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Summary
Background Acute kidney injury (AKI) is a common and serious organ dysfunction in critically ill children. Early
identification and prediction of AKI are of great significance. However, current AKI criteria are insufficiently sensitive
and specific, and AKI heterogeneity limits the clinical value of AKI biomarkers. This study aimed to establish and
validate an explainable prediction model based on the machine learning (ML) approach for AKI, and assess its
prognostic implications in children admitted to the pediatric intensive care unit (PICU).

Methods This multicenter prospective study in China was conducted on critically ill children for the derivation and
validation of the prediction model. The derivation cohort, consisting of 957 children admitted to four independent
PICUs from September 2020 to January 2021, was separated for training and internal validation, and an external data
set of 866 children admitted from February 2021 to February 2022 was employed for external validation. AKI was
defined based on serum creatinine and urine output using the Kidney Disease: Improving Global Outcome (KDIGO)
criteria. With 33 medical characteristics easily obtained or evaluated during the first 24 h after PICU admission,
11 ML algorithms were used to construct prediction models. Several evaluation indexes, including the area under the
receiver-operating-characteristic curve (AUC), were used to compare the predictive performance. The SHapley
Additive exPlanation method was used to rank the feature importance and explain the final model. A probability
threshold for the final model was identified for AKI prediction and subgrouping. Clinical outcomes were
evaluated in various subgroups determined by a combination of the final model and KDIGO criteria.

Findings The random forest (RF) model performed best in discriminative ability among the 11 ML models. After
reducing features according to feature importance rank, an explainable final RF model was established with 8 fea-
tures. The final model could accurately predict AKI in both internal (AUC = 0.929) and external (AUC = 0.910)
validations, and has been translated into a convenient tool to facilitate its utility in clinical settings. Critically ill
children with a probability exceeding or equal to the threshold in the final model had a higher risk of death and
multiple organ dysfunctions, regardless of whether they met the KDIGO criteria for AKI.

Interpretation Our explainable ML model was not only successfully developed to accurately predict AKI but was also
highly relevant to adverse outcomes in individual children at an early stage of PICU admission, and it mitigated the
concern of the “black-box” issue with an undirect interpretation of the ML technique.
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Research in context

Evidence before this study
Acute kidney injury (AKI) is a serious organ dysfunction in
critically ill children. However, the currently used AKI criteria
based on serum creatinine and urine output are not sensitive
or specific enough. We searched PubMed for articles published
up to August 31, 2023, using the keywords “(AKI OR acute
kidney injury) and (prediction model)”, with no language
restriction. Several explainable prediction models for AKI were
developed in adult intensive care unit (ICU) patients.
However, no study has established an explainable prediction
model for AKI occurring during the pediatric ICU (PICU) stay
and investigated its prognostic implications in critically ill
children.

Added value of this study
In this study, we developed an explainable AKI prediction
model using the random forest (RF) algorithm for PICU
cohorts. This final explainable model performed well both in
internal and external validations and had been translated into
a convenient application to facilitate its utility for clinicians.
The optimal probability cutoff value was employed as a
threshold, and children with a probability exceeding or equal
to the threshold had a higher risk of organ complications and

mortality regardless of whether they met the diagnostic
criteria for AKI.

Implications of all the available evidence
This is the first prospective, multicenter study to investigate
and compare 11 machine learning models for comprehensive
AKI prediction analyses in PICU cohorts. Our final explainable
RF model was established through a feature reduction, and it
performed well in predicting AKI in any stage for critically ill
children during their whole PICU stay. This model
incorporated 8 variables that are easily obtained or evaluated
in the first 24 h after PICU admission and reflect the children’s
conditions. The SHapley Additive explanation (SHAP)
approach was used to explain this model via a global
explanation that describes the overall functionality of a model
and a local explanation that details how a certain prediction is
made for an individual child by inputting the individualized
data. Furthermore, children at high risk for poor outcomes
were identified through a subgrouping based on the
combination of the final model and the criteria of Kidney
Disease: Improving Global Outcome (KDIGO). The above
findings clarified the universal clinical application and
advantages of our final model.
Introduction
Acute kidney injury (AKI) is characterized by an abrupt
decrease in kidney function and is a common compli-
cation in intensive care unit (ICU) scenarios.1,2 Notably,
AKI is associated with an increase in the length of ICU
stays and ICU mortality.1 Hence, early and accurate
identification of patients at high risk for AKI is critical
for initiating prompt therapeutic measures to potentially
improve prognosis in clinical settings.

Currently, an increase in serum creatinine (SCr) and
a drop in urine output (UO) are widely used in the
diagnosis of AKI based on the criteria of Kidney Dis-
ease: Improving Global Outcome (KDIGO); however,
they are not sensitive or specific enough for the kidney
injury.2,3 Instead of detecting AKI before it occurs, SCr
only begins to rise after kidney injury has already set in,
which may limit the timing of intervention for AKI.
Although numerous studies focused on AKI have been
published recently, the search for a single biomarker
seems to have been unsuccessful due to the complex
pathophysiology of AKI.4 The heterogeneity of ICU
populations, including those in pediatric ICU (PICU),
may also limit the value of a single biomarker.

The machine learning (ML) approaches derived from
electronic medical records (EMR) have gained the
attention and recognition of clinicians in recent years.5–7

The widespread utilization of EMR in hospitals has
allowed for a more accurate and convenient collection of
clinical data for patients. Many ML techniques are
currently being employed in the development of AKI
prediction models, and most have shown good predic-
tive values, including those conducted on critically ill
adult7–13 and pediatric14–16 patients. However, although
the ML approach is powerful due to the complexity of
the model, it is still limited by the difficulty of stating a
direct interpretation, as a so-called “black-box”.17 Several
studies have ranked the feature importance of ML
models for AKI prediction in critically ill adult
patients,7–12 but only two of those explained the model at
the individual adult level.10,11 The Acute Dialysis Quality
Initiative (ADQI) group also advised that the prediction
model should present information about clinical vari-
ables influencing the risk of AKI.18 To overcome these
issues of the “black-box”, the SHapley Additive exPla-
nation (SHAP) method was utilized to explain the ML
models and visualize individual variable predictions.19

The SHAP method is a unified approach for explain-
ing the outputs of ML models in earlier studies,
including in AKI studies.20,21 Regardless, scarce research
has focused on AKI in critically ill pediatric patients,
with the SHAP method being used to explain prediction
models.

