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Buffer Influence on the Amino Acid Silica Interaction
Saientan Bag+,[a] Stefan Rauwolf+,[b] Mikhail Suyetin,[a] Sebastian P. Schwaminger,[b]

Wolfgang Wenzel,*[a] and Sonja Berensmeier*[b]

Protein-surface interactions are exploited in various proc-
esses in life sciences and biotechnology. Many of such
processes are performed in presence of a buffer system,
which is generally believed to have an influence on the
protein-surface interaction but is rarely investigated system-
atically. Combining experimental and theoretical method-
ologies, we herein demonstrate the strong influence of the
buffer type on protein-surface interactions. Using state of the
art chromatographic experiments, we measure the interac-
tion between individual amino acids and silica, as a reference
to understand protein-surface interactions. Among all the 20
proteinogenic amino acids studied, we found that arginine
(R) and lysine (K) bind most strongly to silica, a finding

validated by free energy calculations. We further measured
the binding of R and K at different pH in presence of two
different buffers, MOPS (3-(N-morpholino)propanesulfonic
acid) and TRIS (tris(hydroxymethyl)aminomethane), and find
dramatically different behavior. In presence of TRIS, the
binding affinity of R/K increases with pH, whereas we observe
an opposite trend for MOPS. These results can be understood
using a multiscale modelling framework combining molec-
ular dynamics simulation and Langmuir adsorption model.
The modelling approach helps to optimize buffer conditions
in various fields like biosensors, drug delivery or bio
separation engineering prior to the experiment.

1. Introduction

Protein and peptide-surface interactions at the solid-liquid
interface play an important role in various research fields like
medicine,[1,2] engineering[3] and biotechnology.[4] These inter-
actions depend on the detailed structure and the composi-
tion of both surface and protein. However, it is difficult to
characterize these interactions for small peptides or individu-
al amino acids (AAs). There have been a number of studies
that investigated such interactions for metal, metal oxide,
polymer or silica surfaces both experimentally and
theoretically,[5–7] but trends for peptides have been difficult
to derive due to complexities of the composition of the
system.[8] The latter comprises not only the peptide and the
surface but also the solvent, which often contains a buffer to
stabilize the pH of the system. The fact that buffer ions can
compete with the peptide/ protein in binding to the surface
is well known and investigated,[9–20] but to the best of our

knowledge this has never been done for single amino acids
especially for silica. A rational understanding of peptide or
protein interactions with surfaces would benefit greatly from
data on the interactions of individual amino acids. Calcu-
lations of such interactions are often complicated by the lack
of adequate models that describe the surface and its
interactions with the amino acids. For this reason, we study
here silica surface, which is widely used in various applica-
tions and for which a pH dependent model has been recently
developed.[21] In an earlier work, Rimola et al.[22] tried to
quantify the adsorption affinity of 15 AAs on silica by
calculating the adsorption energy using ab INITIO ONIOM2
within a cluster approach. A heuristic entropy correction was
made to obtain the adsorption free energy from the
adsorption energy.

There are many different ways to study the interaction
between amino acids and surfaces like silica, such as
spectroscopic methods or controlled bind and release experi-
ments, which have been already discussed in depth in several
reviews.[5–7] Most studies focus on glycine and alanine, which
are the most simple structured molecules having both, an
amino and a carboxy functional[23–28] group. Only few
comparative studies between different amino acids, pH and
ion strength exist.[29–34] Most of the AAs do not interact with
the silica surface in aqueous systems because they are
present in their zwitterionic form in which the attraction of
NH3+ and repulsion of COO� groups by the silanol groups
balance each other.[32] Only AAs with additional charged
groups, e. g. arginine, lysine and histidine can interact
electrostatically with the negatively charged silanols on the
silica surface.[32,35] These interactions are highly pH depend-
ent. A significant interaction can be observed at pH>5 which
can be explained through appearance and accumulation of
negatively charged groups on the silica surface[32] at pH>5.
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The electrostatic interaction can lead to the formation of
outer-sphere complexes, where positively charged amino
acids coordinate to the silica surface.[32] There are also studies
indicating that hydrogen bonding between silanols and the
functional groups of the amino acids has a huge influence on
amino acid adsorption at very high pH (pH>10).[28] The third
contribution to adsorption of amino acids are hydrophobic
interactions with the Si� O� Si surface groups of silica as
shown for phenylalanine or benzene as aromatic
molecules.[33,36] But with higher pH the influence of hydrogen
bonds and hydrophobic interactions diminish due to the
increasing electrostatic interactions.[37]

