selected genes were intestinal tight junction
proteins, including occludin, Claudin 2 and Claudin 3, and
zonula occludens-1 (ZO-1); interleukin-10 (IL-10), IL-1β , and
IL-8. The primers used to amplify these genes are shown in
Table 3. The relative expression was reported as a ratio of the
expression of the target genes to that of beta-actin (β-actin),
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and data were expressed relative to those in the basal diet-
treated piglets. The relative expression ratio (R) of mRNA was
calculated as R = 2−11Ct ×(sample − control), where -11Ct
×(sample − control) = (Cttarget gene − Ctβ−actin) ×sample −

(Cttarget gene − Ctβ−actin) ×control. RT-qPCR was performed
using a SYBR Green detection kit (Thermo Fisher Scientific,
Waltham,MA), and conditions were as follows: 30 s denaturation
at 94◦C, 30 s annealing at 60◦C, and 30 s extension at 72◦C
for 40 cycles, followed by a melting curve program (60–99◦C
with a heating rate of 0.1◦C/s and fluorescence measurement).
A melting temperature (Tm) peak at 85 ± 0.8◦C was used to
determine the specificity of amplification. Tm values are reported
as the mean of three replicates.

Statistical Analysis
Results were statistically analyzed using one-way ANOVA of
SPSS 17.0 software (SPSS, Inc., Chicago, IL, USA). The pen was
included as a random effect for data analysis. The data were

presented as means, pooled SEM, and P-values. P-values < 0.05
were taken to indicate statistical significance.

RESULTS

The Morphology of the Epithelium of
Jejunum and Ileum
As shown in Table 4, the CD and VH of jejunum in the 100 g/t
XOS group increased (P < 0.05) in comparison to the positive
control group. The V/C ratio of jejunum in the 500 g/t XOS
group was higher (P < 0.05) than the blank control group. The
VH of ileum in the 100 g/t XOS group increased (P < 0.05) in
comparison to the other four groups.

Composition of Fecal Microbiota in Piglets
As shown in Table 5, the relative abundances of Lactobacillus,
Bifidobacterium spp., Escherichia coli, and Bacteroidetes in the
feces did not change (P> 0.05) after XOS supplementation at day

TABLE 3 | Primers used for quantitative reverse transcription PCR.

Items Genbank

accession number

Sequence (5
′

–3
′

) Length

(bp)

β-actin XM_003357928.1 F:GGACTTCGAGCAGGAGATGG

R:GCACCGTGTTGGCGTAGAGG

233

Occludin NM_001163647.1 F:ATGCTTTCTCAGCCAGCGTA

R:AAGGTTCCATAGCCTCGGTC

176

Claudin 2 NM_001161638 F:TGGTGGGTGGAGTCTTCTTC

R: TTGGAGCGATTTCCTTGC

223

Claudin 3 NM_001160075 F:GATGCAGTGCAAAGTGTACGA

R:GTCCTGCACGCAGTTGGT

148

ZO-1 XM_003353439.1 F:GAGGATGGTCACACCGTGGT

R:GGAGGATGCTGTTGTCTCGG

169

IL-1β NM_214055.1 F:AGTGGAGAAGCCGATGAAGA

R:CATTGCACGTTTCAAGGATG

113

IL-8 NM_213867.1 F:TAGGACCAGAGCCAGGAAGA

R:AGCAGGAAAACTGCCAAGAA

92

IL-10 NM_214041.1 F:CTGCCTCCCACTTTCTCTTG

R:TCAAAGGGGCTCCCTAGTTT

95

β, beta; IL, interleukin; ZO-1, zonula occludens-1.

TABLE 4 | Effects of dietary XOS supplementation on the morphology of jejunal and ileal epithelium in weaned piglets (n = 6; data are mean values in µm).

