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Abstract

Background: Obesity and metabolic syndrome results from a complex interaction between genetic and environmental
factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly
expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified
transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique
polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a
comparator Lean (L) strain.

Results: To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots
and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for
the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This
successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes
elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1,
Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray
analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences
with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive
inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL
gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a
contribution to obesity.

Conclusions: A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose
tissue-enriched genes contributing to obesity.
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Introduction

Obesity and its co-associated metabolic diseases result from a

complex interaction between environmental and genetic factors

[1–3]. The polygenic Fat (F) and Lean (L) mouse models were

selectively bred for divergent body fat mass [4] and thus model

complex polygenic human obesity. Four major obesity QTLs in the

F line were initially described in an F2 cross of the out-bred F and L

mouse lines [5]. Notably, obesity in the F line is independent of

leptin, the leptin receptor and other characterised single gene obesity

mutations relating to central control of appetite or energy balance

[5,6]. Indeed, F mice have a lower caloric intake than L mice [6,7].

Since the divergent adiposity of the model was selected using fat pad

mass rather than food intake, and because several studies, including

recent meta-genome wide association, link lipid metabolism and

intrinsic molecular pathways within the adipose tissue to fat mass

regulation [8–12] we reasoned that the F and L adipose tissue would

be a rich resource for identifying obesity-susceptibility genes.
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We describe a stratified microarray analysis of gene expression

using first a qualitative, comparative ‘snap-shot’ pooled transcrip-

tomic approach across several adipose tissue depots and non-

adipose metabolic tissues to broadly identify adipose tissue-specific

gene expression differences between F and L lines. We used

previously defined QTL information [5] to enrich for genes with an

increased causal likelihood. This was followed by quantitative gene

chip validation in subcutaneous fat, where the largest divergence in

fat mass in response to chronic high fat (HF) feeding was observed

[13]. Having defined adipose-tissue specific pathways and positional

candidate obesity genes we performed real time PCR (RT-PCR)

validation of key affected pathways. We then functionally linked two

of the QTL-associated candidate obesity genes – and one non-QTL

associated gene that had an expression profile parallel to that of the

candidate genes – to fat cell function.

Results and Discussion

Insights into adipose tissue and depot-specificity of gene
expression: Snap-shot results

We applied a 4 step filtering strategy to narrow our search for

key adipose-specific obesity-associated genes (Figure 1) as de-

scribed in Methods and Materials.

The number of genes that were differentially expressed between

the lines across any of the three fat depots (3WATs) was markedly

reduced after the first filter was applied to enrich for genes co-

ordinately regulated in 3WATs (Table 1, Figure 1). Notably, in

terms of overall adiposity (3 WATs) there were 10 times as many

genes elevated in F (102) than L mice (9). This may reflect that

causal gene variants raising the upper set-point of body fat mass are

not as strongly proscribed, in the absence of predation, in contrast to

genes conferring a potentially threatening low fat mass [14]. Despite

EPI fat being the sole selection criteria for the first 20 generations of

the breeding [4] there were fewer differences in gene expression in

the EPI of F mice (380 versus SC 426 and MES 450). This may

reflect the induction of secondary inflammatory, metabolic,

angiogenic and tissue remodelling programmes that are more

pronounced in the F line SC and MES adipose tissues (see below).

This is also consistent with the SC being the most divergently HF

responsive tissue [13] and with visceral (MES) fat being highly

vascularised and immune cell-rich. In contrast, twice as many

differentially expressed genes were elevated in the EPI of L mice

(484 versus SC 262 and MES 201) which may reflect an EPI depot-

selective process that is relatively quiescent in other L fat depots.

The genes found by the relaxed 3WAT criteria were exported to

Webgestalt and screened against the Kyoto Encyclopaedia of Genes

and Genomes (KEGG) and Gene Ontology database to look for

enrichment of functional pathways that were over-represented in

the F adipose tissue (Table 2). Database for Annotation, Visuali-

zation and Integrated Discovery (DAVID) was also used for

pathway analysis with similar findings (data not shown).

Table 3 shows the list of genes identified from more stringent

criteria ($2-fold difference between the lines in 3WATs) that were

additionally positioned within major QTL boundaries [5]. This

further reduced the chance of selecting functionally neutral or

secondary genes. Three of these genes (C1qr1, Np3r and Thbs1) have

been previously linked to obesity or adipose tissue function

(Table 3). Several novel adipose-tissue specific mechanisms

potentially contributing to fat mass accumulation and/or its

associated metabolic consequences are inferred from functions

ascribed to the other genes or closely-related functionally

characterised genes or disease processes (Table 3).

‘Snap-shot’ filters for non-adipose specific divergently
expressed genes

The base population for the F and L strains was created by

crossing two inbred and one out-bred strain [4]. Line-specific

Figure 1. A stratified transcriptomics approach for adipose
tissue-specific gene enrichment. Schematic of the experimental
design used to enrich for adipose tissue- genes candidate obesity
genes. Several successive filters were applied that decreased the
numbers of genes fulfilling the inclusion criteria (right hand panel).
From top to bottom; 1. differential gene expression (.1.5-fold)
between the lines across all adipose tissues was analysed with a
‘snap-shot’ pooled transcriptomics approach. 2. Adipose selective gene
expression was then considered by including only genes that were co-
ordinately differentially expressed between the lines in the 3 white fat
depots. 3. Increased stringency ($2-fold difference) and filtering with
known obesity QTL boundaries [5] were used to select for an increased
likelihood that the differentially expressed genes were causal for
divergent adiposity. 4. A gene-environment interaction was modelled
by identifying genes that were differentially expressed in a quantitative
microarray (QM) analysis of the subcutaneous adipose tissue after high
fat feeding. Some genes fulfilling all or most of these criteria were
validated.
doi:10.1371/journal.pone.0023944.g001

Table 1. Gene numbers associated with differential
expression in adipose and grouped for QTL position.

number of total/known* genes matching criteria

FAT genes Genomewide Fob1 (%) Fob2 (%) Fob3(%) Fob4(%)

q SC 426/355 22/21 (6) 9/82) 11/11(3) 11/10(3)

q EPI 380/319 20/17 (5) 12/10(3) 9/8(3) 12/12(4)

q MES 450/378 28/25 (7) 9/9(2) 13/12(3) 8/7(2)

q3 WATsF 102/89 7/7(8) 3/3(3) 1/1(1) 1/1(1)

LEAN genes

q SC 262/228 8/7(3) 4/3(1) 7/6(3) 4/4(2)

q EPI 484/402 12/12(3) 18/13(3) 16/12(3) 19/16(4)

q MES 201/177 4/4(2) 6/4(2) 6/5(3) 7/6(3)

q3 WATsL 9/9 0/0( ) 0/0( ) 1/1(11) 0/0( )

Number of genes expressed .1.5-fold between the F and L lines in 3 distinct
white adipose depots when fold-changes in muscle, liver and kidney were set
to be between ,1.5-fold different between F and L lines. The number of genes
co-ordinately regulated in all 3 white fat depots (3 WAT) reduces the number of
genes to those with a broad functional role (not depot-specific) in fat cell
function (see text). FAT genes refer to genes with expression higher in F-line
adipose tissue and LEAN genes refer to genes with expression higher in L-line
adipose tissue. q = increased expression, Q = decreased expression. The
number after the/oblique in blue refers identified Entrez ID genes. The number
in parenthesis indicates the number of genes within a QTL [5] as a percentage
of the whole (genome wide column).
doi:10.1371/journal.pone.0023944.t001

Stratified Identification of Adipose Obesity Genes
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differences in gene expression that are potentially unrelated to

adiposity (neutral) may therefore co-segregate with QTLs in an F2

cross or are secondary due to vast differences in final phenotype/

pathology between the lines. Differential expression due to

sequence divergence between F and L genomes may also result

in false-positive expression differences due to altered microarray

hybridisation efficiency. To help address this, the ‘snap-shot’

analysis was used to exclude genes that were differentially

expressed across all tissues. Thus, gene expression was compared

between 3 representative adipose depots versus muscle, liver and

kidney using tissues pooled from 3 mice from each line as

described in Materials and Methods. Examples of divergently

expressed, but non-adipose-specific, genes (Depdc6 [15,16], Gsn,

Table 4) were not further pursued in the present study, although

we do not discount their potential functional relevance to the

phenotype of F or L lines [17].