Chromatography, which usually exploits the different
interaction strengths of various components in a mixture
with a surface is widely used for analytical purposes and for
the purification of biopharmaceuticals.[38] Although in high-
performance affinity chromatography, zonal elution is one of
the most common formats to study biomolecular interac-
tions, it is yet rarely used for interaction studies of amino
acids with silica. Zonal elution is performed by injecting a
small volume of analyte onto a column under isocratic
conditions and by monitoring the elution time. The elution
time of the target is directly related to the target’s interaction
strength with the resin. These experiments are performed
with different conditions, which lead to detailed information
about the nature of interactions. Conditions that can be
altered are pH, ionic strength, temperature, composition of
the mobile phase.[39–41] Basiuk and coworkers were the first to
use chromatographic retention data to obtain free adsorp-
tion energies for single AAs on silica in water.[29–31] Here we
extend this work to determine the strength of the inter-
actions under different conditions by measuring the time an
analyte needs to pass through the column in relation to a
non-binding analyte.[42–44] In order to understand the binding
behavior of peptides and proteins, the natural AAs serve as a
useful reference to improve the understanding of the protein
and peptide-surface interactions with the stationary
phase.[6,45] As the use of buffer is essential in biotechnology
the AA-surface interaction should also be investigated in
presence of the buffer.[38] However, a detailed understanding

of the buffer influence is required to make results trans-
ferable between systems. In this paper, we demonstrate the
strong influence of buffers on AA interaction with silica
combining experimental and theoretical methodologies. We
perform the column chromatography zonal elution experi-
ment to determine the Henry coefficient, which is a
descriptor for the propensity of binding events between solid
and liquid phase in chromatography.[46] The interaction of all
the 20 AAs with the silica solid phase were investigated in
presence of different buffers. We also formulated a multiscale
modelling framework combining molecular dynamics (MD)
simulation and different flavors of Langmuir model to under-
stand the amino-acid adsorption in presence of different
buffers. MD simulation was performed to evaluate the
energetic parameters of the adsorption of a single molecule
which is further used in mechanistically different Langmuir
models to predict adsorption behavior of thermodynamically
large numbers of adsorbate molecules in different physical
conditions.

2. Results and Discussion

2.1. Amino Acid Binding in Aqueous Solution

We first measured the interactions between AAs and silica
solid phase in a chromatographic system in aqueous buffered
solution (Figure 1a). The retention factor ki of the amino acids
is measured (see Experimental Section) in relation to a non-
binding analyte (in this case Uracil) and converted into the
Henry adsorption coefficient H (see Table S6 in Supporting
Information). In chromatography, retention factor of 1 means
a slight interaction with the column. A retention factor of 20
means strong interactions because the analyte is spending a
lot of time interacting with the resin. Retention factors >20
are problematic because this means extreme long run times
and poor sensitivity due to peak broadening.[47] The Henry
coefficient is directly related to the retention factor only
multiplied by the phase ratio of the column [see Equation (1)]
for better comparison of different packing. As the phase ratio

Figure 1. a) Henry coefficient for the binding of AAs to silica in 10 mM TRIS pH 8 as measured [see Equation (1)] using the chromatography experiment. b)
Binding affinity of the AAs in water calculated using umbrella sampling simulation [see Equation (2)]. The positive charged AAs, R and K bind strongly to silica
as found in both experiment and simulation.
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of the columns is between 0.7 and 0.9 the values can also be
applied for the Henry coefficient. The Henry coefficient (H) is
the linear equilibrium constant between solid and liquid
phase in chromatography and can thus be used as the
equilibrium constant K in the van’t Hoff equation which gives
information about the difference in free energy of
adsorption.[30]

lnki ¼ lnK þ ln
VS
VM
¼
� DG0

RT þ ln
VS
VM

(1)

Here DG0 is the free energy of adsorption. Vs and Vm are
the phase ratio between the volumes of the stationary phase
and mobile phase of the chromatographic system respec-
tively. R is the gas constant and T the temperature. The Henry
coefficient was measured for all 20 AAs as shown in Figure 1a
below. The binding free energy of all 20 AAs with the silica
were evaluated using Umbrella Sampling (US) simulation and
the binding affinity (Kcalc) was calculated by integrating the
free energy curve as follows[48]