In this study, we aimed to develop and validate
explainable ML models for early and accurate prediction
www.thelancet.com Vol 68 February, 2024
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of AKI in critically ill children in a multicenter pro-
spective cohort, elucidate feature importance and
explain the model via the SHAP method, and determine
the prognostic implications of the final model in the
subgrouping of critically ill children.
Methods
Study population
The prospective multicenter cohort study in China was
conducted in critically ill children for the derivation and
validation of the prediction model. The derivation cohort
consisted of critically ill children admitted to the PICUs
of four independent tertiary hospitals (Children’s Hos-
pital of Soochow University, Children’s Hospital of
Fudan University, Anhui Provincial Children’s Hospi-
tal, and Xuzhou Children’s Hospital) from September
2020 to January 2021. The criteria for PICU admission
were strictly adopted in accordance with the guidelines
for developing admission and discharge policies for the
pediatric intensive care unit.22 Children who were aged
1 month to 18 years and met the criteria for PICU
admission were considered for inclusion in all four
PICUs. Children with chronic kidney disease (CKD) or
those with serious clinical and laboratory data missing
were excluded. This study was performed in accordance
with the Declaration of Helsinki, with approvals of the
Institutional Review Board of Children’s Hospital of
Soochow University (2020KS009), Children’s Hospital
of Fudan University [(2020) 404], Anhui Provincial
Children’s Hospital (EYLL-2020-023), and Xuzhou
Children’s Hospital (2020-1-3). Written informed con-
sent was obtained from each participating individual’s
guardian.

Data collection and processing
We utilized demographic characteristics, vital sign
measurements, and laboratory data collected within the
first 24 h after PICU admission to identify features
and construct prediction models, as shown in
Supplementary Table S1. All data were obtained from
the EMR system. Given that the UO recorded by the
nursing record system on the first day after PICU
admission was from the time of admission until 7 a.m.
the following morning, we chose the UO recorded dur-
ing this period to construct prediction models. The
severity of the illness was assessed using the Pediatric
Risk of Mortality III (PRISM III) score, which was
calculated based on physiological parameters recorded
on the first 24 h of PICU admission.23

Since multi-collinearity among features may affect
prediction accuracy, one feature that was less correlated
with outcome was eliminated from the data set when
two features were highly correlated (correlation coeffi-
cient > 0.6) in Spearman’s correlation analyses, as
shown in Supplementary Fig. S1. Although age and
height are also important features for children, body
www.thelancet.com Vol 68 February, 2024
weight was finally selected for model development; a
detailed explanation is displayed in Supplementary
Appendix S1. In addition, features with over 25%
missing values were excluded in the following analyses
to minimize the bias resulting from missing data.
Finally, 33 features, including body weight, body mass
index (BMI), sex, PRISM III score, minimum and
maximum mean arterial pressure (MAP) and tempera-
ture (Temp), minimum heart rate (HR), estimated
glomerular filtration rate (eGFR), UO, the initial value of
pH, bicarbonate (HCO3

-), activated partial thrombo-
plastin time (APTT), international normalized ratio
(INR), creatine kinase-myocardial band (CK-MB), total
bilirubin (TBil), alanine aminotransferase (ALT), lactate
dehydrogenase (LDH), blood urea nitrogen (BUN), al-
bumin, glucose, potassium (K), sodium (Na), chlorine
(Cl), calcium (Ca), white blood cell (WBC), C-reactive
protein (CRP) and procalcitonin (PCT), the minimum
value of partial pressure of oxygen/fraction of inspira-
tion oxygen (PaO2/FiO2) and platelet (PLT), and the
maximum value of partial pressure of carbon dioxide
(PaCO2) and lactate (Lac) during the first 24 h following
PICU admission, were utilized to develop the prediction
models.

In addition, the renal angina index (RAI), as a pre-
dictive indicator for AKI,24,25 was determined using the
data obtained during the first 24 h of PICU admission,
and the predictive value of the RAI was subsequently
compared to that of the prediction model.

External validation
An external data set consisting of critically ill children
admitted to the PICU of Children’s Hospital of Soochow
University from February 2021 to February 2022 was
employed for the external validation. The inclusion and
exclusion criteria were identical to those of the deriva-
tion cohort.

Definition of AKI
The diagnosis and stage of AKI developed during the
PICU stay were defined based on SCr and UO in
accordance with the KDIGO criteria.2 The baseline SCr
was defined as the lowest SCr level within 3 months
prior to PICU admission.1 For children without a known
baseline SCr level, we assumed a normal eGFR of
120 mL/min/1.73 m2, which was selected to be consis-
tent with previous studies of pediatric AKI,1,26,27 and back-
calculated an expected baseline SCr by the modified
Schwartz estimating equation [SCr (mg/dl) = 0.413 ×
height (cm)/eGFR].26–28 AKI stage 1 was defined as mild
AKI, and AKI stages 2 and 3 were defined as severe AKI.
Persistent AKI was defined as AKI that lasted beyond
48 h of onset.29

Model development and comparison
The data from the derivation cohort comprising four
separate tertiary hospitals were divided, with 70%
3
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utilized for training and 30% for validation (internal
validation), in order to avoid problems with overfitting.
In addition, an external data set was used for testing
(external validation).

The total of 33 features mentioned above were used
to develop the prediction models. Missing data were
handled by the median imputation method,30,31 and the
proportions of missing data per variable are shown in
Supplementary Table S1. Eleven ML models, namely,
adaptive boosting (AdaBoost), artificial neutral network
(ANN), decision tree (DT), extra tree (ET), gradient
boosting machine (GBM), K-nearest neighbor (KNN),
light gradient boosting machine (LightGBM), logistic
regression (LR), random forest (RF), support vector
machine (SVM), and eXtreme gradient boosting
(XGboost) were used to predict AKI in critically ill
children. In order to optimize the prediction model, grid
search combined with manual fine tuning was applied
to obtain the final hyperparameters.