Items Blank

control

group

XOS-supplemented groups (g/t) Positive

control

group

Pooled

SEM

P-value

100 250 500

Jejunum

Villus height 510.55ab 607.62a 484.20b 497.45ab 482.98b 47.28 0.03

Crypt depth 324.42ab 377.73a 297.89b 277.68b 297.08b 22.75 0.02

V:C ratio 1.58b 1.61ab 1.65ab 1.81a 1.63ab 0.07 0.04

Ileum

Villus height 418.70b 492.4a 389.53b 428.41b 401.92b 19.37 0.02

Crypt depth 219.66 259.76 222.78 242.92 221.87 18.42 0.44

V:C ratio 1.92 1.93 1.76 1.84 1.82 0.12 0.85

Data in the same row with different superscripts differ significantly (P < 0.05). V:C ratio, Villus height:Crypt depth ratio.
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7 of the trial. In the 250 and 500 g/t XOS groups and the positive
control group, the relative abundance of Lactobacillus was lower
(P < 0.05) than the blank control group at day 21 of the trial. At
day 56 of the trial, the relative abundance of Lactobacillus in the
100 g/t XOS group was higher (P < 0.05) than the blank control
group. In the 100, 250, and 500 g/t XOS groups, the relative
abundances of Bifidobacterium spp. was higher (P < 0.05) than
the blank control group. In the 100 g/t XOS group, the relative
abundance of Bacteroidetes was higher when compared to the
positive control group.

Concentrations of Bacterial Metabolites in
the Feces of Piglets
As shown in Table 6, at day 7 of the trial, the acetic acid
concentration in 100, 250, and 500 g/t XOS groups and the
positive control group were higher (P < 0.05) than the blank
control group. Dietary supplementation with 250 g/t XOS
increased (P < 0.05) the SCFA concentration compared with the
blank control group. At day 21 of the trial, the concentration of
isovaleric acid in the 100 g/t XOS group increased (P < 0.05)
compared with the other four groups. At day 56 of the trial,
the concentration of acetic acid and SCFA in the 100 g/t XOS
group was higher (P < 0.05), as well as the butyric acid and
SCFA in the 250 g/t XOS group, when compared with the two
control groups.

Expression of Genes Related to Intestinal
Barrier Function and Cytokine in the Colon
As shown in Table 7, dietary supplementation with 100 g/t XOS
increased (P < 0.05) the mRNA level of Claudin 2 compared with
the positive control group. Dietary supplementation with 250 g/t
XOS increased (P < 0.05) the mRNA level of ZO-1 compared
with the blank control group.

DISCUSSION

Recently, the intestinal microbiota composition and related
metabolic activities have emerged as important parameters
affecting either positively or negatively “intestinal health” (26).
Components such as microbiota composition, diversity and
bacterial metabolite concentrations can affect the epithelial
integrity, barrier function, immunity, and enteroendocrine
peptides secretion. It is known that the intestinal microbiota
has genomic characteristics that allow it to use undigested or
partially digested nutrients, notably proteins and undigested
polysaccharides, present in feedstuff. In return, it benefits the
host metabolism by providing energy through the production
of metabolites that can be utilized and absorbed by colonic
cells (27). Conversely, some amino acid-derived bacterial
metabolites have been shown to exert deleterious effects
on colonic epithelial cells when present in excess (26). It
has been demonstrated that regarding oligo-saccharides,
numerous types of these compounds may represent a potential
alternative to antibiotic treatment for contributing to the
maintenance of microbial composition and/or metabolic
activity with positive effect on gut health (28). Indeed,

David et al. (29) reviewed the beneficial effects of different
oligo-saccharides, including N-acetylglucosamine, oligo-
fructose, lactulose, and various glycoproteins, as prebiotics
to improve the gut health. Li et al. (30) found that XOS
promotes the growth of Bifidobacterium and Lactobacillus
in the gut and increases the SCFA content in these intestinal
microbes, these effects in turn being associated with an
improvement of the intestinal barrier function (30). In the
present study, three doses of XOS were used according to the
manufacturer’s recommendations.

