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Abstract: The bacteriophage phi 6 is a virus that belongs to a different Baltimore group than
SARS-CoV-2 (group III instead of IV). However, it has a round-like shape and a lipid envelope
like SARS-CoV-2, which render it very useful to be used as a surrogate of this infectious pathogen
for biosafety reasons. Thus, recent antiviral studies have demonstrated that antiviral materials such
as calcium alginate hydrogels, polyester-based fabrics coated with benzalkonium chloride (BAK),
polyethylene terephthalate (PET) coated with BAK and polyester-based fabrics coated with cran-
berry extracts or solidified hand soap produce similar log reductions in viral titers of both types of
enveloped viruses after similar viral contact times. Therefore, researchers with no access to biosafety
level 3 facilities can perform antiviral tests of a broad range of biomaterials, composites, nanomate-
rials, nanocomposites, coatings and compounds against the bacteriophage phi 6 as a biosafe viral
model of SARS-CoV-2. In fact, this bacteriophage has been used as a surrogate of SARS-CoV-2 to
test a broad range of antiviral materials and compounds of different chemical natures (polymers,
metals, alloys, ceramics, composites, etc.) and forms (films, coatings, nanomaterials, extracts, porous
supports produced by additive manufacturing, etc.) during the current pandemic. Furthermore, this
biosafe viral model has also been used as a surrogate of SARS-CoV-2 and other highly pathogenic
enveloped viruses such as Ebola and influenza in a wide range of biotechnological applications.

Keywords: bacteriophage phi 6; SARS-CoV-2; biosafety conditions; antiviral materials; antiviral
characterization; coatings; nanomaterials; composites; films; extracts; porous supports

1. Introduction

The dramatic spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
which caused the coronavirus disease (COVID-19) pandemic, has made many researchers
focus their attention on the development of new antiviral materials, coatings and novel com-
pounds capable of inactivating this pathogen [1–4]. Thus, much progress has been achieved
in antiviral materials research to develop, for example, anti-SARS-CoV-2 biodegradable
polymers such as alginate films [5] or a chitosan-based nasal spray [6]. Several ceramic
and metallic materials, such as silicon nitride bioceramic and aluminum, have also shown
antiviral activity against this pathogen [7,8]. Nanomaterials made of silver, copper or
carbon, among others, have also shown anti-SARS-CoV-2 capacity [1,9]. Furthermore,
new coatings, among many other material engineering approaches, have shown intrinsic
antiviral capacity, which is very promising to combat COVID-19 and other diseases caused
by enveloped viruses [4,10,11].

Antiviral research on this highly infectious enveloped virus requires having access to
biosafety level 3 (BSL-3) labs. However, since there is a shortage of this type of lab world-
wide, and most of them are often very busy focusing their research on the development
of vaccines, new drugs and drug repositioning, it is very difficult for many researchers
working in this field to characterize the antiviral properties of new materials. In this context,
the bacteriophage phi 6 is a virus that belongs to group III of the Baltimore classification
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instead of group IV like SARS-CoV-2. However, it has a round-like shape and a lipid
envelop like SARS-CoV-2. Since the antiviral mechanism of action is often associated
with disruption of the viral membrane of the lipid envelope [1–4], this viral model can be
successfully used as a surrogate of SARS-CoV-2 in biosafety conditions. Thus, many recent
antiviral studies have used this viral model to study the anti-SARS-CoV-2 properties of
a broad range of materials, coatings and compounds of different chemical natures (poly-
mers, metals, alloys, ceramics, composites, etc.) and forms (films, coatings, nanomaterials,
extracts, porous supports produced by additive manufacturing, etc.) during the current
pandemic [12–19]. Furthermore, a broad range of materials, coatings and compounds have
been tested against both the bacteriophage phi 6 and SARS-CoV-2 to validate this biosafe
viral model [5,10,11,20,21].

The bacteriophage phi 6 has been used in a wide range of biotechnological applications
as a valuable surrogate virus of SARS-CoV-2 [22–26] and as a surrogate of other highly
pathogenic enveloped viruses such as influenza and Ebola [27–29]. Therefore, researchers
with no access to BSL-3 facilities can characterize the antiviral properties of a broad range of
materials, nanomaterials, coatings and compounds of different chemical natures and forms
using the bacteriophage phi 6 as a surrogate of SARS-CoV-2 or other enveloped viruses
such as Ebola and influenza.