Kcalc ¼ C
Z cutoff

0
dz expð� bWcalcðzÞÞ (2)

Here Wcalc zð Þ is the calculated free energy of binding for
an AA to silica as a function of distance (z) to the silica
surface (see Experimental Section). cutoff is the distance up
to which an AA is interacting with silica. A quantitative
comparison of the calculated binding affinities and the
experimental Henry coefficient is not possible because the
constant C in Equation (2) cannot be determined. However,
irrespective of this constant, the calculated binding affinity (
Kcalc=C) is proportional to the measured Henry coefficient (see
Figure 1). The numerical values of the calculated free energy
minima and the binding affinities of all the AAs are tabulated
in Table S1 of the Supporting Information. As we observe
from the Figure 1, the positively charged AAs arginine (R) and
lysine (K) are the strongest binding AAs as revealed in both
simulation and the experiment. These findings are in line
with other experiments[5–7,32] that indicate that the basic
amino acids interact with silica at higher pH the most and
the other AAs show low to no interaction at these conditions.
The driving force for interaction of AAs with silica are the
additional basic groups in R and K[32] which provide strong
electrostatic interactions with silica at high pH.[37] It is
important to note that in Figure 1 the experimental results
are from the 10 mM TRIS pH 8 run and the simulation is in
water. This is due to the problem, that in plain water the
basic amino acids show high adsorption and thus no
measurable retention time. This effect is mainly due to the
competitive effect of TRIS on the AA adsorption and will be
discussed in greater detail in the section below.

2.2. Influence of the Buffer

In the chromatography experiments, we used two different
buffers: TRIS and MOPS. Depending on the pH of the solution,
these buffers will have different protonation states as shown
in Figure 2(a) below. TRIS has two protonation states with net
charge +1e (TRISpositive) and 0 (TRISneutral), while the protona-
tion state of MOPS have net charge 0 (MOPSneutral) and � 1e
(MOPSnegative). It has been previously reported that the buffer
interacts with different oxide surfaces of titanium.[11] Due to
their charge the buffer species will also interact with silica
and the AA, leading to competing interactions.[11,49] Therefore,
we evaluated the free energy of adsorption of the different
buffer species to silica and also quantified the interaction
between the buffer species and AAs. The binding affinity of
the buffer species and the two strongly binding AAs (R and K)
are shown in Figure 2b below. The corresponding free energy
profile for the binding affinities are shown in Figure S1 and
the Henry coefficient conversion for the experimental data in
table S7 of the Supporting Information. As we observe from
Figure 2b, the binding affinity of buffer species MOPSneutral

and TRISpositive are quite comparable with amino acids K and R.
Therefore, the buffer binding affinity cannot be ignored to
determine the overall binding capacity of the AA in presence
of the buffer. It’s worth mentioning that although we have
considered different protonation state of the buffer, we have
only assumed the positively charged (protonated) species of
R and K. However, this assumption is justified since the pKa
values for corresponding amino group of R and K are 12.10
and 10.67 which is far above the pH range studied in this
article. We further quantified the interaction between the
amino acids (K and R) and the buffer species by calculating
the interaction energy between them (see Experimental
Section).

We can see from the Figure 2c, that the interaction
energy is largest between R and MOPSnegative species. All other
interaction energies are quite similar to the R� R dimer
interaction. In case of K (Figure 2d) also, the strongest
interaction was found to be between K and MOPSnegative. The
interaction energy at a specific distance between the two
molecules are tabulated in Table S3 and S4 of the Supporting
Information.

2.3. Binding of R and K to Silica in Presence of TRIS Buffer

Henry coefficient for the interaction of R and K were
measured in presence of TRIS buffer for the pH range of 7.2
to 8.5. The binding affinity of both R and K increases with pH
in presence of TRIS buffer. This effect is expected due to the
increasing negative charge of silica surface with increasing
pH.[32,50] Nevertheless, TRIS buffer has a strong impact on the
binding of AA because we were not able to gain Henry
coefficients in plain water due to strong interactions of K and
R with the silica surface. This can be explained by the higher
ionic strength of the solution through the buffer and thus a
competitive absorption of TRIS and the AA.[50] Although
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higher pH leads to higher surface charge of silica the increase
of the Henry coefficient is not comparable to adsorption
experiments in the same pH range showing a more linear like
increase.[33,50]