Modelling a gene-by-diet interaction: further insight from
quantitative microarray

To model a gene-by-diet interaction and potentially amplify

responses of obesity-susceptibility genes we performed quantita-

tive analysis (n = 4 per group) of the transcriptome in the SC fat

depot. SC fat was chosen as it showed the greatest phenotypic

divergence (fat mass) in response [13] to the obesigenic stimulus

of chronic HF feeding (Figure 2, Table 5). Notably, with the

statistical power of the quantitative microarray, far fewer genes

were differentially expressed in subcutaneous fat between the

lines under control conditions (Table 1) demonstrating the

importance of the quantitative approach for reducing false

positives. The baseline gene expression differences were clearly

amplified by diet (Table 5). As with basal differences between the

lines, the F line had a more marked gene expression response to

the diet than the L line (Figure 2, Table 5). The top functional

pathways affected in F line obesity are listed in Table 2 and

reflect an accentuation of changes in angiogenesis, cell migration,

UDP-glycosylation, prostaglandin synthesis, triglyceride and

glycogen synthesis, collagen formation, ER and stress fibre

pathways and membrane peptidases.

Validation of key changes in gene expression within the
context adipose tissue dysfunction in obesity

Line differences in key genes involved in the inflammatory

(Figure 3), metabolic and anti-oxidant (Figure 4) and hypoxia/

angiogenic (Figure 5) pathways were validated by RT-PCR in a

larger cohort (n = 8–11). This gave insight into line and diet-

specific regulation of key genes contributing to obesity and the

Table 2. Gene set enrichment analyses of ‘snapshot’ and quantitative array data.

Database Category Observed number Expected Number P-Value

Upregulated 3WAT (368 genes)

GOBP fat cell differentiation 8 1 0.002

GOBP cell adhesion 22 7 0.002

GOBP cell death 26 11 0.007

GOBP cell-matrix adhesion 6 1 0.007

KEGG ECM-receptor interaction 10 1 2e-6

KEGG PPAR signaling pathway 6 1 0.005

Downregulated 3WAT (113 genes)

GOBP antigen processing and presentation of peptide antigen 5 ,1 0.0001

GOBP immune response 11 2 0.0005

KEGG Antigen processing and presentation 4 ,1 0.0008

Upregulated 3WAT not regulated in liver, muscle, kidney (165 genes)

GOBP cell adhesion 13 4 0.05

KEGG ECM-receptor interaction 7 ,1 1e-5

Downregulated 3WAT not regulated in liver, muscle, kidney (14 genes)

No significant enrichment

Database Category Observed number Expected Number P-Value

Upregulated FFvFC (350 genes) in the quantitative array

GOBP Lipid metabolic process 40 12 2e-8

GOBP Cell adhesion 31 10 4e-6

KEGG PPAR signaling pathway 9 1 2e-5

KEGG Glycerophospholipid metabolism 8 1 0.0001

Downregulated FFvFC (39 genes) in the quantitative array

GOBP Immunoglobulin mediated immune response 3 ,1 0.048

KEGG Hematopoietic cell lineage 4 ,1 6e-5

In the snapshot data, enriched categories are shown for genes differentially expressed in all three white adipose tissues (3WAT; .2-fold; .100AU in higher expressing
strain) between fat and lean mice. In the quantitative array data, enriched categories are shown for genes differentially expressed between Fat mice on a high fat diet
and Fat mice on a control diet (.2-fold; p-value,0.05, .100AU in higher condition). GOBP = Gene Ontology Biological Process; KEGG = Kyoto Encyclopedia of Genes
and Genomes pathway database. Data analysed in Webgestalt, similar results using DAVID and Metacore (not shown).
doi:10.1371/journal.pone.0023944.t002

Stratified Identification of Adipose Obesity Genes
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associated functional changes in the adipose tissue in the most

phenotypically divergent fat depot.

Line and diet effects on inflammatory genes
Our analyses revealed a clear line divergence of inflammatory

gene expression with distinct and sometimes unexpected HF diet

responses. Most of the genes in this pathway were not obesity

QTL-associated and hence represent secondary responses (Figure 3

and microarrays). Many inflammatory genes that were more

highly expressed in F adipose tissue have been linked with obesity

and/or insulin resistance, (Ccl3/MIP1á [18] C3ar1 [19], Ccl2/

MCP1 [20], spp1/osteopontin [21]). Others appear to link obesity

and inflammation with vascular function and haemostasis (Ptgds2,

Tbaxs1, and Pla2g7 [note Pla2g16 has been linked with obesity ref.

10], Tlr13). Surprisingly, Tlr13 (mapping to Fob4) expression, but

not the Tlr2 or Tlr4 genes encoding the canonical proinflamma-

tory bacterial lipotoxin receptors (e.g. lipopolysaccharide) recently

shown to mediate adipocyte pro-inflammatory and insulin

Table 3. Genes with increased causal likelihood as indicated by a stringent stratified criteria.

Up in F line adipose tissue

Gene (Mean fold-
expression difference
across 3 WATs)

function(s)?(gene functions abridged from iHOP: http://www.ihop-
net.org). Some functions are inferred from associated phenotypes
and are denoted by (?)

Linked with obesity? (mean
expression intensity across 3WAT
‘snap-shot’ arbitrary units) [Refs]

Fob1

Thbs1 (3.4) Angiogenesis, platelet and macrophage function, fibrogenesis Yes(,402) [39–42]

C1qr1 (2) Mac/NK cell phagocytosis, lectin binding Yes (,300a.u.) [19]

Ppp1r3d (2.5) Regulatory subunit of phosphatase1, glycogen synthesis. There
are ,16 Ppp1rs

No (,100a.u.) [61: Ppp1r3a]

Tmepai (4) Transmembrane egf/androgen response, cell cycle. Obesity and androgen
signalling (?)

No(,390a.u.) [62]

Trp53inp2 (3)
embryogenesis: neural tissue, p53-inducible

No(,3060a.u.) [63]

Fob2

Ttc7b (2.5) Unknown. Related WD40/tetracopeptide involved in lipid storage(?) No(,560a.u.) [64]

Tuba1a (2) cytoskeleton/structural/transportlipid droplet-associated No(,4265a.u.) [65]

Fob3

Npr3 (7) Natriuretic peptide clearance receptor Yes(,560a.u.) [36–37]

Fob4

Fgf13 (8) morphogenesis, tissue repair. Other Fgfs have a role in adipose
tissue and metabolism?