Gut villus structure and barrier integrity play an important
role in intestinal function, including nutrient digestibility,
absorption, and protecting against pathogen infection (31). An
increase of villus height suggests a larger surface area capable
of greater absorption of available nutrients (32). The villus
height/crypt height ratio is used as a criterion to estimate the
nutrient final digestion step and absorption capacity of the small
intestine (33). Prebiotics were reported to improve growth via
promoting nutrient absorption by improving intestinal structure
(34). In this study, we found that dietary supplementation with
500 g/t XOS increased the villus height/crypt height ratio in
jejunum. In addition, we found that dietary supplementation
with 100 g/t XOS increased the villus height in ileum.
This confirms the results obtained by Mourao et al. (35)
showing a positive relationship between dietary oligosaccharides
supplementation and higher intestinal villi in piglets. Chen et al.
found that villus height and villus height:crypt depth ratio of
the ileum in the 500 g/t XOS treatment group was significantly
increased compared to the CON group. De Maesschalck et al.
(36) found that supplementation of 0.5% XOS to the broiler
feed significantly improved the villus height of the ileum. These
reports are all converging in showing that XOS can improve
intestinal structure, in accordance with our finding, however
with different doses used. Additional works are required in order
to better clarify the relationship between dose and parameters
related to intestinal functions.

Gut microbiota are the resident microorganisms in the
digestive tracts of animals and humans, which affect nutrient
digestion and the bioconversion of food compounds in the
host organisms (37). Oligosaccharides can be fermented in
the large intestine by indigenous bacteria and are preferably
used by probiotic bacteria (38). Prebiotics are non-digestible
feed ingredients that are believed to escape digestion in the
upper gut and that may selectively stimulate the growth
of Lactobacilli or Bifidobacterium in colon, thereby possibly
improving health (39). Our results indicated that 100 g/t XOS
increased the growth of Lactobacillus and Bacteroidetes. What’s
more, 100, 250, and 500 g/t XOS increased the growth of
Bifidobacterium spp. at day 56 of the trial. It confirms that
XOS can improve gut microbiota communities. Increased level
of Lactobacillus and Bifidobacterium spp. has been proposed
to reinforce the epithelial barrier function against common
pathogens. The mechanisms are likely to include the excretion
of organic acids (e.g., lactic acid and acetic acid), competition
for nutrients with deleterious bacteria, competition at gut
receptor sites, and immune-modulation and formation of
specific antimicrobial agents (40). Moreover, we found that the

Frontiers in Veterinary Science | www.frontiersin.org 5 June 2021 | Volume 8 | Article 680208

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Su et al. Xylo-oligosaccharides Modifies the Intestinal Ecosystem

TABLE 5 | Effects of dietary XOS supplementation on fecal microbiota abundance in weaned piglets (n = 6; lg copies/g).

Items Blank

control

group

XOS-supplemented groups (g/t) Positive

control

group

Pooled

SEM

P-value

100 250 500

Day 7

Lactobacillus 6.82 6.89 7.22 7.20 7.36 0.31 0.33

Bifidobacterium spp. 5.44 5.68 5.51 5.58 5.84 0.17 0.17

Escherichia coli 6.38 6.66 6.35 6.37 6.71 0.22 0.37

Bacteroidetes 10.60 10.79 10.68 10.69 10.76 0.26 0.47

Day 21

Lactobacillus 7.90a 7.33ab 6.94b 6.57b 6.50b 0.28 0.02

Bifidobacterium spp. 5.78 5.84 5.91 5.22 5.54 0.11 0.27

Escherichia coli 6.14 5.84 6.12 6.16 6.23 0.11 0.64

Bacteroidetes 10.80 10.55 10.54 10.41 10.66 0.11 0.51

Day 56

Lactobacillus 7.36b 7.84a 7.47ab 7.43ab 7.57ab 0.13 0.02

Bifidobacterium spp. 6.20b 7.15a 7.13a 7.14a 6.94ab 0.25 0.04

Escherichia coli 6.61 6.49 6.96 6.39 6.58 0.36 0.86

Bacteroidetes 10.90ab 11.10a 10.85ab 10.98ab 10.66b 0.11 0.01

Data in the same row with different superscripts differ significantly (P < 0.05).

advantage of 100 g/t XOS in changing intestinal microecology
was revealed by the analysis of the different kinetics time
points, such analysis showing that the effects of XOS is a long-
term process.