To understand this pH dependent interaction of R and K
in presence of buffer, we set-up a multiscale modelling
framework for adsorption. The multiscale modelling consists
of calculations of energetic parameters of binding from the
MD simulation (see Experimental Section) and further use of
these parameters in two mechanistically different multi-
component Langmuir adsorption models. The models pro-
vide the fraction of R/K bound to silica which is again
proportional to the measured Henry coefficient. Depending
on the interaction strength between the AA and the buffer
species in an adsorbed state, we invoke one of the two
different kinds of Langmuir models[51] as shown schematically
in Figure 4 below. As the name suggests, in the non-
cooperative model (Figure 4a) the interaction between the
adsorbates (A and B) are neglected while the cooperative
model (Figure 4b) is formulated assuming an interaction
between the adsorbates. The black semicircles are the

adsorption sites (silica in our case) which can either
accommodate one (non-cooperative model) or two (coopera-
tive model) adsorbates (A and B). In an equilibrium situation,
the adsorptive molecules continuously adsorb and desorb
(see Supporting Information). The type of multicomponent
cooperative adsorption model we consider here was first
derived by Moreau et al.[52] and therefore also known as the
Moreau model in the literature. Although, Langmuir model
was originally developed to study adsorption from the gas
phase, the model is much more general and appears in
variety of other physical situations (e. g. ligand binding to
protein) described by a simple combination reaction where
loss of mass action is valid in equilibrium.[51] Therefore, use of
Langmuir model to describe adsorption in Liquid-Solid inter-
face is fully justified. Esposito et al.[53] fitted their experimen-
tal adsorption isotherm with this kind of multicomponent
Langmuir model to study the bio-separation of metal ions.
The pH dependence of the isotherms was captured in the
ratio of the different protonated and unprotonated metal
ions. Xiao et al.[54] measured the adsorption isotherm of
several organic acids and bases on graphite and fitted the

Figure 2. a) Molecular model of different protonation state of MOPS and TRIS buffer at different pH. TRIS has two protonation states with net charge +1e
(TRISpositive) and 0 (TRISneutral), while the protonation state of MOPS have net charge 0 (MOPSneutral) and � 1e (MOPSnegative). b) Binding affinities of the different
buffer species to the silica. The binding affinities of K and R are also plotted for comparison. c) Interaction energy between the AA, R and different buffer
species as a function of distance between them. d) Interaction energy between the AA, K and different buffer species as a function of distance between them.
The interaction energy between the buffer species are plotted in both (c) and (d) for comparison. In both cases, there is a strong attraction between the R/K
and the MOPSnegative species. (c-d) The concentric circles in the figures indicate the actual calculated values while the solid lines are the running average over
these data.
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isotherm with the multicomponent Langmuir model. The pH
dependence was captured by the protonation and deproto-
nation of the organic acid and bases similar to the work by
Esposito et al.[53]

Since, there is no strong interaction between different
molecular species (see Figure 2c,d) and Table S3 and S4 in
the supporting information) in presence of TRIS buffer, we
will invoke the non-cooperative (Figure 4a) competitive
Langmuir model to understand the pH dependent binding as
described in the Experimental Section in detail. We calculate
the fraction of bound AA for different pH (Figure 3c,d) and
found qualitatively same behavior with the experiment. The
increase of binding fraction of K/R with the pH can be simply
understood as follows. When the pH of the solution is low (<
8), there will be more TRISpositive species in the solution than
the TRISneutral (see Figure 2a). Therefore, the effect is simply a
competitive effect between TRIS and the AA for the
negatively charged silica surface. With the increase in pH, the
TRISpositive species will deprotonate giving rise to more
TRISneutral species. Therefore, as pH increases, K/R has to
compete with TRISneutral for the binding sites while for low pH
the competition for the binding sites will be between the K/R
and TRISpositive which has a much higher binding affinity (to
silica) in comparison to TRISneutral. As a result, the binding
fraction of K/R increases significantly when the pH is higher
than the pka of the TRIS buffer.

