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Abstract
Enzymes are important and effective biological catalyst proteins participating in almost all

active cell processes. Identification of multi-functional enzymes is essential in understand-

ing the function of enzymes. Machine learning methods perform better in protein structure

and function prediction than traditional biological wet experiments. Thus, in this study, we

explore an efficient and effective machine learning method to categorize enzymes accord-

ing to their function. Multi-functional enzymes are predicted with a special machine learning

strategy, namely, multi-label classifier. Sequence features are extracted from a position-

specific scoring matrix with autocross-covariance transformation. Experiment results show

that the proposed method obtains an accuracy rate of 94.1% in classifying six main func-

tional classes through five cross-validation tests and outperforms state-of-the-art methods.

In addition, 91.25% accuracy is achieved in multi-functional enzyme prediction, which is

often ignored in other enzyme function prediction studies. The online prediction server and

datasets can be accessed from the link http://server.malab.cn/MEC/.

Introduction
Enzymes play a crucial role in the catalysis of biological and chemical reactions. As effective
catalyzers, they are not consumed and do not participate in the reactions. After they are cata-
lyzed, more than 400 types of reactions can be accelerated. The enzyme commission (EC) num-
ber, which is based on the chemical reactions catalyzed by enzymes, is utilized to characterize
different enzymes as a numerical classification scheme[1]. Enzymes are divided into six main
classes, namely, oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases, and
then subdivided into three hierarchical levels. Most studies on enzyme classification focused on
monofunctional enzyme prediction. However, identification of the multifunctional enzyme,
which is a specific type of enzyme that can catalyze two or more chemical reactions, has not
been provided much attention.
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Various approaches have been utilized to achieve high accuracy in monofunctional enzyme
prediction. Bioinformatics approach has attained considerable achievements by using informa-
tion on the protein sequence and structure[2]. Huang et al.[3] proposed an adaptive fuzzy k-
nearest neighbor method with Am-Pse-AAC feature extraction method, which was first devel-
oped by Kou-Chen Chou for enzyme subfamily class prediction, and attained an excellent
accuracy of 92.1% for the six main families. EzyPred[4] is a three-layer predictor that is based
on PSSM; it considers protein evolutionary information abundant in the profiles. The second
layer responsible for predicting the main function class achieves 93.7% accuracy. EFICAz[5]
has a high accuracy of 92% in predicting four EC digit levels in a jackknife test on test
sequences that are<40% identical to any sequences in the training dataset.

With regard to multifunctional enzyme prediction, Luna De Ferrari et al.[6] and Zou[7]
achieved good results. Luna De Ferrari presented EnzyML, a multi-label classification method
that employs InterPro signatures. This method can efficiently provide an explanation for pro-
teins with multiple enzymatic functions and achieves over 98% subset accuracy without utiliz-
ing any feature extraction algorithms. Zou proposed two feature algorithms to make
predictions and obtained 99.54% and 98.73% accuracy by using 20-D and 188-D features,
respectively; however, dataset redundancy was not mentioned in the paper.

The enzyme sequence in the present study was obtained from the Swiss-Prot Database
(release 2014.9), an authoritative organization that provides high-quality annotated protein
sequences. After redundancy removal with cluster database—high identity with tolerance
(CD—HIT)[8], the similarity of the sequence is established below 65% to ensure the effective-
ness of the experiments. ACC is then applied[9, 10] for feature extraction. This method was
first proposed by Dong as a taxonomy-based protein fold recognition approach and has not
been utilized in enzyme classification yet. Accuracy of 94.1% in monofunctional enzyme clas-
sification is obtained by using the K-nearest neighbor classifier. With regard to multifunc-
tional enzymes, an average precision of 95.54% and 91.25% is obtained after five cross-
validation tests on all enzymes and multifunctional enzymes, respectively.

Method

Data preprocessing
The original downloaded dataset consists of 214,375 sequences. However, each enzyme class
has duplicate sequences. 207,430 sequences remained after duplicate elimination. To eliminate
the negative effect of sequence similarity, CD-HIT, a widely utilized procedure to reduce
sequence redundancy and improve the performance of other sequence analyses using cluster-
ing (known as high computing speed) was applied to perform redundancy removal in the
experiments. A total of 59,763 sequences with similarity below 65% were obtained. The
CD-HIT algorithm progresses as follows. First, the http://cn.bing.com/dict/clientsearch?
mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E9%80%
92%E5%87%8F%E6%8E%92%E5%BA%8F sequences are sorted in length-descending order.
Second, the first series class is formed from the longest sequence, and subsequent sequences
are compared with the representative sequence of the known series class. If the similarity is
above the threshold set beforehand, the sequence is added in this class; otherwise, a new series
class is formed. Third, the longest sequence is extracted from each class to form the final data-
set. In the experiments, the threshold is set to 0.65, and the word length to compare is 5.
Table 1 shows the situation before and after redundancy removal.