Several commonly used evaluation indexes, such as
the area under the receiver-operating-characteristic
(ROC) curve (AUC), sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV),
accuracy, and F1 score, were used to evaluated the
reliability of these models. In addition, five-fold and ten-
fold cross validations were conducted in the derivation
cohort for the validation of the prediction model.

Feature selection and model explanation
It is challenging to get the correct interpretation of a ML
model. The SHAP method is an approach that could
rank the importance of input features and explain the
results of the prediction model, and it is implemented to
overcome the “black-box” issue.19

SHAP value-assisted feature selection was used to
restrict the prediction model from 33 to 3 features in
accordance with feature importance rank; thereby, the
final model with the best predictive ability in the process
of reducing features was chosen for further analysis.
The nonparametric method of Delong32 was used to
compare the difference between AUCs using MedCalc
Version 19.6 (https://www.medcalc.org), and the fea-
tures of the chosen ML model were gradually reduced
until the AUC was dramatically decreased.

The SHAP method offered global and local expla-
nations for the model explanation. The global explana-
tion could give consistent and accurate attribution
values for each feature within a model to show the as-
sociations between input features and AKI. The local
explanation could demonstrate a specific prediction for
an individual child by inputting the specific data.

Webpage deployment tool based on streamlit
framework
To facilitate the utility of the model in clinical settings,
the final prediction model was implemented into a
web application established based on the Streamlit
Python-based framework. When the values of corre-
sponding features from the final model are provided,
the application can return the probability of AKI and the
force plot for the individual child.

Statistical analysis
Data analyses were conducted using Python version 3.6.5
(https://www.python.org) and SPSS Statistical Software
Version 23.0 (https://www.ibm.com/spss). Continuous
variables with skewed distributions were presented as
median with interquartile range and compared using the
Mann–Whitney U test or Kruskal–Wallis H test. Cate-
gorical variables were presented as numbers with per-
centages and compared using the Chi-square test or
Fisher’s exact test. The analysis of covariance (ANCOVA)
was used to adjust for the confounder. The AUCs were
used to evaluate the predictive power, and the optimal
cutoff value was established by maximizing the Youden
index (sensitivity + specificity-1). Decision curve analysis
(DCA) and precision-recall (P–R) curve analysis were
conducted by R version 4.1.0 (https://www.r-project.org).
A two-tailed P value < 0.05 was considered statistically
significant.

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report.
Results
Patient characteristics
This prospective study involved 957 critically ill children
in the derivation cohort for the identification of the
prediction model. Of the 964 children admitted to the
four PICUs during the study period, 4 with CKD and 3
with serious data missing were excluded. These 957
children were allocated into separate training and in-
ternal validation sets. In addition, among 872 children
admitted to the PICU in the external validation cohort, 3
with CKD and 3 with serious data missing were
excluded. The external cohort consisting of 866 children
was used as the external validation set. The comparison
of demographic and clinical variables among the
training, internal validation, and external validation sets
is shown in Supplementary Table S2. Details of the
study design are displayed in Fig. 1.

Among the 957 children in the derivation cohort, 284
(29.7%) developed AKI during the PICU stay, including
108 with AKI stage 1, 82 with AKI stage 2, and 94 with
AKI stage 3. Of the 284 AKI children, 201 (70.8%)
developed AKI on the first day, 271 (95.4%) within the
first week, and 278 (97.9%) within the first two weeks.
Moreover, among AKI children, 226 (79.6%) met the
criteria of SCr alone, 41 (14.4%) met the criteria of UO
www.thelancet.com Vol 68 February, 2024
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Fig. 1: Flow chart of the study design. AKI: acute kidney injury; CKD: chronic kidney disease; ML: machine learning; PICU: pediatric intensive
care unit; RF: random forest; SHAP: SHapley Additive explanation.
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alone, and 17 (6.0%) met the criteria of SCr and UO
simultaneously. The demographic and clinical charac-
teristics between non-AKI and AKI are listed in Table 1.
The major reasons of the 957 children for PICU
admission were respiratory disease (24.8%), followed by
neurological disease (21.9%) and hematologic and
oncologic disease (15.2%).

Model development and performance comparison
The data collected in the first 24 h after PICU admission
were used to generate 11 ML models to predict AKI
developed during the PICU stay in critically ill children.
www.thelancet.com Vol 68 February, 2024
Among the 11 models, RF model (AUC = 0.940) had the
best predictive effect for AKI, followed by LightGBM
model (AUC = 0.936) and GBM model (AUC = 0.922).
The discriminative performances of these 11 models are
listed in Supplementary Table S3, and the ROC curves
and the SHAP summary plots of the top 20 features for
the top five best-performing ML models are presented in
Fig. 2A and Supplementary Fig. S2A–E, respectively.
During the process of reducing features based on the
feature important rank, the changes in AUCs for these
five models showed that the RF model maintained
nearly the best predictive ability among these five
5
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Variables Non-AKI (n = 673) AKI (n = 284) P value