2.4. Binding of R and K to Silica in Presence of MOPS Buffer

Retention factors for the binding of R and K were again
measured in presence of MOPS buffer for the pH range of 6
to 7.6 and converted in Henry coefficient (see table S8 of
Supporting Information). As shown in Figure 5a,b below, for a
pH range 6 to 7.2 the interaction of both the AAs slowly
decreases and at a pH of 7.6 we see a sudden increase in
interaction. Previous experiments always indicated higher
adsorption capacities with increasing pH.[32,33,50] To under-
stand the experimental binding behavior, we again use our
multiscale modelling framework as described in the previous
section. Since the deprotonated species of the MOPS buffer
(MOPSnegative) has a net attractive interaction (see Figure 2c,d))
with the R/K species, the binding will be described by the
cooperative Langmuir adsorption model (also known as
Moreau model[52]) rather than by the non-cooperative one
(see Figure 4b). Gritti et al.[55] measured the adsorption
isotherm of various alcohol with porous silica and fitted the
isotherm with non-cooperative and cooperative Langmuir
model (also known as Moreau model) depending on whether
the alcohol solution is buffered or not. Neither the interaction
between the solid phase and the buffer nor the interaction
between the buffer and the alcohol was considered in their
models. Figure 5a,b show the experimentally measured Henry
coefficients for K/R, while Figure 5c,d shows the calculated
fraction of bound K/R (see Experimental Section). We observe
a good qualitative match between the experiment and the
modelling for this scenario.

Figure 3. Measured Henry coefficient of K (a) and R (b) as a function of pH in presence of TRIS buffer. pH values are quoted on top of the bars. Fraction of K (c)
and R (d) bound to silica as a function of pH as calculated using multiscale modelling. The experimental Henry coefficient and calculated bounded fraction
show qualitatively similar behaviors.
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The physical origin of the binding behavior of K/R with
respect to pH can be understood as follows. Since MOPS
buffer has a pKa of 7.2, for low pH (<7.2), the solution in the
chromatographic column will be populated by MOPSneutral

species, while for high pH (>7.2) most of the MOPSneutral

species will be deprotonated and as a result there will be
more MOPSnegative species in the solution (see Figure 2a). If
there is no interaction between the K/R and MOPS, for low
pH, K/R has to compete with MOPSneutral while for high pH, it
has to compete with MOPSnegative species for silica binding
sites. Since MOPSneutral has a much higher binding affinity
than the MOPSnegative, the K/R binding fraction will increase
with increasing pH. However, the situation is different when
there is a moderate attraction between K/R and MOPSnegative.
Since MOPSnegative has a pretty low binding affinity, it cannot
compete with K/R for binding sites on its own. However, due
to the strong attraction of the K/R with MOPSnegative, when a

K/R binds to silica, it sometimes accompanies a MOPSnegative

with it and as a result the binding sites are occupied by
MOPSnegative also. Therefore, the overall binding of K/R
decreases with increasing concentration of MOPSnegative and
seems to be more relevant than the increasing negative
charge of the silica surface with increasing pH. However, as
the pH increases further, the concentration of MOPSnegative

increases together with the negative surface charge of the
silica.[32] K/R cannot interact with additional MOPSnegative

molecules to form complexes. Due to a decrease in MOPSneutral

concentration and increased negative charge on the surface
more silica binding sites are available for K/R, resulting in an
increased overall binding in the end.

Figure 4. a) Schematic diagram illustrating non-cooperative competitive Langmuir adsorption model of two different species A and B. The black semi circles
represent the adsorption sites which can accommodate only one molecule. There is no interaction between A and B. b) Schematic diagram illustrating a
cooperative adsorption model of two different species A and B. The black semi circles now represent adsorption sites which can accommodate up to two
molecules. There is an interaction between the molecular species when adsorbed in a same adsorption site.

Figure 5. a)/b) Experimentally measured Henry coefficients of K/R as a function of pH in presence of MOPS buffer. pH values are quoted on top of the bars. c)/
d) Fraction of K/R bound to silica calculated using multiscale modeling.
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3. Conclusions