No (,425a.u.) [66–67]

Fmr1(4.5) cell signalling, RNA binding, neuronal: Related to Prader-Willi –like
obesity syndrome in fragile X syndrome?

No(,1485a.u.) [68–69]

A stringent search, based on QTL boundaries (Horvat et al., 2000, ref 5) produces a limited set of genes with $2fold increased expression levels in all 3 WATs of F when
the difference in gene expression is set between 22 and +2 in muscle, liver and kidney. Only genes with a higher mean intensity of 100 a.u. in the 3 WATS were selected
(more likely to be of functional relevance in adipose tissue).
doi:10.1371/journal.pone.0023944.t003

Table 4. Exclusion of non-adipose-specific (all-tissue) divergently expressed genes.

Depdc6 F-line gene expression

SC EPI MES LIV MUSCLE KIDNEY

Fat 1392 1506 947 791 888 263

Lean 10 11 14 18 12 12

fold-change 138 133 68 44 75 23

Gsn L-line gene expression

SC EPI MES LIV MUSCLE KIDNEY

Fat 10 6 6 9 9 6

Lean 8455 10420 4408 51 444 227

fold-change 2864 21646 2613 26 2444 241

Numbers represent absolute chip expression intensity (AU) values from pooled transcriptome Genechip 2.0 array of subcutaneous (SC) epididymal (EPI) mesenteric
(MES) and liver, muscle and kidney. Note, due to the mean expression intensity being ,100 AU, Depdc6 and Gsn are effectively switched on in the Fat and Lean line
tissues, respectively. Positive fold-change numbers indicate elevated in F line. Negative Ratio numbers indicate elevated in L line.
doi:10.1371/journal.pone.0023944.t004

Stratified Identification of Adipose Obesity Genes
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resistance effects of free fatty acids [22], was higher in F adipose

tissue. Tlr13 is most closely related to Tlr3 that modulates innate

immune responses [23] and, unlike TLRs1-9 [24], has not been

linked to adipose tissue biology. Of note, Tlr13 mRNA expression

is higher in extreme obesity/diabetes mouse strains (Supplemen-

tary Figure S1). Notably, some immunomodulatory genes were

expressed more highly in L adipose tissue indicating an alternate

inflammatory response (Ccl5/RANTES [25]).

Striking diet-sensitive gene expression patterns were also

observed. For example, mRNA levels for Cr2 (CD21) and Ccl19

(MIP3b) that link innate and adaptive immunity and dendritic cell

migration [26] were markedly suppressed by HF diet in the F line.

In contrast, HF diet induced proinflammatory Ptger3 expression in

F adipose tissue but suppressed obesity-associated [27] serum

proinflammatory Saa3 expression. The divergence in discrete

immune responses may help identify pathological versus reparative

processes and informs the simplistic view of a general increase in

inflammatory gene expression in adipose tissue in obesity.

Overall we saw evidence of a selectively activated proinflam-

matory adipose environment which is modulated by HF diet in F

adipose tissue but also an anti-inflammatory profile in adipose

tissue of obesity-resistant L mice with very little response to HF

diet.

Line and diet effects on metabolic genes
We found a major divergence in gene expression for lipid and

carbohydrate metabolism (Figure 4 and microarray). Genes

involved in fat oxidation (Cpt1) and energy dissipation (Ucp2) were

Figure 2. Differential gene expression in subcutaneous adipose tissues of Fat and Lean mice exposed to control or high fat diets. A.
Log (base 2) ratios of gene expression intensities in fat and lean mice on the high fat and control diets. The y-axis shows the comparison of fat and
lean strains regardless of diet. The x-axis compares high fat and control diets regardless of strain. Red spots represent genes that are significantly
differentially expressed in Fat mice on high fat diet compared to control diet. Several genes of interest with higher expression in Fat mice and on a
high fat diet are marked and labelled. B. and C. Log (base 2) gene expression intensities in (B) Fat mice and (C) Lean mice on the high fat and control
diets. For each strain, the y-axis shows the log2 expression in high fat fed mice. The x-axis is for control diet. Red spots represent genes that are
significantly differentially expressed in high fat diet compared to control diet for each strain. Several genes of interest discussed in the text are
marked and labelled on graphs for both strains. Genes expressed below the arbitrary threshold (100) throughout the experiment were removed for
clarity.
doi:10.1371/journal.pone.0023944.g002
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elevated in the F adipose tissue and this was induced further

with HF diet. Of note, uncoupling protein 1 (Ucp1) – a major

mitochondrial protein linked to energy expenditure and obesity-

resistance [28] – was down regulated with HF in L adipose tissue,

indicating that healthy leanness was not due to increased

thermogenic drive in WAT. However, increased mRNA levels

for the lipolytic b3-adrenergic receptor (Adrb3) (quantitative

microarray data) suggests increased release of adipocyte fatty

acids, consistent with reduced adiposity which, in combination

with increased skeletal muscle fat oxidation in the L line [29], is

consistent with healthy leanness. The secreted retinol binding

protein4 (Rbp4) – associated with obesity and insulin resistance

[30] – was unexpectedly higher in L adipose tissue (Figure 4),

although it was HF-inducible in the F line. Rbp4 may therefore

have a context dependent relationship with insulin sensitivity.

Intriguingly, intracellular Rbp7 was elevated in F adipose tissue

and was further induced with HF. Rbp7 thus represents a novel

obesity-induced gene. Altered retinol metabolism appears to be a

feature of adipose tissue in obesity [9]. Lower mRNA levels of the

HDL-associated anti-oxidant factor Pon1 [31] were found in F

adipose tissue. HF diet suppressed Pon1 further in F adipose tissue

but induced Pon1 expression in the L adipose tissue (Figure 4)

suggesting an enhanced anti-oxidant response in L adipose

associates with their improved metabolic profile.

Consistent with impaired carbohydrate metabolism, pyruvate

dehydrogenase kinase 4 (Pdk4) mRNA levels – encoding a protein

that inactivates pyruvate dehydrogenase and hence the initial step in

mitochondrial (glycolysis to citrate cycle) oxidation – was higher in F

adipose tissue (Figure 4). Indeed, Pdk4 was higher across all 3WATs

in F adipose tissue (3WAT averaged mean intensity fold-change:

2.6) but not in liver muscle or kidney, exemplifying a secondary

(non-QTL) but adipose-specific change in adipose tissue interme-

diary metabolism. Ldh2 encoding lactate dehydrogenase (pyruvate

to lactate for de novo lipogenesis) showed a similar a 3WAT-specific

increase (mean intensity fold-change of ,5) in F adipose tissue,

consistent with a major, though likely secondary role for genes of

intermediary metabolism in the development of obesity.

Line and Diet Effects on angiogenic/hypoxia genes
Key changes were observed in the angiogenesis pathway

(Angpt1, Angptl4 and Anglr1, Hif1a, Apln, Il8) in F adipose tissue

(Figure 5 and microarray) consistent with adipose tissue hypoxia

being an early molecular link between obesity and insulin

resistance [32–34]. Distinct matrix metalloproteases associated

with the remodelling of adipose tissue [35] were selectively

elevated in F (Mmp3, Mmp12) or L (Mmp9) adipose tissue (Figure 5

and microarray). Thus, alternate inflammatory, angiogenic and

adipose remodelling mechanisms are active in the two lines that

may impact upon the severity of metabolic disease.