Notably, the multifunctional enzymes in the six classes have not been removed yet. Table 2
shows the distribution of multifunctional enzymes in the six classes.
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Feature extraction algorithm
Position-specific scoring matrix. For convenience of discussion, we denote a protein

sequence as S, which is expressed as

S ¼ s1s2s3s4 . . . sL; ð1Þ

where L represents the length of S and si(1� i� L) represents one item of the amino acid
alphabet, which is expressed as {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}[11].
For sequence S, the position-specific scoring matrix (PSSM) was generated by implementing
the PSI-BLAST program[12]. PSSM is a L�20 matrix[13] and can be expressed as follows:

PSSM ¼

p1;1 p1;2 � � � p1;20

p2;1 p2;2 � � � p2;20

..

. ..
. ..

. ..
.

pi;1 pi;2 � � � pi;20

..

. ..
. ..

. ..
.

pL;1 pL;2 � � � pL;20

2
66666666666664

3
77777777777775

L�20

ð2Þ

where each row represents the corresponding position of S (e.g., the 1st row refers to s1, the
2nd row refers to s2, and so forth). Each column represents the corresponding residue type of
the amino acid alphabet (e.g., the 1st column refers to “A,” the 2nd row refers to “C,” and so
forth). pi,j(1� i� L, j = 1,2,. . ., 20) is a score that represents the odds of si being mutated to res-
idue type j during evolutionary processes; for example, p1,1 represents the odds of s1 being
mutated to residue type “A”. A high score for pi,j usually indicates that the mutation occurs fre-
quently and that the corresponding residue in that position may be functional.

ACC feature representation algorithm. The framework consists of two feature models
denoted as AC and CC. By using the PSSM of Eq (2), the enzyme sequence is formulated into a
20-D feature vector. The 20-D feature vector is calculated as

Fð �PjÞ ¼ �Pj ¼
PL

i¼1 pi;j
L

j1 � i � L; j ¼ 1; 2; . . . ; 20

( )
; ð3Þ

where �Pj represents the average score of the amino acids in the enzyme sequence, which

Table 1. Distribution of six enzyme classes before and after CD-HIT(0.65).

Dataset EC 1 EC 2 EC 3 EC 4 EC 5 EC 6 Total

original data 32958 82735 38611 22754 14096 23221 214375

after duplicate-elimination 32016 79144 36862 22421 13872 23115 207430

after CD-HIT 8781 23716 11994 5331 4037 5904 59763

doi:10.1371/journal.pone.0153503.t001

Table 2. Distribution of multifunctional enzymes before and after CD-HIT(0.65).

Multifunctional enzymes EC 1 EC 2 EC 3 EC 4 EC 5 EC 6 Total

before redundancy 1534 1924 2657 1698 616 179 4076

after CD-HIT 386 503 689 473 137 52 1085

doi:10.1371/journal.pone.0153503.t002
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indicates the general odds of the sequence being muted to residue j during the evolutionary
process.

In the model of AC, the enzyme sequence is computed as

FAC ¼
PL�l

i¼1 ðpi;j � �PjÞ � ðpiþl;j � �PjÞ
L� l

j j ¼ 1; 2; . . . ; 20

( )
: ð4Þ

As shown in Eq (4), FAC measures the average correlation between two amino acids sepa-
rated by a distance of λ in the enzyme sequence. The dimension of the feature vector FAC is λ �

20.
In the model of CC, the enzyme sequence is computed as

FCC ¼
PL�l

i¼1 ðpi;j1 � �PjÞ � ðpiþl;j2
� �PjÞ

L� l
jj1; j2 ¼ 1; 2; . . . ; 20; j1 6¼ j2

( )
: ð5Þ

As shown in Eq (5), FCC measures the average correlation between two amino acids sepa-
rated by a distance of λ in the enzyme sequence among 20 types of standard amino acids. The
dimension of the feature vector FCC is λ � 380.