To summarize, we have measured the binding affinity of all
20 AAs with silica using zonal elution chromatography. We
could show the capability of chromatography for studying
interactions between single AAs and silica surfaces under
different conditions in aqueous systems. Furthermore, chro-
matography has the advantage of real time monitoring and
the possibility to have an automated high throughput
system, which leads to a lot of data points with little effort.
Among the 20 AAs, the positively charged AAs R and K were
found to have highest affinity towards silica, which was
validated by calculation of binding free energy using US
simulation. The binding behavior of R and K was further
studied in presence of different buffers and was found out be
strongly dependent on the choice of buffer which is never
accounted in biotechnology experiments. When TRIS was
used as buffer the binding affinity of R/K increases with pH
(7.3 to 8.5) while in case of MOPS the affinity first decreases
with pH (6.0 to 7.0) and with further increase of pH (>7) the
affinity again goes up. In addition, with its conventional role,
the buffer can be used to tune the AA-silica interaction
increasing the efficiency of AA separation, by a significant
amount. We also present a multiscale modelling framework
to understand the binding of AA in presence of buffer. The
multiscale modelling consists of calculations of energetic
parameters of binding from the MD simulation and further
use of these parameters in mechanistically different multi-
component Langmuir models. In a very recent work, similar
multiscale modelling approach involving MD simulation and
the non-cooperative Langmuir model was adopted by
Angelis et al.[56] to predict the adsorption of surfactant to the
alumina. In this work, we extend the Langmuir model to
account for multiple interacting species which is relevant in
variety of physical situations including ours. The multiscale-
modeling framework can be used to screen the suitable
buffer prior to the experiment, which is often expensive, and
time consuming to perform. Our model helps to predict the
relative interactions strength between different components
in a bio molecular mixture (AA, peptides, proteins etc.)
appears in variety of physical situations like chromatographic
purification. We hope to extend the cooperative adsorption
model in the future to describe the incorporation of peptides
and proteins in mesoporous silica materials as well.

Experimental Section
Adsorbent and AAs: The silica used for the experiments was
Silica Gel 60 from AppliChem, Germany. The porous silica had a
particle size of 40 to 60 μm. The pore diameter was 55 to 65 Å
and the pore volume 0.7 to 0.8 mLg� 1. The surface area was
given with 450 to 550 m2g� 1. TRIS was purchased from VWR,
Germany. MOPS was purchased from Carl Roth, Germany. All AAs
were purchased as L-stereoisomer. Most AAs were purchased in
research grade from SERVA, Germany. Arginine, histidine and
proline (Cellpure�98%) were purchased from Carl Roth, Ger-
many. Cysteine, lysine and phenylalanine were purchased with a
purity �98% from Sigma-Aldrich, Germany. For the column, a

column blank kit (Supelco) with L× ID 25 cm×4.6 mm from
Sigma-Aldrich was purchased and shortened to a length of
3.3 cm resulting in a volume of 0.55 mL. The buffers were
prepared in DI water. The AAs were also prepared in DI water
with concentrations between 1 and 50 mM (see Table S5 of the
Supporting Information). All buffers were degassed and filtered
through a 0.2 μm cellulose-acetate-filter from Labsolute, Ger-
many. The AAs were also filtered with 0.2 μm cellulose-acetate
syringe filters from Macherey-Nagel, Germany.

Henry coefficients: The chromatographic column was operated
on an Agilent 1100 HPLC system with an UV/Vis detector. AAs
were measured at 210 nm, aromatic AAs at 280 nm additionally.
The flow rate was ~12 cmmin� 1 for every run and the injection
volume for every AA was 20 μL. Every AA was measured at least
three times per experiment in random sequences. The Henry
coefficients H was determined with H= k’/ϕ. Where k’ is the
retention factor of the AA and ϕ is the phase ratio of the column.
The retention factor is calculated as k’= (tR� t0)/t0. Here tR stands
for the retention time of the AA and t0 for the retention time of a
non-interacting tracer in this case 1 gL� 1 uracil. The phase ratio
of the column is calculated with ϕ= (1� ɛt)/ɛt. Here ɛt is the total
porosity of the column calculated with the flow rate _V=

2 mLmin� 1:ɛt = (t0 _VÞ/Vcolumn.

The Langmuir adsorption model for two different non-interact-
ing adsorbates (non-cooperative Langmuir model): Consider
two adsorbates A and B (See Figure 4a) with binding affinity KA

0

and KB
0 with the adsorbent having a total G number of

adsorption sites. The average number of A molecule bound (NA)
is given by[51]

< NA > G
¼ FA ¼

KA
0

qA

1þ qAK
0

A þ qBK
0

B
(3)

See the Supporting Information for more details.