Functional validation of key divergently expressed genes
To further validate our stratified obesity gene enrichment

approach we investigated the functional impact of 3 genes

implicated in F-line obesity on fat cell function. We chose

natriuretic peptide receptor C (Npr3), a gene associated with the

Fob3b QTL (Figure 6) and thrombospondin-1 (Thbs1; Figure 7) a

Fob1 QTL-associated gene as candidates that had passed all the

selection criteria. We also investigated one non-QTL associated

gene, glycogen synthase 2 (Gys2; Figure 8) as it had passed all but

one (within QTL) of our stringent adipose enrichment criteria.

Although more likely a secondary gene response, the conspicu-

ously large fold-change (15, versus 6 and 4 for Npr3 and Thbs1,

respectively), supporting evidence from functionally related gene

expression changes (Pdk4, Ldh2) and the additional possibility that

Gys2 may fall within an un-characterised minor QTL, we wished

to maintain scientific balance in our approach by including it.

Investigation of Npr3 uncovers of a novel role for the
ANP system in rodent lipolysis in vivo

Natriuretic peptide receptors (NPRs) regulate blood pressure

and are particularly relevant to exercise-induced lipid mobilisa-

tion [36]. The receptor encoded by Npr3 is a signalling deficient

isoform, highly expressed in adipose tissue and kidney which is

involved in clearance of active atrial natriuretic peptide (ANP).

Table 5. Quantitative gene-chip analysis results showing the numbers of genes differentially expressed .2 fold with an adjusted
p = value,0.05, and where the mean expression is .100 a.u. intensity for the higher group.

number of upregulated genes matching criteria

Genomewide Fob1 (%) Fob2 (%) Fob3(%) Fob4(%)

FC vs LC 98 3(3) 0(0) 0(0) 5(5)

FF vs LF 254 13(5) 4(2) 3(1) 12(4)

FF vs FC 95 4(4) 0(0) 2(2) 5(5)

LF vs LC 27 0(0) 0(0) 2(7) 3 (1)

number of downregulated genes matching criteria

Genomewide Fob1 (%) Fob2 (%) Fob3(%) Fob4(%)

FC vs LC 87 7(8) 2(2) 1(1) 2(2)

FF vs LF 225 6(3) 2(1) 5(2) 7(3)

FF vs FC 21 0(0) 0(0) 1(5) 1(5)

LF vs LC 16 1(6) 0(0) 2(13) 0(0)

Upregulated (A) refers to genes that are higher in the first group in the row compared to (vs) the second group in the row. Downregulated (B) refers to genes that are
lower in the first group in the row compared to (vs) the second group in the row. For example upregulated in FC vs LC means higher expression in Fat line Control fed
than in (vs) Lean line Control fed. Only diet based (high fat v control diet) and strain based (Fat v Lean) comparisons are shown. All results are from the subcutaneous fat
pad that showed the most divergent response to high fat (HF) feeding. FC; Fat line control diet, FF; Fat line HF diet, LC; Lean line control diet, LF; Lean line HF diet. The
left column shows the total number of differentially expressed genes (Genome wide) and then those that lie within the 95% confidence interval of the major QTLs
Fobs1-4 [5]. This number is also expressed as a percentage of the Genome wide number (%) in parentheses.
doi:10.1371/journal.pone.0023944.t005
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Npr3 was elevated in all 3 fat depots of F mice in the snap-shot

array and in the quantitative array (Figure 6A–B). RT-PCR

validation showed that Npr3 expression (Fig. 6C) closely followed

the changes in subcutaneous adipose tissue mass in response to HF

feeding in F and L mice (Figure 6D) and showed a trend towards

being increased in 4 week HF-fed C57BL/6J mice (Figure 6E).

ANP was shown to induce lipolysis in primate, but not rodent,

adipocytes through activation of the NPRA (Npr1) [37]. We

investigated the effects of the NPR3-selective agonist cyclic

ANP (cANP) on lipolysis in vivo by implanting cANP-releasing

minipumps into C57BL/6J mice, a standard model of high fat-diet

induced obesity. Plasma ANP levels were elevated in cANP-treated

mice (saline, fed state: 1763 ng/ml versus cANP infusion, fed

state: 125621 ng/ml, P,0.001), as expected from its blockade of

Npr3-mediated ANP clearance [38]. This did not affect body

weight gain with short-term (4 week) HF feeding (data not shown).

To test if the ANP system might be involved adipocyte lipolysis we

challenged the mice with a 24 hour fast during week 3 of the HF

experiment. Fasting glucose levels were in the normal range for

loss of an overnight feeding bout (saline treated: 6.160.4 mmol/L,

cANP treated: 5.860.2 mmol/L). We found a novel effect of

fasting to elevate endogenous ANP levels. This was exaggerated in

cANP-infused mice (saline fasted state: 61611 ng/ml, cANP

fasted state: 436654 ng/ml, P,0.001). In addition, cANP-treated

mice showed a significant increase in fasting NEFA levels that was

not apparent in the fed state (Figure 6F). Our data suggest that

fasting is permissive for a physiological lipolytic effect of ANP in

rodents which is exaggerated by blocking ANP clearance with

cANP in vivo. High NPR3 levels in adipose tissue of Fat mice may

abrogate the lipolytic effect of ANP locally through increased

clearance of lipolytic ANP and thus contribute to obesity. The

lipolytic effect of ANP may only be manifest in states of low insulin

action such as fasting or, perhaps more relevant, in combination

with other factors (eg obesity) that contribute to pre-existing insulin

resistance [13].

Functional insight into a novel obesigenic role for
elevated Thbs1 on adipocytes

Control of vascular growth during adipose tissue expansion is a

major regulator of adiposity [39]. We noted that a number of

genes in the angiogenic/angiostatic cascade were differentially

expressed between the F and L lines (Figure 5 and microarray).

Thrombospondin1 (Thbs1) was elevated across the three fat depots

in the snap-shot analysis and this was confirmed in the quantitative

microarray (Figure 7 A–B). Thbs1 is positioned in the Fob1 QTL

[5]. During the course of validation of this array work, others

published [40] that thromobospondin-1 was elevated in obesity

Figure 3. RT-PCR validation of inflammatory genes differentially expressed in the subcutaneous adipose tissue of Fat and Lean
mice. Fat and Lean mice were fed control (FC; black bars, LC; grey bars) or high fat diet (FF; black hatched bars, LF; grey hatched bars) for 18 weeks.
RNA was extracted and the gene specified above the graphs was measured by RT-PCR. Target gene expression was corrected to the expression level
of the housekeeping gene tata-binding protein (TBP) and is expressed arbitrarily as an adjusted ratio. * = P,0.05, ** = P,0.01 significant effect of diet
within a line. {{{= P,0.001 significant difference between lines.
doi:10.1371/journal.pone.0023944.g003
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and was an adipocyte-derived cytokine (adipokine). Although

realtime PCR analysis did not show any Thbs1 change in L adipose

tissue (not validated) the increase of Thbs1 in F mice was validated

(Fig. 7C). Thbs1 mRNA was also elevated in adipose tissue from

HF-induced- and genetically-obese mice (Figure 7D–E). Critically,

the angiostatic peptide fragment [41] of thrombospondin-1 (ABT-

510) had distinct concentration-dependent effects, reducing fatty

acid uptake into 3T3-L1 adipocytes in vitro at low concentrations

(0.1–1 nM) but increasing fatty acid uptake at high physiological

(100 nM) concentrations (Figure 7F). Our data suggest Throm-

bospondin-1 may have a dual effect. In the adipose vasculature it

may curtail angiogenesis [41] and potentially prevent fatty acid

uptake through its CD36 cell surface receptor [42] at low

concentrations. However, at high concentrations thrombospon-

din-1 may have a direct hypertrophic effect on adipocyte lipid

accumulation thus promoting obesity.