It is well-known that the SCFAs are main products of the
microbial fermentation of complex carbohydrates (41). These
SCFAs are the preferred energy source for the colonic epithelium
andmay stimulate colonocyte proliferation and influence various
aspects of gut physiology. Most of functional oligosaccharides
are not digested for lack of relevant enzymes, and reach the
colon in their initial form, before being fermented by anaerobic
bacteria (42). Such metabolic process produces SCFAs. The
amounts and types of SCFA produced depend on the type of
non-digestible oligosaccharides as well as on the composition
of the intestinal microbial flora (43). Our results showed that
100 g/t XOS increase the concentrations of acetic acid and
SCFAs in the colon at day 56 of the trial. We have known
that the production of SCFA results in decrease of pH in
the colon, such a decrease inhibiting the growth of certain
pathogenic bacterium while stimulating the growth of the
beneficial bacteria (44, 45). This also explains why the abundance
of Lactobacillus and Bifidobacterium spp. increased at 56 days of
the trial. The SCFAs have been noted to have immunomodulatory
effects on colonic inflammation and suppress inflammatory
cytokine secretion in cultured epithelial cells (46). Increased
availability of butyric acid for the colonocyte may be associated
with decreases of the inflammatory parameters (47). In the
present study, 250 g/t XOS supplementation increased the
concentration of butyric acid at day 56 of the trial, but
did not regulate the mRNA levels of inflammatory cytokines
(IL-1β , IL-8, and IL-10), which is not consistent with the

findings presented above. The reason and significance needs
further investigations.

The surface of the gut epithelium is protected by a layer
of mucus, which is in constant contact with an abundant
population of microbiota and their metabolites (48). One
aspect of the intestinal barrier is related to an intact intestinal
epithelium with functional junctional complex, consisting of
tight junctions (TJ, including occludin, claudin, and ZO-1),
adherens junctions (AJs, including E-Cadherin and catenins),
gap junctions, and desmosomes (49). Such an intact epithelium
is able to exclude the vast majority of the microbiota from
access to the subepithelial cells in the lamina propria (49).
Our results indicated that the 250 g/t XOS up-regulated the
mRNA level of ZO-1. ZO-1 serves as a scaffold protein and
anchors tight junction strand proteins (50). Yin et al. (51)
also have reported that dietary XOS markedly enhanced the
mRNA level of ZO-1 in the ileum. However, further work
is needed to determine if such an increased expression of
ZO-1 is paralleled by a modification of the epithelial barrier
function. Christensen et al. (52) have reported that the relative
abundances of beneficial microbiota have been found a highly
association with gut barrier. But the data of our study did
not prove such an association. Moreover, no differences in
the mRNA levels of Occludin, Claudin 2, and Claudin 3
were recorded when comparisons between XOS-supplemented
groups and blank control group were done, thus indicating
that the effect of XOS on ZO-1 gene expression among other
genes coding for tight junction protein appears rather specific.
Additional studies are obviously required to define the complex
relationships between the different parameters modified by
dietary XOS supplementation.
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TABLE 6 | Effects of dietary XOS supplementation on concentrations of short-chain fatty acids in colonic contents of weaned piglets (n = 6; data are mean value in mg/g).