2. SARS-CoV-2 and Bacteriophage Phi 6

SARS-CoV-2 is the seventh human coronavirus [30,31] and can spread much faster than
SARS-CoV and MERS-CoV [32–39], especially the recent Omicron variant of concern [40,41].
SARS-CoV-2 is a positive-sense single-stranded RNA virus with a lipid envelope [42]
(Baltimore group IV [43]). However, the bacteriophage phi 6 has a three-part, segmented
genome, with a 13.5 kb-long double-stranded RNA virus (Baltimore group III [43]), but
it also has a lipid envelope that protects the internal nucleocapsid structure [44] like
SARS-CoV-2 (Figure 1).
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Figure 1 shows how the enveloped bacteriophage phi 6 has a phospholipid bilayer that
contains the P9, P10, P13 and P6 membrane proteins, and the receptor-binding protein P3
that forms the outermost layer of the particle [45]. It contains a procapsid composed of three
segments of the double-stranded RNA viral genome and the P1, P2, P4 and P7 proteins.
The procapsid and a shell of the P8 and P5 proteins form the nucleocapsid. SARS-CoV-2 is
another enveloped virus with single-stranded RNA, spike glycoproteins (S), nucleocapsid
proteins (N), envelope proteins (E), membrane glycoproteins and a lipid membrane [46,47].
The size of the bacteriophage phi 6 is about 85 nm [48]. The size of SAR-CoV-2 particles
ranges from 60 to 140 nm according to Zu et al. [49], or between 70 nm and 110 nm [50],
and an average diameter of about 76 nm was reported in another study [51].

Both viruses have a round-like shape as shown in Figures 1 and 2 by advanced
microscopic techniques.
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Figure 2. Microscopic images of the bacteriophage phi 6 and SARS-CoV-2: (A) Cryo-electron mi-
croscopy image of the nucleocapsids (NCs) of the bacteriophage phi 6 highlighted with black arrows.
A partially disrupted NC is pointed out by a white arrow, where the core can be appreciated with a
clear angular inner layer. Reprinted in part with permission from [52]. Copyright 1997 JOHN WILEY
AND SONS. (B) Diameter of SARS-CoV-2 viral particles attached in cell membrane (white arrow)
(helium ion microscopy image). The number of measured particles (N), mean (M), standard deviation
(SD) and virus particles (arrow) are indicated [51].
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3. Validation of Bacteriophage Phi 6 as Viral Model of SARS-CoV-2

The emergence of new SARS-CoV-2 variants such as Delta and Omicron has proved
the urgent need for antiviral research, in which bacteriophages may help significantly [53].
Many new and commonly used antimicrobial compounds have been tested against SARS-
CoV-2 during the current pandemic. Thus, benzalkonium chloride (BAK) (0.1%) and
hand soap (1:49) have shown in vitro virucidal activity against SARS-CoV-2 [54]. BAK is
extensively used as a key compound of many household disinfecting wipes and sprays and
is also employed as an additive in many soaps and non-alcoholic hand sanitizers [55–57].
The use of hand soap for hand washing has been recommended to prevent COVID-19
transmission by the Centers for Disease Control and Prevention since the beginning of
the pandemic [58]. Furthermore, biobased products such as cranberry extracts have also
shown potent antiviral capacity against enveloped viruses such as the herpes simplex
virus types 1 and 2 (HSV-1 and HSV-2) [59] and influenza virus (IFV) [60]. Therefore, new
composite materials developed with biofunctional coatings of BAK, cranberry extracts or
solidified hand soap have shown antiviral activity against both the bacteriophage phi 6
and SARS-CoV-2 at even very short viral contact times (Table 1).

Table 1. Advanced materials tested against SARS-CoV-2 and the bacteriophage phi 6: viral contact
time, percentage of viral inactivation, toxicity, year and reference.

Advanced Materials Vial Contact
Time

% Viral Inactivation
(Phi 6)

% Viral Inactivation
(SARS-CoV-2) Toxicity Year Ref.

Calcium alginate 30 min 94.92 96.94 No (human
keratinocytes) 2022 [5]

Polyester/BAK 1 min 100 99.75 Not tested 2021 [11]

PET/BAK 1 min 100 90.00 Not tested 2021 [20]

Polyester/cranberry
extract 1 1 min 99.89 99.91 No (C. elegans

in vivo model) 2021 [10]

Polyester/cranberry
extract 2 1 min 99.14 99.88 No (C. elegans

in vivo model) 2021 [10]

Polyester/hand soap 1 min 100 98.00 No (human
keratinocytes) 2021 [21]

Therefore, these antiviral studies validate this biosafe viral model as a very useful
surrogate of SARS-CoV-2 for these types of materials (Table 1). Table 1 shows very similar
percentages of inactivation of both types of viruses after the same low viral contact times.
The antiviral activity is time-dependent and thus it increases with increasing viral contact
time. Inactivation on antiviral surfaces is desired to occur at low viral contact times. For
example, biocompatible films of calcium alginate recently showed intrinsic high inactivation
capacity against the bacteriophage phi 6 and the SARS-CoV-2 Delta variant after 30 min of
viral contact (Figure 3) [5].
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Figure 3. Antiviral properties of biocompatible calcium alginate films against enveloped viruses
such as the bacteriophage phi 6 and SAS-CoV-2. Calcium alginate swollen structure in viral aqueous
solution. Cell viability results in human keratinocytes after performing ANOVA with subsequent
Tukey’s post hoc test: *** p > 0.001; ns, not significant [5].