Age, month 34.0 [12.0–84.0] 22.0 [4.0–106.8] 0.041

Body weight, kg 14.0 [9.2–24.0] 11.3 [6.5–25.0] 0.006

BMI, kg/m2 16.3 [14.9–18.8] 16.5 [14.5–19.6] 0.742

Male, n (%) 408 (60.6) 164 (57.7) 0.407

PRISM III score 3.0 [2.0–7.0] 8.0 [3.0–13.0] <0.001

MAP_min, mmHg 68.3 [61.7–76.7] 64.3 [54.0–74.6] <0.001

MAP_max, mmHg 82.7 [73.0–92.7] 81.3 [67.4–90.0] 0.006

HR_min, beats/min 109.0 [90.0–126.0] 116.0 [92.0–133.0] 0.007

Temp_min, ◦C 36.6 [36.4–36.9] 36.6 [36.3–37.0] 0.932

Temp_max, ◦C 37.5 [37.0–38.5] 37.7 [37.0–38.7] 0.030

PaCO2_max, mmHg 36.5 [30.6–41.3] 37.4 [29.9–45.9] 0.020

PaO2/FIO2, mmHg 452.4 [278.8–624.0] 342.0 [192.9–568.0] <0.001

pH 7.4 [7.4–7.5] 7.4 [7.3–7.5] 0.169

HCO3
-, mmol/L 21.6 [18.9–24.2] 21.7 [17.4–24.7] 0.580

APTT, seconds 31.6 [28.0–36.6] 34.7 [28.6–42.3] <0.001

INR 1.1 [1.0–1.2] 1.1 [1.0–1.4] <0.001

CK-MB, ng/mL 17.0 [3.8–29.0] 17.0 [4.1–36.8] 0.090

TBil, μmol/L 7.0 [4.8–10.9] 10.4 [5.7–19.4] <0.001

ALT, U/L 18.0 [12.0–31.0] 24.9 [15.0–70.9] <0.001

LDH, U/L 326.8 [255.1–422.3] 359.0 [281.6–693.8] <0.001

Lac_max, mmol/L 1.8 [1.2–2.7] 2.3 [1.4–3.6] <0.001

SCr, μmol/L 25.0 [19.0–33.7] 35.0 [24.3–55.3] <0.001

BUN, mmol/L 3.8 [2.8–4.9] 5.0 [3.3–7.9] <0.001

Albumin, g/L 40.9 [36.8–44.0] 38.7 [34.0–43.1] <0.001

Glucose, mmol/L 5.9 [5.2–7.3] 6.1 [5.2–7.6] 0.300

K, mmol/L 3.8 [3.5–4.2] 3.9 [3.5–4.4] 0.142

Na, mmol/L 137.0 [135.0–139.0] 137.0 [133.0–140.0] 0.499

Cl, mmol/L 105.1 [103.0–108.0] 105.0 [102.0–108.2] 0.621

Ca, mmol/L 1.2 [1.1–1.2] 1.1 [1.0–1.2] <0.001

WBC, 109/L 10.5 [6.9–14.6] 10.2 [6.5–14.9] 0.721

PLT_min, 109/L 280.0 [187.5–367.0] 240.0 [114.5–341.0] <0.001

CRP, mg/L 6.0 [0.6–13.0] 8.0 [1.3–50.8] <0.001

PCT, ng/mL 0.2 [0.1–0.4] 0.3 [0.2–2.0] <0.001

Urine output, mL/kg/h 2.1 [1.3–3.1] 2.1 [1.0–3.6] 0.697

eGFRa, mL/min/1.73 m2 130.9 [110.3–159.8] 83.0 [63.6–127.2] <0.001

MODS, n (%) 76 (11.3) 124 (43.7) <0.001

Shock/DIC, n (%) 52 (7.7) 76 (26.8) <0.001

MV, n (%) 170 (25.3) 127 (44.7) <0.001

RRT, n (%) 2 (0.3) 61 (21.5) <0.001

PICU length of stay, hours 102.1 [48.7–195.2] 144.2 [70.6–288.9] <0.001

PICU mortality, n (%) 30 (4.5) 49 (17.3) <0.001

Continuous values were presented as median [interquartile range]. Categorical values were presented as number
(percentage). Max and min represented the maximum and minimum values during the first 24 h after PICU
admission, respectively. AKI: acute kidney injury; BMI: body mass index; DIC: disseminated intravascular
coagulation; MODS: multiple organ dysfunction syndrome; MV: mechanical ventilation; PICU: pediatric intensive
care unit; PRISM III: Pediatric Risk of Mortality III, RRT: renal replacement therapy. aThe eGFR was calculated
based on the first available serum creatinine during the first 24 h after PICU admission.

Table 1: Comparison of demographic and clinical characteristics and outcomes between non-AKI
and AKI in the derivation cohort.
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models, as shown in Fig. 2B. Thus, it can be observed
that, of the five models mentioned above, the RF model
fared best in terms of AKI prediction. The performance
of the RF model with varied numbers of features is
displayed in Fig. 2C and Supplementary Table S4. The
sensitivity, specificity, PPV, NPV, accuracy, and F1 score
were calculated at the optimal cutoff value that maxi-
mized the Youden index.

Identification of the final model
The final model was identified during the feature
reduction of the RF model. As displayed in Fig. 2C and
Supplementary Fig. S3A, the 33-feature model was
significantly better than 3-feature model
(△AUC = 0.036, P = 0.004) and 7-feature model
(△AUC = 0.020, P = 0.042), respectively, but not
significantly better than the 8-feature model
(△AUC = 0.011, P = 0.161) in predicting AKI developed
during the PICU stay. The 8-feature model had a good
net benefit and a high threshold probability, comparable
to the 33-feature model. Meanwhile, the area under the
P–R curve of the 8-feature model was only marginally
lower than that of the 33-feature model, indicating that
both models have similar and high clinical utility, as
shown in Supplementary Fig. S3B–G. Hence, we
focused on the 8-feature RF model, including body
weight, PRISM III score, MAP_min, APTT, TBil, eGFR,
BUN, and UO, as the final model for further analysis.
The final RF model achieved an AUC of 0.929 with a
sensitivity of 0.886, a specificity of 0.866, a PPV of 0.714,
a NPV of 0.953, an accuracy of 0.872, and an F1 score of
0.791 for predicting AKI in critically ill children. Since a
large proportion of AKI cases developed on the first day
after PICU admission, the predictive performance of the
final model for AKI that occurred at different timing
points was further explored in Supplementary Table S5.
The final model achieved AUCs of 0.977 and 0.927 for
AKI on day 1 and days 2–7 of the PICU stay,
respectively.

To validate the appropriate sample size for this study
and the robustness of this model to site variation, cross
validations were further performed. As shown in
Supplementary Fig. S4A and B, the final model achieved
mean AUCs of 0.909 ± 0.031 and 0.912 ± 0.042 in the
five-fold and ten-fold cross validations, respectively. In
addition, the final model displayed mean AUCs of
0.929 ± 0.061 in Suzhou cohort (n = 350), 0.905 ± 0.093
in Shanghai cohort (n = 278), 0.897 ± 0.062 in Anhui
cohort (n = 182), and 0.874 ± 0.104 in Xuzhou cohort
(n = 147) in the ten-fold cross validation.