Combining FAC and FCC generates a (400 � λ)−D feature vector to represent the enzyme
sequence, as represented by

FACC ¼ ðFAC ; FCCÞ: ð6Þ

The ACC feature representation algorithm fully employs the influence of the position corre-
lation among sequence amino acids on protein homology detection. Secondary structure fea-
tures[14, 15] were considered in other protein classification works. However, it is too time
consuming for constructing web server.

Classifier selection and tools
KNN algorithm. The K-nearest neighbors (KNN) algorithm is a mature method and is

one of the simplest machine learning algorithms in theory. It is widely used for classification
and regression. The key idea in this algorithm is that an object can be assigned to a class if the
majority of its k nearest neighbors belong to this class. If k equals 1, then the object is simply
assigned to the class of that single nearest neighbor.

For instance, in Fig 1, the objective is to classify the test sample (star) either to the first class
of triangles or to the second class of squares. If k equals three, we assign it to the second class
according to dashed line circle because two squares and only one triangle exist inside the circle.
If k equals five, we assign it to the first class according to the solid line circle because three tri-
angles and only two squares exist inside the circle.

The choice of parameter k in this algorithm is important and depends on the data mostly.
Generally, a large value of k dilutes the effect of noise in the classification but renders the
boundaries between the categories less distinct. In our experiments, a large k value does not
perform well.

KNN has been extensively utilized for the classification task in bioinformatics. Many recent
studies have proven its high efficiency. In our experiments, we implemented a host of underly-
ing classification algorithms and found that KNN is 20% more accurate than others.

WEKA and MULAN. Two of the main tools we utilized are Waikato environment for
knowledge analysis (WEKA) and multi-label learning (MULAN). WEKA is an ensemble Java
package with numerous machine learning algorithms and a graphical user interface. Several
standard data mining tasks, including data preprocessing, feature selection, clustering,
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classification, regression, and visualization, are supported. MULAN is a Java library for learn-
ing from multi-label data. WEKA and MULAN contain an evaluation framework that calcu-
lates a rich variety of performance measures. They provide a convenient means to compare
performance on different data using different classifiers.

Measurement
Single-label measurement. Given multi-label test datasets S = {(xi,yi)|1� i� n}, for class

yi where 1� j�m, the binary classification performance of a predictor is presented by the four
variables below.

TPj ¼ jfxijyj 2 Yi ^ yj 2 hðxiÞ; ðxi;YiÞ 2 Sgj

FPj ¼ jfxijyj=2Yi ^ yj 2 hðxiÞ; ðxi;YiÞ 2 Sgj

TNj ¼ jfxijyj=2Yi ^ yj=2hðxiÞ; ðxi;YiÞ 2 Sgj

FNj ¼ jfxijyj 2 Yi ^ yj=2hðxiÞ; ðxi;YiÞ 2 Sgj

TPj indicates the number of true positive instances, FPj indicates the number of false posi-
tive instances, TNj indicates the number of true negative instances, and FNj indicates the num-
ber of false negative instances. h(xi) indicates the classification results of sample xi predicted by
classifier h.

Fig 1. KNN algorithm diagram.

doi:10.1371/journal.pone.0153503.g001

Identification of Multi-Functional Enzyme with Multi-Label Classifier

PLOS ONE | DOI:10.1371/journal.pone.0153503 April 14, 2016 5 / 13



We obtained four evaluation performance indicators according to these four variables as
shown below[1, 16–22].

Accuracy ¼ BðTPj; FPj;TNj; FNjÞ ¼
TPj þ TNj

TPj þ FPj þ TNj þ FNj

ð7Þ

Precision ¼ BðTPj; FPj;TNj; FNjÞ ¼
TPj

TPj þ FPj

ð8Þ

Recall ¼ BðTPj; FPj;TNj; FNjÞ ¼
TPj

TPj þ FNj

ð9Þ

F�measure ¼ 2 � Precision � Recall
Precisionþ Recall

ð10Þ

Multi-label measurement. We employed two evaluation indicators[23], namely, exam-
ple-based and label-based metrics. For example-based metrics, we calculated the classification
results for each sample first and then obtained the average value for the entire dataset.

We considered multi-label classifier h and multi-label dataset S = {(xi,Yi)|1� i� n}, where
Yi is the label collection of sample xi. Yi = {0,1,1,0,1,0} denotes that sample xi belongs to classes
1, 2, and 4 simultaneously.