Elevated Gys2 is associated with abnormal carbohydrate
metabolism and increased glycogen deposition in
adipose tissue

Despite not being positioned within any of the 4 major QTLs,

Gys2 gene mRNA was markedly higher (,14-fold) selectively in F

adipose tissues in the snap-shot experiment and this was confirmed

with the quantitative microarray and RT-PCR validation

(Figure 8A–C). Glycogen content was also elevated in the F adipose

tissue and in Lepob mice, a monogenic model of morbid obesity

(Fig. 8D) suggesting ectopic glycogen is a feature or adipose tissue in

obesity. Notably, mRNA levels of the regulatory subunit of

phosphatase 1 (Ppp1r3d) that targets glycogen synthase is one of

the novel Fob1 obesity candidate genes (Table 3). This finding is

consistent with a switch in intermediary metabolism from

carbohydrate oxidation (eg Pdk4) to inefficient lipid oxidation which

leads to a net increase in lipid synthesis (eg Ldh2; lactate, driving

glyceroneogenesis) and ectopic carbohydrate storage in adipose

tissue. Of note, glycogen complexes with water and thus has a higher

mass per mole than lipid. Ectopic glycogen deposition may therefore

make an important contribution to fat pad mass per unit stored.

Conclusions
We have gained insight into metabolic, inflammatory and

angiogenic remodelling responses characteristic of obesity, some of

which overlap with those described by others [43–45] and that are

consistent with broad changes found in microarray studies on

adipose tissue from obese rodents and humans [46–52]. Crucially,

some of our observations are unique to our model. This is very

likely due to the polygenic nature and unique selection-based

Figure 4. RT-PCR validation of metabolic and anti-oxidant genes differentially expressed in the subcutaneous adipose tissue of Fat
and Lean mice. Fat and Lean mice were fed control (FC; black bars, LC; grey bars) or high fat diet (FF; black hatched bars, LF; grey hatched bars) for
18 weeks. RNA was extracted and the gene specified above the graphs was measured by RT-PCR. Target gene expression was corrected to the
expression level of the housekeeping gene tata-binding protein (TBP) and is expressed arbitrarily as an adjusted ratio. * = P,0.05, *** = P,0.001
significant effect of diet within a line. {= P,0.05, {{= P,0.01, {{{= P,0.001 significant difference between lines.
doi:10.1371/journal.pone.0023944.g004
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origin of the divergent lines which reveals obesity (and indeed

leanness)-related changes beyond other commonly used models (eg

monogenic Lepob or HF-fed C57BL/6J), with relevance to human

obesity and its associated metabolic disturbances. Devising a

stratified systems approach integrating gene expression, tissue-

specific, depot-specific and functional data with positional (QTL)

information allowed a more rigorous test to identify and validate

candidate obesity genes. We have been able to show that a prime

obesity candidate gene (Npr3), that fulfilled all the required criteria,

turned out to have a complex, context-dependent effect on fat

mobilisation in mice in vivo. Npr3 may also link obesity-related

hypertension [13] in the model. Our approach has led to

identification of a novel direct effect of thrombospondin-1 on fat

cell hypertrophy. The exact mechanism whereby Thbs1 promotes

obesity will require further study due to its complex modular

structure, functions and multiple receptors [53]. Nevertheless the

effect of the type 1 repeat of thrombospondin-1 (ABT-510) suggests

a functional cross-talk between adipose tissue endothelial cells and

fat cells. Given the success of our stratified enrichment strategy in

linking candidate genes with fat cell function we anticipate that the

other QTL-associated genes will also have direct and functionally

relevant effects on obesity. This is further emphasised (see Table 3)

by the reported (Np3r, C1qr) or inferred roles of these genes in either

fat cell function (Ttc7b, Tuba1) or obesity-associated insulin

resistance (Ppp1r3d, Trp53inp2, Fgf13, Fmr).

Our results highlight the benefit of using transcriptomics in

addition to F2 QTL information to identify secondary, adipose-

enriched genes (Gys2, Pdk4, Ldh2; intermediary fat and carbohydrate

metabolism in fat cells) in parallel with positional candidate genes.

These genes likely contribute to obesity (eg ectopic glycogen storage)

and its consequences regardless of the mechanistic origin of

excessive weight gain. The original QTL mapping study [5] was

done using the outbred F and L lines and a low-density genetic

marker spacing with the power to detect only major QTL effects.

Our current study may therefore have uncovered novel minor

QTLs that were here regarded as ‘non-QTL-associated’, and so it

was important to document a prime example of at least one gene

(Gys2) that otherwise, and rather conspicuously (large fold change

across 3WATs, validated in quantitative array), passed our filtering

criteria. Potentially, Gys2 or other genes could be confirmed as true

expression (e)QTLs in future high resolution F2 mapping. Of further

note, many of the inflammatory changes are non-QTL associated,

suggesting that these genes are secondary, though still important,

responders to obesity. Interestingly, there were no major expression

differences in well-characterised transcriptional pathways regulating

adipocyte formation (C/EBPs, PPARs, GATAs, RIP140, ERRs,

Figure 5. RT-PCR validation of angiomodulatory genes differentially expressed in the subcutaneous adipose tissue of Fat and Lean
mice. Fat and Lean mice were fed control (FC; black bars, LC; grey bars) or high fat diet (FF; black hatched bars, LF; grey hatched bars) for 18 weeks.
RNA was extracted and the gene specified above the graphs was measured by RT-PCR. Target gene expression was corrected to the expression level
of the housekeeping gene tata-binding protein (TBP) and is expressed arbitrarily as an adjusted ratio. * = P,0.05 significant effect of diet within a line.
{= P,0.05, {{{= P,0.001 significant difference between lines.
doi:10.1371/journal.pone.0023944.g005
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KLFs, WNTs, STATS, E2Fs, Dlk, Dlp, Foxos, PRDM16), or fat

accumulation and synthesis (SREBPs).

The L mice remarkably lose fat mass with HF feeding and may

model beneficial adipose tissue changes with weight loss [13]. After

bariatric surgery in obese patients there is a switch in gene

expression from prominent stress-related pathways to genes

consistent with remodelling of the adipose tissue [54]. L mice

show a similar response with alternate-inflammatory, adipose

remodelling and lipolytic effects alongside improved metabolic

function with HF diet [13]. Thus the gene pathways changing in L

mice losing fat mass with HF feeding are not akin to a

‘lipodystrophic’ re-distribution of calories into non-adipose tissues

with consequent worsening of metabolic disease. This data may

point to important leanness genes that act independently in

adipose tissue to help cope with cellular stress and this is an area of

important future investigation.

Future work in the adipose tissues of refined congenic lines with

discrete QTLs introgressed on the comparator genetic background

will help apply additional filters for gene expression and functional

characterisation of candidate adiposity genes. This approach has

been successful in identifying Pc2 as an important obesity

candidate gene, albeit of hypothalamic origin, in a C57BL/6J

subcongenic line carrying a 7.4 Mb region of chromosome 2 from

SPRET/Ei mice [55]. A similar approach led to the positional

cloning and identification of the Prcp gene as being causal for a

hypothalamic mechanism of leanness involving a-MSH degrada-

tion [56]. An optimal test to prove that a candidate gene is causal

for the QTL effect is quantitative complementation [57], which

requires knockout models in particular genetic backgrounds.