The predictive values of SCr, BUN, UO, and eGFR,
which all reflect renal function, as well as RAI and
PRISM III, were further investigated and compared
with the 8-feature final model. As illustrated in
Supplementary Fig. S5A, SCr (ΔAUC = 0.250,
P < 0.001), BUN (ΔAUC = 0.225, P < 0.001), UO
(ΔAUC = 0.474, P < 0.001), eGFR (ΔAUC = 0.143,
P < 0.001), RAI (ΔAUC = 0.162, P < 0.001), and the
PRISM III (ΔAUC = 0.231, P < 0.001) performed worse
in the internal validation than the final model, respec-
tively. The DCA curves also revealed that the final model
had greater clinical utility than SCr, BUN, UO, eGFR,
www.thelancet.com Vol 68 February, 2024
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Fig. 2: Performance of ML models to predict AKI. (A) ROC curves of the top five best-performing ML models. (B) AUCs of the top five best-
performing ML models with varied numbers of features. (C) AUC, sensitivity, specificity, and F1 score of the RF model with varied numbers of
features. AdaBoost: adaptive boosting; AKI: acute kidney injury; AUC: area under the ROC curve; GBM: gradient boosting machine; LightGBM:
light gradient boosting machine; ML: machine learning; RF: random forest; ROC: receiver-operating-characteristic; XGboost: eXtreme gradient
boosting.
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RAI, and the PRISM III score, respectively, as presented
in Supplementary Fig. S5B.

External validation of the final model
For the external validation, the final model gave an AUC
of 0.910, which was similar to that in the internal vali-
dation (ΔAUC = 0.019, P = 0.477), indicating that the
final model showed great performance both in internal
and external validations.

Moreover, as the MAP values in the final model were
not the first measured values obtained after PICU
admission, we selected the initial values of MAP and
replaced them in the external validation data set to
investigate whether AKI can be accurately predicted. In
the secondary external validation, the final model dis-
played an AUC of 0.910, showing an excellent ability to
identify critically ill children at high risk for AKI in the
external validation cohort.

Model explanation
Since it is difficult for clinicians to accept a prediction
model that is not directly explainable and interpretable,
the SHAP method is utilized to interpret the output of
the final model by calculating the contribution of each
variable to the prediction. This explainable method
provided two types of explanations: global explanation of
the model at the feature level and local explanation at the
individual level. Global explanation described the overall
functionality of the model. As shown in SHAP sum-
mary plots (Fig. 3A and B), the contributions of the
feature to the model were evaluated using the average
SHAP values and exhibited in descending order. Addi-
tionally, the SHAP dependence plot can facilitate un-
derstanding how a single feature affects the output of
the prediction model. The real values versus the SHAP
values of these 8 features are shown in Fig. 3C, and
SHAP values that are higher than zero correspond to a
www.thelancet.com Vol 68 February, 2024
positive class prediction in the model, in other words, a
higher risk of AKI. For instance, children with an eGFR
≤86.3 mL/min/1.73 m2 or a PRISM III score ≥9 scores
had SHAP values higher than zero, which pushed the
decision towards the “AKI” class. In addition, a low
actual value ≤57.7 mmHg or a high actual
value ≥96.3 mmHg of MAP_min pushed the decision
towards the “AKI” class, as well as a low actual
value ≤7.5 kg or a high actual value ≥54 kg of body
weight.

In addition, local explanation analyzed how a certain
prediction was made for a specific individual by incor-
porating the individualized input data. Fig. 4A–C
showed a child who did not develop AKI during the
PICU stay. Fig. 4A represented this child towards the
“AKI” class with a probability of 5.6%, and Fig. 4B
represented this child towards the “non-AKI” class with
a probability of 94.4%, according to the prediction
model. The actual measured values of features were also
displayed in the waterfall plot, as shown in Fig. 4A and
B. As observed, the values of eGFR, PRISM III score,
BUN, UO, MAP_min, APTT, and body weight pushed
the decision towards the “non-AKI” class, but TBil did
not. If the actual values for most features were normal,
such as eGFR, the risk of developing AKI would be low.
In contrast, the TBil, with an actual value outside the
normal range, may increase the risk for AKI in this
child, even though the overall prediction pushed this
case into the “non-AKI” class.

A similar phenomenon was observed for a child
developing AKI during the PICU stay in Fig. 4D–F. The
features pushing or pulling the decision toward the
“AKI” class and their actual measured values were dis-
played in Fig. 4D and E. The decision for this case
leaned towards “AKI” with a probability of 92.7% and
“non-AKI” with a probability of 7.3%. Furthermore, a
force plot of interpretation for children in the internal
7
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Fig. 3: Global model explanation by the SHAP method. (A) SHAP summary bar plot. (B) SHAP summary dot plot. The probability of AKI
development increases with the SHAP value of a feature. A dot is made for SHAP value in the model for each single patient, so each patient has
one dot on the line for each feature. The colors of the dots demonstrate the actual values of the features for each patient, as red means a higher
feature value and blue means a lower feature value. The dots are stacked vertically to show density. (C) SHAP dependence plot. Each
dependence plot shows how a single feature affects the output of the prediction model, and each dot represents a single patient. For example,
both a low actual value ≤57.7 mmHg or a high actual value ≥96.3 mmHg of MAP_min push the decision towards the “AKI” class. SHAP values
are represented by the y-axis, and actual values are represented by the x-axis. The SHAP values for specific features exceeding zero push the
decision towards the “AKI” class. AKI: acute kidney injury; APTT: activated partial thromboplastin time; BUN: blood urea nitrogen; eGFR:
estimated glomerular filtration rate; MAP: mean arterial pressure; PRISM III: pediatric risk of mortality III; SHAP: SHapley Additive explanation;
TBil: total bilirubin; UO: urine output.
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Fig. 4: Local model explanation by the SHAP method. (A–F) Waterfall plot and evolution of risks contributed by each feature for individual
child at low (A–C) or high (D–F) risk of developing AKI: A and D represented the individual child towards the “AKI” class, and B and E rep-
resented the individual child towards the “non-AKI” class. In C and F, all the input features were standardized to zero-mean and unit-variance.
(G) Force plot for the internal validation set. Each patient was represented by the x-axis, while the features’ contributions were represented by
the y-axis: an increased red part for each individual patient represented a greater probability towards the decision of “AKI”. AKI: acute kidney
injury; APTT: activated partial thromboplastin time; BUN: blood urea nitrogen; eGFR: estimated glomerular filtration rate; MAP: mean arterial
pressure; PRISM III: pediatric risk of mortality III; SHAP: SHapley Additive explanation; TBil: total bilirubin; UO: urine output.
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validation cohort is illustrated in Fig. 4G. The x-axis
represents each patient, and the y-axis represents the
contributions of the features. An increased red part for
each individual patient represents a greater probability
towards the decision of “AKI”.