The Langmuir adsorption model for two different interacting
adsorbates (cooperative Langmuir model): Consider two adsor-
bates A and B with binding affinity KA

0 and KB
0 with the

adsorbent having a total G number of adsorption sites (see
Figure 4b). UAA is the interaction energy between two
A molecules when both of these two are adsorbed on a single
adsorption site. UBB is the corresponding interaction energy for
the B molecules and UAB is the interaction energy between A and
B in case the adsorption site is occupied by one A and one B
molecule respectively. In equilibrium, the average number of A
molecule bound (NA) is given by[51,52]

< NA > =G ¼ FA ¼

2KA
0qA þ 2qA

2K 0A
2e� bUAA þ 2qAK

0
AqBK

0
Be
� bUAB

1þ 2qAK
0

A þ qA
2K

0

A
2e� bUAAþ

2qBK
0

B þ qB
2K

0

B
2e� bUBB þ 2qAK

0

AqBK
0

Be
� bUAB

(4)

The complete derivation of Equation (4) above is presented in the
Supporting Information.

Binding affinity of the AAs and the buffers to the silica surface:
To estimate the binding affinity of the different molecular
species with the silica surface we calculate the potential of mean
force (PMF) (between the molecule and silica) of binding using
umbrella sampling (US) simulation. The atomistic model (Fig-
ure 6a,b) of the porous silica surface for the MD simulation was
chosen from the database provided by Emami et al.[21] From the
database we chose a Q3silica surface model (33.6 Å×34.9 Å)
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containing 4.7 silanol groups per nm2 of the surface of which
14% are deprotonated corresponding to a pH of 7.4. The model
for the AAs were built using Ambertools[57] program. A simulation
box with the silica in one end and AA in the middle was
prepared. The full system was then solvated in TIP3P water[58]

(Figure 6c). A sufficient number of Na+ and Cl� counter ions
were added to achieve overall charge neutrality of the system.
The force field for the silica surface were taken from Emami
et al.[21] while AMBER99SB-ILDN[59] force field was used for AAs
including the solvents. The system (~10,000 atoms) was first
energy minimized and then MD simulation in isothermal
ensemble (NVT) was performed to equilibrate the system. The
silica surface was kept frozen during the simulation and periodic
boundary condition was imposed in all three directions. The x-
and y-dimensions of the box were kept equal to the x- and y-
dimensions of the silica surface, and the atoms located at the
edge of the silica patch were connected through bonds via the
periodic boundary condition to avoid boundary effects. A series
of short NVT simulations with varying z dimension of the box
were performed thereafter to achieve the correct density of the
water in the bulk. We used Nose-Hoover thermostat[60] to
maintain the system temperature at 300 K. The system with
correct water density was further used for US simulations. All the
simulations were performed using GROMACS[61] simulation pack-
age. We further proceed to calculate PMF of AA with the silica
surface using US simulation with the distance between the silica
surface and the center of mass of the AA as reaction coordinate
(Figure 6c). To generate the configuration for US run, the AA was
pulled towards the silica surface and the overall system is
equilibrated again when the AA is adsorbed on top of the silica
surface. The AA is then pulled off from the silica surface and the
system configuration is saved at a regular distance (between the
AA and the silica surface) interval for the umbrella sampling run.
We used a spring constant of 1000 kJmol/nm2 and the pull rate
0.01 nm/ps for the pulling simulations. The umbrella sampling
simulation were further performed with these configurations
with the strength of the umbrella potential 1000 kJmol/nm2.
Each umbrella sampling windows were first equilibrated for 4 ns
and then from another 10 ns run we save the histograms for PMF
generation. The PMF curves were calculated using the Weighted
Histogram Analysis Method (WHAM)[62] also implemented in
GROMACS. The obtained histograms and the PMF profile for a

specific case are shown in Figure S5 of the Supporting Informa-
tion. In this article, we use the term free energy profile as
alternative to the PMF profile both having same meaning.

Interaction energy between R/K and the buffer species: To
measure the interaction energy of R/K with another R/K or the
different buffer species, we chose the equilibrated geometry of
R/K as it adsorbed on the silica (Figure 6d). The R/K was kept
frozen in that geometry while other molecule (another R/K or
buffer species) was pulled towards it (Figure 6e) and the
interaction energy was measured. The interaction energy
between different buffer-species was also measured the same
way.

The multiscale modelling (binding of K/R in presence of TRIS):
There are 3 different molecular species present in the chroma-
tography column in this case: K/R and two buffer species
TRISneutral and TRISpositive (see Figure 2a). The concentration of K/R
in the chromatographic column is X0 and the concentration of
the TRISneutral and TRISpositive buffer species are X1 and X2. If the
total concentration of the buffer species is CB and pka is the
buffer pKa value, then

X1 þ X2 ¼ CB and X1=X2 ¼ 10ph� pka (5)

For a given value of CB, Equation (5) can be solved for X1 and X2 at
a particular pH.