These resources are currently unavailable for the F and L lines.

Therefore, the approach of developing novel subcongenic lines

with ever smaller donor segments combined with bioinformatics,

sequence, expression, and functional analyses remains an optimal

strategy to find causal sequence variation for obesity candidate

genes identified in this study. Recent SNP genome-wide

association studies (GWAS) in humans revealed that quantitative

variation in obesity is due to the action of numerous QTLs of

relatively small effect; each of the obesity loci detected generally

account for less than 1% of the phenotypic variance [1–2,12].

In an extremely large scale GWAS study exploring a well

characterised quantitative trait, height, the 180 loci uncovered

accounted for only 10% of phenotypic variation [58]. Quantitative

Figure 6. Validation and functional investigation of the candidate obesity gene Npr3. A. Snap-shot pooled transcriptome microarray chip
intensities (arbitrary units) across subcutaneous (SC), epididymal (EPI), mesenteric (MES) adipose tissues versus liver, muscle and kidney in Fat (F) and
Lean (L) mice with the rounded expression ratio in bold. B. Mean chip intensity from quantitative microarray (n = 4) in Fat and Lean mice fed control
(FC, LC) or high fat diets (FF, LF) with relevant P value for significant differences. C. RT-PCR validation of changes in Npr3 gene expression along with
its relationship to D. Altered fat mass in response to high fat diet in subcutaneous adipose tissue of control diet-fed Fat (FC, black bars), high fat diet-
fed Fat (FF, black hatched bars), control diet-fed Lean (LC, grey bars) and high fat diet-fed Lean (LF, grey hatched bars) mice. * = P,0.05 significant
effect of diet within a line. E. Expression levels of Npr3 in subcutaneous fat of control diet (horizontal hatched bar) or HF fed (heavily stippled bar)
C57BL/6J mice (C57). F. The effects of fasting (fast) on plasma free fatty acid levels (NEFA) in C57BL/6J mice implanted with minipumps releasing
saline (S) or 100 ng/day cyclic ANP3-23 (cA). ** = P,0.01 for an effect of cA treatment of fasting NEFA.
doi:10.1371/journal.pone.0023944.g006
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traits like obesity are therefore controlled by many more genes

than initially predicted and highly statistically-powered animal

studies in defined models such us the one used here are likely to

uncover additional obesity loci that would remain undetected in

human GWAS.

The unique selection basis of the Fat and Lean strains on fat pad

mass divergence highlights some previously unidentified molecular

mechanisms contributing to fat mass accumulation and its

downstream metabolic sequelae that may be amenable to

therapeutic intervention. The genes and pathways identified by

our stratified enrichment approach may prove important over and

above the genetically determined appetitive, energy expenditure

and activity-mediated drivers of fat mass in rodents and humans.

Methods

Experimental Design
Experiment 1. ‘Snap-shot’ pooled transcriptome microa-

rray. Our first experiment was designed to look across a panel

of tissues of the F and L mice including 3 white adipose tissue

depots, liver, muscle and kidney for broad and large qualitative

fold-changes in gene expression (Figure 1). Individual tissues were

pooled from 3 chow fed mice of each line (ie 3xSC, 3xEPI,

3xMES, 3xliver, 3xmuscle and 3xkidney samples were combined

to produce representative distinct tissue RNA with reduced

biological variability in this initial step). This pooled

transcriptome approach is referred to as the ‘snap-shot’

approach. Before microarray we confirmed that previously

described changes in leptin and 11b-HSD1 expression [13] were

found in the individual adipose tissues depots of the sampled mice

by northern blot (data not shown). RNA was hybridised to

Affymetrix Genechip 2.0 arrays according to standardised

protocols at the (Ark Genomics, Roslin, UK). We again used

previously described differences in gene expression [13] as

validatory transcriptome ‘landmarks’ for the qualitative

microarray data. The snap-shot approach allowed us to 1.

Assess which genes were grossly different between the Fat and

Lean lines across all tissues tested. 2. Provide information on which

genes were divergently expressed selectively across all white

adipose depots. 3. Apply a stricter criterion for genes that were

Figure 7. Validation and functional investigation of the candidate obesity gene Thbps1. A. Snap-shot pooled transcriptome microarray
chip intensities (arbitrary units) across subcutaneous (SC), epididymal (EPI), mesenteric (MES) adipose tissues versus liver, muscle and kidney in Fat (F)
and Lean (L) mice with the rounded expression ratio in bold. B. Mean chip intensity from quantitative microarray (n = 4) in Fat and Lean mice fed
control (FC, LC) or high fat diets (FF, LF) with relevant P value for significant differences. C. RT-PCR validation of changes in Thbps1 gene expression in
subcutaneous adipose tissue of control diet-fed Fat (FC, black bars), high fat diet-fed Fat (FF, black hatched bars), control diet-fed Lean (LC, grey bars)
and high fat diet-fed Lean (LF, grey hatched bars) mice. ** = P,0.01 versus FC. D. Thbps1 mRNA levels in control-fed C57BL/6J (C57, horizontal striped
bars) and genetically-obese leptin-deficient Lepob mice (Ob, lightly stippled bars) and E. Thbps1 mRNA levels in control-fed C57BL/6J (C57, horizontal
striped bars) and high fat diet fed C57BL/6J mice (C57 HF, heavily stippled bars). * = P,0.05 versus lean control. E. The effects of the
thrombospondin-1 type 1 repeat ABT-510 (0.1–100 nM, grey bars) on 3H-palmitate uptake into fully differentiated 3T3-L1 adipocytes. ** = P,0.01
versus control (Ctrl, black bar), non-ABT510 treated cells.
doi:10.1371/journal.pone.0023944.g007
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specifically altered in the 3 white fat depots but not in the other

metabolic tissues to increase the likelihood of identifying adipose-

specific causal obesity genes. Note the original selection criterion

of the F and L mice was on divergent fat pad mass and that the

obesity is not the result of increased food intake [6,7]. Moreover,

this was useful since the mixed genetic background of the base

population may have carried ‘bystander’ genes that are

differentially expressed between the lines in both adipose and

non-adipose tissues, but that are not related to the divergent

obesity and metabolic phenotype. 4. Obtain information on

possible adipose tissue depot-specific changes in gene expression that

are informative as regards the impact of different fat depots on

metabolic disease.

Experiment 2. Exon-chip microarray with dietary inter-

vention: Our second experiment was designed to look at the

adipose tissue depot which showed the greatest divergence in mass

between the lines in response to chronic high fat feeding [13]. We

took subcutaneous fat from control diet and high fat fed F and L

mice after 18 weeks on the diets (n = 4) which allowed us to

1.Validate changes in subcutaneous fat from experiment 1 and 2.

Perform quantitative analyses on the changes in gene expression

between the lines and identify line-specific effects of the diet.