Average precisionsðhÞ ¼
1

n

Xn

i¼1

1

jYij
X

y2Yi

jy0jrankf ðxi; y0Þ � rankf ðxi; yÞ; y0 2 Yij
rankf ðxi; yÞ

ð11Þ

This index indicates the performance of the relevance tag emerging before a certain tag in
the sorted class label sequences. The higher average precision is, the better the performance is;
the best value is 1.

For label-based metrics, we calculated the binary classification results for each class first and
then obtained the average value for all classes.

Based on single-label measurement, we supposed that B(TPi, FPi, TNi, FNi) represents the
binary classification indicator. The following are defined.

Bmacro ¼ 1

m

Xq

j¼1
BðTPj; FPj;TNj; FNjÞ ð12Þ

Bmicro ¼ B
Xq

j¼1
TPj;

Xq

j¼1
FPj;

Xq

j¼1
TNj;

Xq

j¼1
FNj

� �
ð13Þ

Bmacro measures the classification capability in each class and obtains the average of all clas-
ses as the final result. Its main idea is that each class shares the same weight. However, Bmicro

endows each sample the same weight. It calculates the sum of values in all classes and then uti-
lizes the value to obtain classification capability as the final result. Such is the difference
between these two indicators.

Multi-label classification ensemble algorithm. Suppose that m classifiers solve an n-class
classification problem. We define score matrix scoreVectors, and scoreVectors(i,j) indicates
the possibility of the sample being classified into class j by classifier i, where 0�scoreVectors(i,
j)�1, 1�i�n, 1�j�m.
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Similarly, we define binary matrix bipartitionVectors, and bipartitionVectors(i,j) represents
whether the sample is classified into class j by classifier i, where bipartitionVectors(i,j)2{0,1},
1�i�n, 1�j�m.

Below are three ensemble methods.

MeanscoreVectorðjÞ ¼

Xm

i¼1
scoreVectorsði; jÞ

m
; ð14Þ

Majority bipartitionVectorðjÞ ¼
Xm

i¼1
bipartitionVectorsði; jÞ � 0 : 1 0; ð15Þ

TopK scoreVector ðjÞ ¼
PK

i¼1 SortðscoreVectorsði; jÞÞ
K

; ð16Þ

where Sort(scoreVectors(i,j)) represents the scores being sorting in descending order.

Result and Discussion

Monofunctional enzyme classification
First, we evaluated the importance of distance parameter λ in the ACC feature representation
algorithm; 94.1% accuracy is attained for the dataset with similarity below 65% when λ is set to
1. With the increase in parameter λ, the improvement is not evident (only 0.1% increase), but
time consumption is multiplied. This condition implies that the homology among adjacent
amino acids is high. Second, we compared the performance of ACC method in different classi-
fiers. IB1, which was built by KNN where neighbor k was set to 1, yielded the best results. The
comparison results are shown in Fig 2.

We also compared ACC with other popular protein prediction methods, such as 188D[24]
(which considers the constitution, physicochemical properties[25], and distribution of amino
acids), liu_feature (820D)[26] (which combines evolution information extracted from frequency

Fig 2. Results of ACCmethod on different classifiers.

doi:10.1371/journal.pone.0153503.g002
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profiles with sequence-based kernels for protein remote homology detection), n-gram (20D)
[27] proposed by Browm et al. (which denotes the feature vectors by probability calculation),
Pse-AAC (420D) originally proposed by Chou[28, 29] (which has been comprehensively
applied for diverse biological sequence analyses as an effective protein descriptor[30–38], and
DNA descriptor[39–42]. As shown in Fig 3, the advantage of the ACC algorithm is obvious.

Aside from these five feature representation methods, we also tested two other enzyme-ori-
ented online platforms. The first one is EzyPred. We randomly extracted 10 enzyme sequences
from each class within one multifunctional enzyme as the test dataset and obtained 80% accu-
racy, which is lower than the 93.7% accuracy mentioned in the paper. The public test website
http://www.csbio.sjtu.edu.cn/bioinf/EzyPred/EzyPred is free to the public. The second plat-
form is EFICAz2.5[11, 43]. We obtained 86.4% accuracy with the code obtained from the link
http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.html. This accuracy value
is lower than the 92% accuracy mentioned in the paper.

Multifunctional enzyme classification
We applied the ACC method to multifunctional enzyme classification according to the results
of monofunctional enzyme prediction. Given that KNN works well in monofunctional enzyme
classification, we focused on classifiers (IBLR_ML[44]/MLkNN[45]/BRkNN[46]) whose kernel
is the KNN algorithm with the aid of MULAN. Two other classifiers (RakEL[47]/HOMER)
were also tested. From Table 3, we can see that the classifier IBLR_ML obtained the best aver-
age precision of 95.54%. Classifiers MLkNN and BRkNN also produced good results.