According to Equation (3), the total fraction of R/K bound F0 is
given by,

F0 ¼
X0K0

1þ X0K0 þ X1K1 þ X2K2

� �

(6)

Here K0; K1 and K2 are the binding affinity for AA, TRISneutral and
TRISpositive respectively. Please note that the binding affinities in
Equation (6) and the ones calculated in the simulation (Equa-
tion 2) are not quantitatively same but proportional to each
other. The use of the binding affinity from the simulation in the
Equation (6) is still justified, if one is not looking for quantitative
prediction but the qualitative behavior. In all our calculation, the

Figure 6. Atomistic model of the silica used in the MD simulation: a) Top and b) side view. Silicon atoms are represented in yellow, oxygen atoms in red and
hydrogens in white. Na+ ions are shown in blue. c) Snapshot of the initial system prepared for MD simulation with silica in the end and the AA in the middle
of the simulation box. The surrounding water medium is not shown in full atomistic details but as collection of cyan dots (“solvent” representation in VMD[63])
for clarity. The free energy of binding was computed as a function of distance between the AA and Silica (Reaction Coordinate). d) Equilibrated snapshot of
the AA adsorbed on silica. e) Initial snapshot of a system prepared to calculate the interaction energy between the adsorbed AA and another molecule. The
AA was kept frozen to its adsorbed geometry while another molecule is pulled towards it and the interaction energy is measured.
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concentration of both buffer (CB) and AA (X0) was assumed to be
1 (arbitrary unit).

The multiscale modelling (binding of K/R in presence of
MOPS): As before, there are 3 different molecular species present
in the chromatography column: K/R and two buffer species
MOPSneutral and MOPSnegative (see Figure 2a). The concentration of
K/R in the chromatographic column is X0 and the concentration
of the MOPSnegative and MOPSneutral buffer species are X1 and X2. We
can write equation similar to Equation (5) as

X1 þ X2 ¼ CB and X1=X2 ¼ 10ph� pka (7)

Now, the total fraction of K/R bound to silica is given by

F0 ¼ 1=2ðF01 þ F02Þ (8)

Here, F01is the fraction of K/R bound to silica due to cooperative
adsorption between K/R and MOPSnegative. F02 is the corresponding
fraction when K/R and MOPSneutral are considered. According to
Equation (4), we can write

F01 ¼

2X0K0 þ 2X0
2K0

2expð� bU00Þ þ X0K0X1K1expð� bU01Þ

1þ 2X0K0 þ X0
2K0

2exp � bU00ð Þ þ 2X1K1þ

X1
2K1

2expð� bU11Þ þ X0K0X1K1expð� bU01Þ

(9)

F02 ¼

2X0K0 þ 2X0
2K0

2expð� bU00Þ þ X0K0X2K2expð� bU02Þ

1þ 2X0K0 þ X0
2K0

2exp � bU00ð Þ þ 2X2K2þ

X2
2K2

2expð� bU22Þ þ X0K0P2K2expð� bU02Þ

(10)

The parameter U0s are the interaction between different species
and K 0s are the binding affinity. Among the different intermo-
lecular interaction energies in Equations (9) and (10), only the
interaction energy between the R/K and MOPSnegative (U01) is
significant (see Figure 2c,d). Therefore we keep all other inter-
molecular interaction energies (U00; U02;U11;U22) zero except U01.
In case of binding of R we use a value of U01 to be � 20 kJ/mol
while in case of K the value is � 12 kJ/mol (see Table S3 and S4 of
the Supporting Information) and get the binding behavior as
shown in Figure 5c,d. In all our calculation, the concentration of
both buffer (CB) and AA (X0) was assumed to be 1 (arbitrary unit).
Please note that the interaction energies are calculated at a
distance of 8 Å between the species (see Table S3 and S4 of the
Supporting Information) which may not be the case in reality.
Therefore, we calculate the binding fraction of R/K with pH for
different value of U01. We observe ( see Figure S6 of Supporting
Information) that in case of R, an attractive interaction (between
the R and MOPSnegative) of magnitude >11 kJ/mol is required to
qualitatively reproduce the experimental behavior while in case
of K the respective interaction energy is 7 kJ/mol. It is evident
from the Figure 2c,d (and Tables S3 and S4 of the Supporting
Information) that R and MOPSnegative have higher attractive
interaction than K and MOPSnegative.
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