Bioinformatics analysis of microarray data. 1. Experi-

ment 1 looked at qualitative fold changes in gene expression between

the lines in the 3 WAT depots (subcutaneous (SC), epididymal (EPI)

and mesenteric (MES), liver (L), muscle (M) and kidney (K). We set

the fold-difference threshold for changes of interest to .61.5 (where

denoted a ‘2’ refers to genes that are up regulated in the Lean line

and, positive numbers denotes genes that are up regulated in the F

lines, respectively). Initially we did not specify any range limitations for

gene expression changes in L, M or K. A second filter set the fold

change within L, M or K to be within ,61.5. This search narrowed

our targets to white adipose tissue-specific changes in gene expression,

with the caveat that many gene pathways maybe linked between or

operate differently/reciprocally from white fat and non-adipose

tissues. An example would be the opposing effects of glucocorticoids in

adipose versus liver for 11b-HSD1 expression [13]. Further, for

candidate genes we excluded all genes whose absolute signal was

below the threshold of 100 (genes unlikely to be meaningfully

expressed in the adipose) in one or both lines, with the caveat that it is

possible some genes may be effectively switched on or off in adipose

tissue of one or other line (eg Depdc6 and Gsn, see text).

2. Quantitative microarray analysis of subcutaneous fat in

experiment 2 looked at fold changes in gene expression in a single

fat depot, but allowed us to further assess the effects of chronic

high fat feeding between and within the lines. We set the fold

difference threshold to 61.5 as before.

QTL-informed analysis. Analysis of both experiment 1 and

experiment 2 benefited from the previously identified major QTL

information [5], which we introduced as a filter to provide more

information on which genes were more likely to represent causal

genes (found within the 95% confidence interval of the four major

QTL boundaries) and those which were more likely secondary (not

found within the 95% confidence interval of the four major QTLs).

Figure 8. Validation and functional investigation of the non-QTL linked, obesity-associated gene Gys2. A. Snap-shot pooled
transcriptome microarray chip intensities (arbitrary units) across subcutaneous (SC), epididymal (EPI), mesenteric (MES) adipose tissues versus liver,
muscle and kidney in Fat (F) and Lean (L) mice with the rounded expression ratio in bold. B. Mean chip intensity from quantitative microarray (n = 4)
in Fat and Lean mice fed control (FC, LC) or high fat diets (FF, LF) with relevant P value for significant differences. C. RT-PCR validation of changes in
Gys2 gene expression in subcutaneous adipose tissue of control diet-fed Fat (FC, black bars), high fat diet-fed Fat (FF, black hatched bars), control
diet-fed Lean (LC, grey bars) and high fat diet-fed Lean (LF, grey hatched bars) mice. {{= P,0.01 difference between F and L lines, * = P,0.05
indicates and effect of diet within the L line. D. Glycogen content of fat pads in subcutaneous adipose tissue of control diet-fed Fat (FC), high fat diet-
fed Fat (FF), control diet-fed Lean (LC) and high fat diet-fed Lean (LF) mice and in genetically-obese leptin-deficient Lepob (Ob, white bars) mice.
{{= P,0.01 difference between F or Ob versus and L mice and * = P,0.05 indicates and effect of diet within Fat or Lean lines.
doi:10.1371/journal.pone.0023944.g008
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Validation. Our validation steps consisted of realtime PCR

(RT-PCR) for ‘landmark’ genes on RNA from adipose tissues,

functional assessment of biochemical changes (glycogen) in the

adipose tissue of the lines and a number of in vitro and in vivo studies

to test distinct hypotheses (Natriuretic peptide receptor and

thrombospondin1).

F and L mice
Ethics Statement. All animal experiments were performed

according to local ethical guidelines of The University of Edinburgh

Ethics Committee and those of the (Scientific Procedures) Act (1986)

of the UK Government Home Office under the auspices of an

approved Home Office Project License (60/3962).

The long-term selection and further development of the F and L

lines and details of the genetic basis of the line divergence and the

inbreeding period are described elsewhere [4–7,15–16]. Mice

derived from the inbred lines were used in this study [4]. Extensive

characterisation of our lines in previous studies determined that

body weight gain is highly correlated with fat mass accretion in fat

mice [4–7]. This was substantiated in several genetic mapping

experiments [5,15–16] demonstrating that the fat% trait and body

weight trait co-localise to the same QTL regions with significant

LOD scores. We followed bodyweight change closely and

interpreted the changes in our lines as being primarily due to

altered body fat mass. Animals were fed on pelleted Rat and Mouse

breeder and grower diet (Special Diets Services, SDS, UK Ltd.,

Witham, Essex, UK) or with defined low (11% calories as fat with

sucrose; D12329) and high fat (58% calories as fat with sucrose;

D12331) diets (Research Diets, New Brunswick, New Jersey).

Tissue and plasma measurements
At the end of the experiment, mice were killed within 1 minute of

disturbing the home cage by cervical dislocation, to avoid stress-

induced changes in metabolic parameters. Blood was collected in

EDTA coated tubes (Sarstedt, Numbrecht, Germany). Plasma

insulin was measured by ELISA (Crystalchem, Downers Grove,

IL, USA), glucose by (Infinity reagent, Sigma, Dorset, Uk) and free

fatty acids (Wako Diagnostics, Neuss, Germany) levels (FFA) were

measured with a colorimetric method. Liver (L), muscle (quadriceps,

M), kidney (K), and epididymal (E), subcutaneous (S), and mesenteric

(M) adipose tissues were collected, weighed and stored at 280uC.

RNA extraction and analysis
RNA was extracted using 800 ml TRIzol reagent (Invitrogen,

Paisley, UK) per 50 mg tissue. Briefly, 200 ml of chloroform was

added to the homogenate then centrifuged at 12,000 rpm for

1 min to remove cell debris. The supernatant was then vortexed

for 15 s and centrifuged at 12,000 rpm for 15 min at 4uC. The

upper (aqueous) layer was removed, mixed with 30 ml of RNAid+
matrix (Anachem, Luton, UK) and agitated for 5 min before

centrifugation at 12,000 rpm for 1 min. The supernatant was

removed and washed 3 times with 500 ml of RNA wash (Anachem,

Luton, UK), resuspended in 20 ml of DEPC-treated water with

10 mM DTT, 1 U/ml RNasin (Promega, Southampton, UK) and

eluted by incubation at 55uC for 10 min. Concentration and

purity of RNA was assessed using a GeneQuant RNA/DNA

calculator (GE healthcare, Amersham, UK) before northern blot

or real-time PCR analysis. For Northern blotting, 5 mg of RNA

was denatured at 65uC for 15 min in a mixture of MOPS,

deionised formamide and formaldehyde as described (Morton et

al., 2005) and run on denaturing MOPS/formaldehyde 0.8%

agarose gels. Briefly, RNA was transferred using capillary action

onto a nylon membrane for hybridisation, using 206 SSC as the

transfer buffer. RNA was crosslinked by UV exposure (Spectronics

Corporation, power at 12006100 mw/cm2). Membranes were

prehybridised at 65uC for 3 h with 18 ml of phosphate buffer and

9 ml of 20% SDS in a hybridization bottle. 1 ml of salmon testes

DNA (10 mg/ml) was denatured at 100uC for 10 min and added

to the pre-hybridization mix. Radiolabelled cDNA probes were

made for genes of interest using a rediprime2 random prime

labelling kit (GE Healthcare). 25 ng DNA template (PCR

fragment) was diluted to 45 ml with TE buffer. The probe was

then denatured at 100uC for 15 min and immediately cooled on

ice for a further 10 min. Denatured DNA was then added to the

reaction tube together with 5 ml of [32P]-dCTP. The reaction was

incubated at room temperature for 2 h then labelled cDNA was

purified through a Nick column (GE healthcare, Buckinghamshire

UK). The hybridization mixture was then incubated overnight at

55uC. Three 15 minute 50 ml washes were performed; an initial

wash at room temperature with 26SSC and 0.1% SDS was

followed by 2 washes at 65uC, with 16SSC, 0.1% SDS then

0.56SSC, 0.1% SDS. The washed membrane was wrapped in

Saranwrap and exposed to a phosphorimager screen (Fujifilm,

Bedford, UK) for 10 min and scanned using a Fuji BAS

phosphorimager. Transcipt levels were quantified using Aida

software (Advance image data analyzer Version 3.44.035).