Convenient application for clinical utility
The final prediction model was implemented into the
web application to facilitate its utility in clinical sce-
narios, as shown in Fig. 5. When the actual values of the
8 features required for the model are entered, this
application will automatically predict the risk of AKI for
an individual child. Additionally, a force plot for the
individual child will also be displayed to indicate the
features that contribute to the decision of AKI: the blue
www.thelancet.com Vol 68 February, 2024
features on the right are the features pushing the pre-
diction towards “non-AKI”, while the red features on the
left are pushing the prediction towards “AKI”. The web
application is accessible online at https://prediction-
model-for-aki.streamlit.app.

Prognostic implications
The investigation of prognostic implications employed
all cases, including 1823 critically ill children from the
training, internal validation, and external validation co-
horts. Supplementary Table S6 lists several probability
cutoff values that had a Youden index exceeding 0.8 in
the training cohort, as well as their sensitivity, speci-
ficity, PPV, and NPV for predicting AKI, severe AKI,
and persistent AKI in 1823 critically ill children.
9
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Fig. 5: Convenient application for clinical utility. The convenient application of the final RF model with 8 features is available for AKI
prediction. When entering actual values of the 8 features, this application automatically displays the probability of 85.31%. Meanwhile, the force
plot for individual child indicates the features that contribute to the decision of “AKI”: the blue features on the right are the features pushing
the prediction towards the “non-AKI” class, while the red features on the left are pushing the prediction towards the “AKI” class. AKI: acute
kidney injury; RF: random forest.
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Supplementary Fig. S6 shows the performance of the
final model in predicting AKI, severe AKI, and persis-
tent AKI during the whole PICU stay as well as the first
week of the PICU stay. The optimal probability cutoff
value of 30.8%, which maximized sensitivity and spec-
ificity, for predicting AKI was used as the clinical sub-
grouping threshold to define “Prediction model (+)” and
“Prediction model (−)”. Critically ill children with a
probability equal to or greater than 30.8%, defined as
“Prediction model (+)”, had a higher incidence of AKI
(76.4% vs. 3.5%), multiple organ dysfunction syndrome
(MODS) (46.5% vs. 14.1%), and shock/disseminated
intravascular coagulation (DIC) (27.0% vs. 3.9%), as well
as a longer length of PICU stay (117.9 h vs. 74.8 h) and
an increased PICU mortality rate (20.6% vs. 3.9%) than
those with a probability less than 30.8%, defined as
“Prediction model (−)”.

To further investigate the prognostic implications of
AKI identified by this explainable model, children were
classified into subgroups based on the combination of
the final model and KDIGO criteria: subgroup 1
[AKI(−)/Prediction model (−)], subgroup 2 [AKI(−)/Pre-
diction model (+)], subgroup 3 [AKI(+)/Prediction
model (−)], and subgroup 4 [AKI(+)/Prediction model
(+)], as shown in Fig. 6.

The demographic and clinical characteristics of these
four subgroups are presented in Table 2. As illustrated
in Fig. 6A and B, children in subgroups 2 and 4 had
significantly higher mortality than those in subgroup 1,
respectively. Meanwhile, children in subgroup 2 had
higher illness severity assessed by the PRISM III score
and were more likely to be complicated by MODS and
shock/DIC, as well as requiring mechanical ventilation,
compared to those in subgroup 1. Children in subgroup
4 had increased scores of the illness severity and were
more likely to develop shock/DIC than those in sub-
group 3, as shown in Table 2 and Fig. 6B. Although
children in subgroup 2, defined as AKI(−)/Prediction
model (+), did not develop KDIGO-defined AKI, they
had higher illness severity scores and a comparable
incidence of mortality and MODS compared to children
in subgroup 3, defined as AKI(+)/Prediction model (−).

Moreover, broad differences in the distributions of
clinical variables across subgroups are depicted in
Fig. 6C. Some variables reflecting cardiovascular, he-
patic, renal functions, coagulation, and inflammatory
reactions were worse in subgroup 2 than subgroup 1.
Similar differences were observed between children in
subgroups 3 and 4.
Discussion
This is the first prospective, multicenter study, to our
knowledge, to investigate and compare 11 ML models
for comprehensive AKI prediction analyses in PICU
cohorts. We identified a set of predictive risk factors and
constructed a prediction model for children admitted to
www.thelancet.com Vol 68 February, 2024
the PICU using ML algorithms alongside clinical and
laboratory data easily extracted from the EMR system.

To date, numerous studies have concentrated on AKI
prediction,33,34 but a single analyte seems to be difficult
to put into clinical practice due to the heterogeneous
underlying pathophysiology of AKI.4 The ML technique
is a powerful computational method to deal with com-
plex and extensive data because it can handle highly
variable data sets and understand the complex rela-
tionship between variables in a way that is flexible and
can be trained. Combining EMR data, which are easily
available and more accurate for clinicians and re-
searchers to gain clinical data, with sophisticated ML
algorithms can facilitate the development of clinical
prediction models.35 Among 11 ML models, the RF
model had the best AUC value with a good net benefit
and a high threshold probability in feature reduction. RF
is an ensemble classifier that combines a set of decision
trees by majority voting and is widely used as a classi-
fication model.36 Several studies have proven that the RF
method has excellent predictive value in the field of
medicine.37–39 In this study, we employed the RF algo-
rithm to develop a final model with 8 features. These
features can be obtained or evaluated easily within the
first 24 h of PICU admission, making this model
promising as an early discriminative tool for AKI in
critically ill children during the PICU stay, even for
those who have not met the criteria for AKI at the
moment of data collection.