To test the classification performance of the multifunctional enzyme further, we performed
cross validation on the multifunctional enzyme only. To ensure data reliability and experimen-
tal accuracy, the threshold of data redundancy was set to 0.9. Then, we obtained the dataset in
Table 4. Table 5 shows that 89.4% average precision was obtained.

To obtain good results, the five classifiers shown in Table 5 are combined into one. Precision
increased to 91.25% with the TOP3 combination rule.

In statistical prediction, the independent dataset test, subsampling or K-fold crossover test
and jackknife test are the three cross-validation methods often used to check a predictor for its

Fig 3. Results of fivefeaturerepresentationmethods on IB1 classifier.

doi:10.1371/journal.pone.0153503.g003
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accuracy[48]. However, among the three test methods, the jackknife test is deemed the least
arbitrary that can always yield a unique result for a given benchmark dataset[49]. Accordingly,
the jackknife test has been increasingly used and widely recognized by investigators to examine
the quality of various predictors[31, 32, 34, 39, 40, 50–54]. However, for saving computational
time, the 5-fold cross-validation was used in this study.

Conclusion
We have explored a new method of multifunctional enzyme prediction. Considering the posi-
tion relation and homology among amino acids[55], we extracted sequence features by using
ACCmethod and performed prediction by using the KNN algorithm. The cross-validation test
results indicate that our method outperforms other existing algorithms in datasets with similar-
ity below 65%. Accuracy values of 94.1% in monofunctional enzyme classification and 95.54% in
multifunctional enzyme classification were achieved. Compared with other existing prediction
methods in the field of multifunctional enzyme class prediction, our method demonstrates better
versatility and effectiveness. A public prediction—recognition platform is provided at http://
server.malab.cn/MEC/. Our work is expected to be helpful for enzyme prediction in the future.

Our work just focused on the features and multi-label classifier. Some other machine learn-
ing techniques, such as feature selection[56], training sample selection[57, 58], ensemble learn-
ing[59–61], network features[62–64], imbalance classification[65, 66], ought to be considered
in the next step. It is worth noting that there are many other potential tools for enzyme

Table 3. Cross-validation results of Multi-Label classifiers.

IBLR_ML MLkNN BRkNN RAkEL HOMER

Micro-averaged Precision 0.9239 0.9202 0.9251 0.9117 0.9070

Micro-averaged Recall 0.9128 0.919 0.9159 0.9117 0.8869

Micro-averaged F-Measure 0.9183 0.9196 0.9205 0.8628 0.8968

Macro-averaged Precision 0.9176 0.9134 0.9189 0.9181 0.9006

Macro-averaged Recall 0.9021 0.9103 0.907 0.8039 0.8759

Macro-averaged F-Measure 0.9097 0.9118 0.9128 0.8559 0.8879

Average Precision 0.9554 0.9542 0.9442 0.9267 0.9305

doi:10.1371/journal.pone.0153503.t003

Table 4. Distribution of multifunctional enzyme after de-redundance (0.9).

EC 1 EC 2 EC 3 EC 4 EC 5 EC 6 Total

861 994 1426 927 290 91 4589

doi:10.1371/journal.pone.0153503.t004

Table 5. Cross-validation results of Multi-Label classification onmultifunctional enzymes only.

IBLR_ML MLkNN BRkNN RAkEL HOMER

Micro-averaged Precision 0.8406 0.8374 0.8279 0.8090 0.7519

Micro-averaged Recall 0.8178 0.8209 0.8285 0.8126 0.8233

Micro-averaged F-Measure 0.8290 0.8290 0.8282 0.8108 0.7859

Macro-averaged Precision 0.6792 0.6746 0.7341 0.7364 0.6056

Macro-averaged Recall 0.6705 0.6761 0.7379 0.6917 0.6619

Macro-averaged F-Measure 0.6737 0.6747 0.7347 0.7004 0.6305

Average Precision 0.8940 0.8930 0.8583 0.8910 0.8407

doi:10.1371/journal.pone.0153503.t005
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prediction, such as, evolutionary computation[67, 68] and spiking neural models[69–76]. Fur-
thermore, parallel techniques, such as Map Reduce[77, 78], should also be considered for big
testing data in the future.
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