Microarray analysis
For the snapshot experiment, tissue RNAs were prepared using

Qiagen RNeasy kits, processed through standard Affymetrix

protocols, and hybridized to Affymetrix Mouse Genome 430 2.0

GeneChips (n = 4 per group, Affymetrix, Santa Clara). Raw CEL

file data were imported into BioConductor for background

subtraction and normalization with the Robust Multichip Average

(RMA) algorithm. Differential expression was determined using

the Bioconductor Limma tool and the Benjamini and Hochberg

FDR method. Annotation data for the genes were obtained from

NetAffx. WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt,

Vanderbilt University, USA), DAVID (http://david.abcc.ncifcrf.

gov/, National Institute of Allergy and Infectious Diseases) were

used to cross validate clustering and pathways analyses. Full

microarray data are MIAME compliant and are available in the

ArrayExpress database under the accession number M-EXP-3091.

For the quantitative microarray RNA was prepared with Qiagen

RNeasy kits and hybridised to Affymetrix mouse ST 1.0 Gene-

Chips. Data were imported into the Onechannelgui package of

Bioconductor, normalised with RMA (with background subtrac-

tion) and analysed with Limma with Benjamini and Hochberg

FDR multiple testing correction. Data are available in ArrayEx-

press with accession number E-MEXP-3094. Microarray process-

ing was by the ARK Genomics team at the Roslin Institute.

Real-time PCR
cDNA was synthesised from 2 mg RNA using Reverse Transcrip-

tion system (Promega, Southampton, UK) with oligo(dT) primer,

according to the manufacturer’s instructions. Gene-specific mRNA

levels were measured using the LightCyclerH 480 Real-Time PCR

system (Roche Diagnostic Ltd, West Sussex, UK) with light cycler

480 probe master (Roche Diagnostic Ltd, West Sussex, UK) and

TaqManH Gene expression Assays (Applera, Cheshire, UK). Samples

were analysed in triplicate with each PCR reaction containing 4.5 ml

cDNA, 5 ml master mix and 0.5 ml primer-probe. Results are

expressed as the ratio of gene of interest corrected to the

housekeeping gene TBP mRNA levels as an internal control.

TaqManH Gene expression Assays were inventoried and are avai-

lable from the Applera website (http://www.appliedbiosystems.com/

absite/us/en/home/applications-technologies/real-time-pcr.html).
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3T3-L1 cell culture
The 3T3-L1 cell line is a preadipocyte cell line derived from the

Swiss 3T3 mouse fibroblast cell line [59] Cells were cultured in

Dulbecco’s modified Eagle medium (DMEM) (Cambrex, Verviers,

Belgium) supplemented with 10% new born calf serum (NCS),

2 mM L-glutamine, penicillin (50 U/ml) and streptomycin

(50 ug/ml) (Invitrogen, Paisley, UK) at 37uC in humidified

atmosphere with 5% CO2. Confluent 3T3-L1 cells were subjected

to differentiation protocol. Maintenance medium was changed at

day 0 to differentiation DMEM but with additional 10% FBS to

replace NCS and supplemented with 0.5 mM isobutylmethyl-

xanthine (IBMX), 0.25 mM dexamethasone (Dex), 1 ug/ml insulin

and 100 nM Rosiglitazone.

Palmitate uptake
Pre-adipocytes (passage 8–11) were seeded onto 12 well plates at

a density of 2.56105 cells/well. Adipocytes were then fully

differentiated with the above protocol and incubated with

charcoal-stripped fetal calf serum overnight. ABT-510 1–

100 nM (dissolved in sterile PBS) was incubated in stripped serum

with the adipocytes for 6 hours at 37uC. Palmitate uptake was

measured by the addition of unlabeled palmitate, dissolved in

ethanol, and tracer (final 200 nM) radiolabelled [3H] palmitate

(0.3 mCi) in a 0.1% BSA solution. Cell-associated radioactivity was

obtained by counting aliquots of both the medium and in the cells

scraped with 10% SDS in 2 mls of aqueous scintillation fluid (GE

healthcare) in a Beckman LS330 scintillation counter.

Cyclic atrial natriuretic peptide (cANP) studies in vivo
13 C57/BL6J male (in house colony) at approximately 4-month

of age were used for the study. Mice were weighed and divided into

two groups to match initial body weight. Allowing for variations in

body weight, mini pumps were prepared using sterile saline or

varying amounts of cANP3-23 (Bachem, Switzerland) dissolved in

sterile saline to allow infusion of ,100 ng/day cANP3-23 a dose

chosen to cause maximal NP3R occupancy [38]. The pumps were

primed in saline and stored in the refrigerator for three days prior to

implantation. On the day of surgery, animals were fasted for

4 hours, weighed and blood samples were taken from tail nicks to

measure basal ANP, glucose and circulating FFAs. Animals were

anaesthetised with 5% isofluorane/oxygen mixture and the pumps

were inserted subcutaneously. After recovery, animals were started

on a 58 kcal% fat w/sucrose high fat diet (Research Diets). Body

weight and food consumption were measured routinely twice a

week. At week 3, a physiological challenge to elevate free fatty acids

was performed (24 hour fast) and the change in body weight

recorded to determine fat mobilisation.

Glycogen assays
Tissue glycogen was assessed using a modified acid hydrolysis

extraction protocol [60]. Briefly, 500 mL 0.03 M HCl were added

to approximately 200 mg of adipose tissue, homogenized and then

boiled for 45 min at 80–90uC in a water bath. Sample pH was

adjusted to pH 5 by adding a small amount of either 1.1 M HCl.

The samples were incubated water bath shaker at 37uC for at least

2 h. Glucose levels were determined at room temperature as

described above.

Statistical analyses
Gene expression differences in validation realtime was analysed

using 2-way ANOVA for line and diet effects followed by post-hoc

Holm-Sidak multiple comparison tests using Sigmastat version 3.5

(Systat Software Inc). Effects of treatments on biological

parameters such as fatty acids, tissue glycogen or palmitate uptake

were assessed using 1-way ANOVA. P-values below 0.05 were

accepted as statistically significant.

Supporting Information

Table S1 Selected strains with high fasting plasma glucose levels

after chronic HF feeding.

(DOC)

Figure S1 Toll-like receptor 13 (Tlr13) mRNA levels in adipose

tissues from obese diabetic mouse strains. The bars show the

relative expression of Tlr13 in the adipose tissues from multiple

strains (http://biogps.gnf.org). Tlr3 expression patterns are shown

from 2 eQTL analyses (gnf1m32524_at and 1457753_at) from the

gene expression/acitivty chart of biogps from ‘Fat’ or ‘Adipose’.

High Tlr13 expression is found in mouse strains that are also obese

and diabetic (Supplemental Table S1 [70]).

(TIFF)
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