Items Blank

control

group

XOS-supplemented groups (g/t) Positive

control

group

Pooled

SEM

P-value

100 250 500

Day 7

Acetic acid 2.26b 3.46a 3.85a 3.65a 3.96a 0.30 0.01

Propionic acid 1.79 1.76 1.93 1.54 1.69 0.25 0.89

Butyric acid 1.08 0.90 1.29 0.85 1.16 0.19 0.57

Valeric acid 0.19 0.24 0.17 0.09 0.17 0.04 0.38

Isobutyric acid 0.17 0.22 0.19 0.17 0.17 0.02 0.46

Isovaleric acid 0.25 0.29 0.29 0.25 0.25 0.05 0.95

Short-chain fatty acid 5.74b 6.87ab 7.72a 6.55ab 7.39ab 0.57 0.03

Day 21

Acetic acid 3.33 3.43 3.27 3.33 3.66 0.31 0.93

Propionic acid 1.31 1.55 1.31 1.32 1.45 0.16 0.82

Butyric acid 1.13 1.51 1.32 1.10 1.15 0.20 0.65

Valeric acid 0.36 0.42 0.43 0.31 0.34 0.04 0.42

Isobutyric acid 0.36 0.38 0.36 0.29 0.34 0.03 0.61

Isovaleric acid 0.24b 0.40a 0.27b 0.24b 0.29b 0.03 0.04

Short-chain fatty acid 6.74 7.69 6.97 6.58 7.23 0.51 0.70

Day 56

Acetic acid 2.30b 2.94a 2.82ab 2.66ab 2.29b 0.21 0.04

Propionic acid 1.16 1.42 1.55 1.29 1.25 0.14 0.29

Butyric acid 0.61b 0.90ab 1.16a 0.92ab 0.72b 0.10 0.04

Valeric acid 0.14 0.22 0.23 0.20 0.17 0.03 0.24

Isobutyric acid 0.08 0.09 0.11 0.12 0.09 0.02 0.63

Isovaleric acid 0.07 0.08 0.10 0.10 0.08 0.02 0.77

Short-chain fatty acid 4.37b 5.66a 5.97a 5.28ab 4.59b 0.43 0.04

Data in the same row with different superscripts differ significantly (P < 0.05). Short-chain fatty acid, including acetic acid, ropionic acid, butyric acid, valeric acid, isobutyric acid, and

isovaleric acid.

TABLE 7 | Effects of dietary XOS supplementation on colon mRNA levels related to epithelial cell barrier function and inflammation in weaned piglets (n = 6).

Items Blank

control

group

XOS-supplemented groups (g/t) Positive

control

group

Pooled

SEM

P-value

100 250 500

Occludin 1.00 0.87 1.32 0.77 1.51 0.25 0.31

Claudin 2 1.00ab 0.87b 1.55ab 1.28ab 1.79a 0.24 0.02

Claudin 3 1.00 0.81 1.27 0.72 0.83 0.26 0.62

ZO-1 1.00b 1.37ab 1.90a 1.47ab 1.61ab 0.22 0.03

IL-1β 1.00 1.16 1.65 1.35 1.10 0.20 0.11

IL-8 1.00 1.04 1.29 1.24 0.90 0.23 0.16

IL-10 1.00 1.22 1.26 1.16 1.10 0.34 0.67

Data in the same row with different superscripts differ significantly (P < 0.05). IL, interleukin; ZO-1, zonula occludens-1; β, beta.

CONCLUSIONS

The lowest dose of xylo-oligosaccharides tested (100 g/t)
increases the villus height in ileum, the abundance of
Lactobacillus and Bifidobacterium spp. and the concentrations
of acetic acid and short-chain fatty acid. Thus, 100 g/t

xylo-oligosaccharides supplementation impacts the ileal
morphology and colon ecosystem in weaned piglets.
According to our findings, we recommend supplementation
with 100 g/t xylo-oligosaccharides to feed in order to
obtain the most presumed beneficial effects on the
gut ecosystem.
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