Due to the lack of guidelines or consensus for
selecting features for the prediction model, how many
features should be included in the model remains
elusive. Although more features may provide more in-
formation for the prediction model, including a large
number of features may limit the clinical use of the
model, and including non-causal features may reduce
the accuracy of the prediction.40 The SHAP method was
employed to assist feature selection. Our final model,
established as a simple and convenient ML prediction
model, might be easily used to facilitate clinical
decision-making in PICU populations.

The final model we developed had a superior ability
to predict AKI in pediatric cohorts compared to tradi-
tional single markers. The major characteristics of AKI
are a rise in SCr and a decline in UO during a brief
period of time.2 However, low and varying SCr levels are
characteristic in young children.41,42 We used eGFR
instead of SCr in the development of model due to the
fact that eGFR gives more information than just SCr
alone and reflects the physical conditions of specific
children of different ages. Due to the critical signifi-
cance of eGFR and UO in the AKI diagnosis, including
these two features was beneficial for strengthening the
predictive ability of the final model. Nevertheless,
comparing the predictive power of the final model to
that of the eGFR, SCr, BUN, and UO, we observed that
the final model outperformed each of the traditional
11

www.thelancet.com/digital-health


Fig. 6: Comparison of the incidence rate and clinical variables according to the final model and KDIGO criteria. (A) Flow chart describing
1823 children subgrouped according to the final model and KDIGO criteria. AKI was defined based on serum creatinine and urine output in
accordance with the KDIGO criteria. Prediction model (−) represented children with a probability <30.8%, and prediction model (+) represented
children with a probability ≥30.8% in the final model. (B) MODS (P < 0.001), Shock/DIC (P < 0.001), and PICU mortality (P < 0.001) among
subgroups. (C) Heatmap of the distribution of clinical and laboratory variables. Variables with a statistical difference among four subgroups
(P < 0.05) were included. Each variable was standardized to zero-mean and unit-variance. The color gradient was used to show differences in
mean values, with red for higher values and blue for lower values. Max and min represented the maximum and minimum values during the first
24 h after PICU admission, respectively. *P < 0.05 vs. subgroup 1, #P < 0.05 vs. subgroup 2, &P < 0.05 vs. subgroup 3.
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markers, respectively. In addition, the final model per-
formed better than the RAI and the PRISM III score,
which reflect the risk and injury state of the kidney and
the illness severity, respectively, demonstrating its
excellent ability to predict AKI. It’s interesting that the
final model also consisted of PRISM III score, TBil,
MAP, APTT, and body weight. Although there is no
evidence demonstrating their ability to independently
predict AKI, these variables are associated with an
increased risk of different types of AKI.43–48 The PRISM
III score increases among critically ill children with AKI
diagnosed using various criteria.43,44 Although renal
perfusion is heavily reliant on blood pressure and a low
MAP level may result in renal hypotension and predis-
pose individuals to AKI,49 hospitalized children
complicated with hypertension or hypotension both
have an increased risk of AKI,50 which supports the U-
shape relationship between MAP and AKI observed in
this study. Despite the underlying mechanism between
body weight and AKI remaining elucidated, the corre-
lation of body weight with AKI has been described
previously.44,48,51 Therefore, these clinical variables could
contribute to the final model, and the combination of
them may be superior to a single marker in predicting
AKI.

Our final model performed well both in internal and
external validations, with an AUC of 0.929 and 0.910,
respectively. As previously reported, several studies have
conducted ML models for the prediction of AKI. How-
ever, these researchers specifically focused on AKI in an
adult population within a specific clinical setting, such
as AKI following cardiac surgery, liver transplantation,
or sepsis.20,21,52 As far as we know, the cause and course
of AKI exhibit extensive heterogeneity, and the imma-
ture kidney function of children differs from that of
adults. Thus, establishing prediction models for
www.thelancet.com Vol 68 February, 2024
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Variables Non-AKI n = 1374 AKI n = 449 P value

AKI(−)/Prediction model (−) AKI(−)/Prediction model (+) AKI(+)/Prediction model (−) AKI(+)/Prediction model (+)

Number, n (%) 1249 (68.5) 125 (6.9) 45 (2.5) 404 (22.2)

Age, month 41.0 [14.0–100.0] 38.0 [3.8–87.0] 79.0 [20.0–123.5] 39.0 [6.0–120.0] 0.087

Body weight, kg 15.0 [10.0–27.0] 13.0 [6.0–24.0]a 20.0 [12.0–40.5]b 14.0 [7.4–33.0] 0.003

BMI, kg/m2 16.5 [14.9–18.9] 16.0 [14.2–17.7]a 18.1 [15.4–20.0]b 16.6 [14.5–19.4] 0.005

Male, n (%) 728 (58.3) 74 (59.2) 30 (66.7) 237 (58.7) 0.735

PRISM III score 4.0 [2.0–7.0] 11.0 [5.0–14.0]a 4.0 [1.0–7.0]b 9.0 [3.0–15.0]a,c <0.001

MODS, n (%) 165 (13.2) 52 (41.6)a 18 (40.0)a 194 (48.0)a <0.001

Shock/DIC, n (%) 48 (3.8) 26 (20.8)a 2 (4.4) 117 (29.0)a,c <0.001

MV, n (%) 210 (16.8) 34 (27.2)a 19 (42.2)a 172 (42.6)a,b <0.001

RRT, n (%) 12 (1.0) 0 (0.0) 10 (22.2)a,b 96 (23.8)a,b <0.001

Length of PICU stay, hours 73.2 [43.7–142.1] 113.3 [64.2–219.4]a 217.1 [99.2–332.0]a 121.3 [59.6–255.2]a,c <0.001

PICU mortality, n (%) 46 (3.7) 17 (13.6)a 5 (11.1) 92 (22.8)a <0.001

All 1823 critically ill children from derivation and external validation cohorts were included in this table. Continuous values were presented as median [interquartile range]. Categorical values were presented
as number (percentage). AKI developed during the PICU stay was defined based on serum creatinine and urine output in accordance with the KDIGO criteria. Prediction model (−) represented children with
a probability <30.8%, and prediction model (+) represented children with a probability ≥30.8% in the final model. AKI: acute kidney injury; BMI: body mass index; DIC: disseminated intravascular
coagulation; KDIGO: Kidney Disease: Improving Global Outcome; MODS: multiple organ dysfunction syndrome; MV: mechanical ventilation; PICU: pediatric intensive care unit; PRISM III: Pediatric Risk of
Mortality III; RRT: renal replacement therapy. aP < 0.05 vs. AKI(−)/Prediction model (−). bP < 0.05 vs. AKI(−)/Prediction model (+). cP < 0.05 vs. AKI(+)/Prediction model (−).