These antiviral tests showed a 1.43-log reduction (94.92% viral inactivation) for the
bacteriophage phi 6 and a 1.64-log reduction (96.94% viral inactivation) for SARS-CoV-2
after 30 min of viral contact (see Table 1). The antiviral mechanism of the calcium alginate
films can be attributed to their compacted negative charges that may bind to viral envelopes,
inactivating membrane receptors [5]. Another material with even higher antiviral capacity
consists of a non-woven fabric with BAK produced by the dip coating method [61]. This
composite fabric showed potent antiviral activity against the bacteriophage phi 6 and
SARS-CoV-2 (100% and 99.75% of viral inhibition after just 1 min of viral contact, respec-
tively) [11]. This antiviral technology applied to commercial non-woven fabrics is also
capable of inactivating life-threatening multidrug-resistant pathogens such as methicillin-
resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis
(MRSE). Therefore, it can also be used to combat bacterial resistance to antibiotics, which
has become a real threat to humanity. In fact, the World Health Organization (WHO) has
predicted that more people could die from multidrug-resistant pathogens than from cancer
by the year 2050 [62].

Therefore, due to the excellent properties of this fabric made of a smart material
capable of combating antibiotic-resistant bacteria, COVID-19 and other viral diseases
caused by enveloped viruses, this technology was transferred from lab to industry, and
more specifically from the Laboratory of Biomaterials and Bioengineering at Centro de
Investigación Traslacional San Alberto Magno at the Universidad Católica de Valencia San
Vicente Mártir, the Serrano BBlab (www.serranobblab.com, Valencia, Spain, accessed on
19 March 2022), to the Visormed company (https://visormed.com/es, Alicante, Spain,
accessed on 19 March 2022) during the current pandemic for the fabrication of antimicrobial
face masks on a large scale [63] (Figure 4, left).

www.serranobblab.com
https://visormed.com/es
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Figure 4. Antimicrobial face mask (FFPCOVID MASK) that inactivates enveloped viruses such as the
bacteriophage phi 6 and SARS-CoV-2, and MRSA and MRSE multidrug-resistant bacteria, from UCV
Research-Visormed [63] (left); protective face masks: difference between conventional face masks
and antimicrobial face masks (right). Created by Ángel Serrano-Aroca with Biorender.

These were the first advanced face masks with antimicrobial properties against en-
veloped viruses such as SARS-CoV-2 and multidrug-resistant bacteria reported in the
literature and produced on an industrial scale in the world. These next-generation antimi-
crobial masks will be very useful for the current and future pandemics, and they constitute
a very valuable preventive tool against the increasing microbial resistance to antibiotics.
The use of the bacteriophage phi 6 as a surrogate of enveloped respiratory viruses such as
SARS-CoV-2 or influenza in the development of new antimicrobial face masks has helped
significantly in accelerating the scientific progress in this field [3], and the FFCOVID MASK
produced by UCV Research-Visormed is a clear example (Figure 4, right).

Next-generation antimicrobial face shields have also been developed by the same lab
by dip coating transparent PET sheets with a BAK solution (Figure 5).

This antimicrobial face shield showed potent antiviral activity against the bacterio-
phage phi 6 and SARS-CoV-2 (100% and 90% of viral inhibition after 1 min of viral contact,
respectively) [20]. This was the first face shield with antimicrobial properties against
enveloped viruses such as SARS-CoV-2 and multidrug-resistant bacteria reported in the
literature. The antiviral mechanism of action of BAK against enveloped viruses is attributed
to the positively charged nitrogen atoms that can disrupt the viral phospholipid bilayer
membrane [64], and the spike glycoproteins that interact with the ACE2 receptor in the
infection of host cells [65].

Another developed biobased technology consists of dip coating non-woven fabrics
with two types of commercial cranberry extracts (see Table 1 and Figure 6) [10].
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Figure 5. Antiviral characterization of an antimicrobial face shield using the bacteriophage phi
6 as a viral model of SARS-CoV-2 for biosafety reasons: (a) Antimicrobial face shield developed
by the Serrano BBlab (www.serranobblab.com, accessed on 19 March 2022): next generation of
preventive equipment against infections caused by enveloped viruses such as SARS-CoV-2 and
multidrug-resistant bacteria. The material is composed of polyethylene terephthalate (PET) coated
with benzalkonium chloride (BAK). The double-layer method was used to determine the loss of viral
viability after 1 min of viral contact: (b) Bacteriophage phi 6 titration images of undiluted samples for
the materials. The reduction in infection capacity can be observed by the reduction in white spots.
(c) Decrease in infection titers expressed in plaque-forming units per mL (PFU/mL). CONTROL:
bacteriophages without being in contact with any material; U Plastic: untreated PET; S plastic: PET
treated with solvent; BAK plastic: PET treated with solvent and BAK [20].