Table 2: Comparisons of demographic and clinical characteristics and outcomes among subgroups based on the final model and KDIGO criteria.
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pediatric patients in a heterogeneous PICU cohort is
necessary. Although a few retrospective studies were
conducted to identify AKI prediction models in hospi-
talized children,14–16,53 these models performed less
accurately than our final model14,15,53 or only predicted
AKI stages 2 and 3 with a time window of 24–48 h
before AKI occurrence.16 Our final model was estab-
lished through a comparison of 11 ML models and a
feature reduction, and it performed well in predicting
AKI in any stage for critically ill children during their
whole PICU stay. The SHAP method was employed to
explain this model, enabling a better understanding and
facilitating its utility for clinicians. Furthermore, chil-
dren at high risk for adverse outcomes were identified
based on the combination of the final model and
KDIGO criteria. The aforementioned findings clarified
the universal clinical application and advantages of our
final model.

The ML technique has been described as a “black-
box” with little explanation about how predictions are
derived. This may result in clinicians refusing to use it
because they are hesitant to make medical decisions
based on opaque information. This brought up another
advantage of this study: we utilized the SHAP approach
to explain the “black-box” of ML models. The SHAP
method could explain this model via a global explanation
that describes the overall functionality of a model and a
local explanation that details how a certain prediction is
made for an individual child by inputting the individu-
alized data. Moreover, with a convenient tool based on
the Streamlit framework, this prediction model can be
used on the webpage and shared with more clinicians.

The other major finding in this study was to utilize
the ML model and KDIGO criteria to identify clinical
subgroups and evaluate their prognostic implications in
www.thelancet.com Vol 68 February, 2024
critically ill children. Due to the heterogeneous etiology
and complicated pathophysiology of AKI, it is a chal-
lenge for clinicians to manage AKI patients in clinical
settings. The subgrouping for AKI may be used to
identify patients at high risk and improve the diagnostic
accuracy of AKI.54 In the present study, we used the RF
model in a special and innovative way to define clinical
subgroups, and the probability of 30.8%, as the optimal
cutoff value that maximized sensitivity and specificity,
was used as the threshold for subgrouping. AKI chil-
dren predicted only by our final model exhibited higher
levels of illness severity and a comparable incidence of
multiple organ dysfunctions and death compared to AKI
children predicted only by the KDIGO criteria. More-
over, among critically ill children with and without
KDIGO-defined AKI, those with a probability exceeding
or equal to the threshold had a higher illness severity
and an increased risk of death and organ complications.
Considering the association with poor outcomes, sub-
grouping critically ill children had potential clinical
significance and provided important information for
clinicians. Our findings verified that clinicians should
concentrate more on critically ill children predicted by
the final prediction model due to the fact that they might
be more susceptible to organ complications no matter
whether they meet the KDIGO criteria for AKI. Conse-
quently, not all standardly staged AKI is associated with
worse outcomes within PICU patients, and the combi-
nation of prediction model and KDIGO criteria is su-
perior to traditional markers alone in predicting AKI
severity and poor outcomes.

We should acknowledge several limitations of this
study. First, as a prevalent issue in hospitalized patients,
baseline SCr values were unavailable for most of the
children in this study.26,42 We estimated the baseline SCr
13
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using the modified Schwartz estimating equation, which
has been employed in many pediatric AKI studies, to
minimize errors as much as possible.26,27 Second, we
built the AKI prediction model in heterogeneous PICU
cohorts, regardless of the causes of AKI. However, AKI is
complex in its pathophysiological mechanisms and
accompanied by diverse etiologies. The question of
whether this model performs well in predicting various
AKI types remains unanswered. Third, this model was
constructed based on Chinese populations, and its
generalizability to global populations was not clear.
However, this is a multicenter study with a heteroge-
neous pediatric population, which could provide
adequate evidence for our results to be generalizable.
Further assessment is required for the generalizability of
this model. Fourth, although “big data” is required for
ML techniques to construct prediction models, no stan-
dard is available for computing sample sizes for the
development of machine learning-based prediction
models. Nevertheless, well-performed cross and external
validations, indicating an appropriate sample size, with a
prospective multicenter study design, provided adequate
power for exploring the prediction model of AKI in
critically ill children. Fifth, it seemed that the results of
AKI cases occurring on the first day of PICU stay could
be a large driver of the overall study results, which may
be a bias of this study towards positive results. Never-
theless, this is a common phenomenon in clinical set-
tings, with most AKI cases identified on the first day of
the ICU or PICU stay, as previously reported.55,56 The
final model still performed well for predicting AKI that
occurred on days 2–7 of the PICU stay. Additionally, this
final model could only predict the occurrence of AKI but
not the timing of AKI. Further study is required to
investigate the prediction of the timing of AKI occurring,
especially in a time window of 24 h or 48 h before AKI
occurrence. Sixth, we did not include the disease cate-
gory in the model. Critically ill children admitted to the
PICU frequently complicate more than one disease, and
there are plenty of disease categories in clinical settings.
These result in the difficulty of incorporating the disease
category into the prediction model.

In conclusion, we successfully developed an
explainable ML model to predict AKI in critically ill
children based on clinical data easily extracted from the
EMR system. The final RF model had an excellent ability
to predict AKI in both internal and external validations.
The optimal probability cutoff value was employed as a
threshold, and critically ill children with a probability
greater than or equal to the threshold had an increased
risk of organ complications and PICU mortality and
should receive more attention in clinical settings.
Further randomized and controlled studies are required
to figure out whether individualized and prompt thera-
peutic measures according to the final prediction model
could improve patient outcomes in PICU cohorts.
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