www.serranobblab.com
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Figure 6. Antiviral characterization of non-woven fabrics coated with two types of commercial
cranberry extracts against the bacteriophage phi 6 for biosafety reasons: (A) The double-layer
method was used to determine the viral viability after 1 min of viral contact (titration images of
undiluted samples). These images show the reduction in infection capacity (reduction in white spots).
(B) Reduction in infection titers of the bacteriophage phi 6 in a logarithm of plaque-forming units
per mL (log(PFU/mL)) measured by the double-layer method at 1 min of viral contact. Statistical
analysis: *** p > 0.001; ** p > 0.01; ns: not significant. (C) High-resolution field-emission scanning
electron microscopy (HR-FESEM) of the non-woven fabrics, at two different magnifications (×100
and ×1000), before (a,b) and after the treatment with the VITAFAIR cranberry extract (E10V) (c,d)
or the NUTRIBIOLITE cranberry extract (E10N) (e,f). CONTROL: bacteriophages without being in
contact with any material; Control S: uncoated non-woven fabric [10].

These antiviral fabrics showed more than 99% of viral inactivation against SARS-CoV-2
and the bacteriophage phi 6 after 1 min of viral contact [10]. Cranberry extracts possess
antiviral properties as they contain antimicrobial A-type proanthocyanidins (PACs) that
cause alterations of the viral envelope glycoproteins [10,59,60]. These next-generation
fabrics fabricated with biobased coatings have also shown antibacterial activity against
MRSA and MRSE multidrug-resistant bacteria [10].

Another antiviral strategy developed to provide low-cost antiviral face masks for
potential use in developed and undeveloped countries for the current pandemic consists
of producing non-woven fabrics coated with solidified hand soap [21]. This low-cost
technology provides strong viral inactivation capacity against the bacteriophage phi 6 and
SARS-CoV-2 (100% and 98% after 1 min of viral contact, respectively) to non-woven fabrics.
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Furthermore, face masks fabricated with these antiviral non-woven fabrics did not show
any toxic effect on human keratinocytes [21].

The antiviral mechanism of action against both types of viruses, namely, the bacterio-
phage phi 6 and SARS-CoV-2, is often attributed to the binding of negative [5] or positive
charges [64] to viral envelopes, producing potent viral inactivation [1–4]. Both viruses are
RNA viruses and have a viral envelope. However, the bacteriophage phi 6 is a double-
stranded RNA virus (Baltimore group III), and SARS-CoV-2 is a single-stranded RNA virus
(Baltimore group III). Therefore, they present a different genome organization, viral infec-
tivity and replication strategy. Nonetheless, the materials presented in this section have
been tested against both types of viruses, showing very similar antiviral results. Therefore,
these results validate the use of this biosafe viral model of SARS-CoV-2 for these types of
materials and demonstrate its promising use in antiviral materials science. However, after
determining the optimal antibacteriophage phi 6 conditions, it is always recommended to
test the materials against SARS-CoV-2 or alternative surrogates, such as human coronavirus
229E or murine hepatitis virus, which are approved to justify claims against COVID-19
depending on the regulatory authorities of each country [66].

4. Use of Bacteriophage Phi 6 for the Antiviral Characterization of Advanced Materials

Additive manufacturing (AM) is at the forefront of enabling redistributed manufactur-
ing, which is critical in reducing the carbon footprint and enabling smart manufacturing ap-
proaches of the future [67]. In this field, the antiviral properties of a copper-tungsten-silver
porous alloy filter produced by AM have also been characterized using the bacteriophage
phi 6 as a biosafe viral model of SARS-CoV-2 [12] (see Table 2).

Table 2. Advanced materials tested against the bacteriophage phi 6 as a surrogate of SARS-CoV-2:
viral contact time, percentage of viral inactivation, year and reference.

Advanced Materials Viral Contact Time Viral Inactivation (%
or Log Reduction) Year Ref.

3D printed copper-tungsten-silver porous alloy filter 5 h 100% 2021 [12]

3D printed cobalt-chromium-molybdenum porous
superalloy filter 30 min 100% 2021 [13]

Coatings of PE based on ZnO, carvacrol and geraniol 24 h and 27 h Not measured 2021 [14]

Metal salts, metal and ceramic powders doped with Ag
and Cu ions and newly produced ceramic and metal
surfaces

15 min 99.99% 2022 [15]

Polyethylene films coated with layers based on CO2
extracts of raspberry seeds, pomegranate seeds and/or
rosemary

12 h Up to 100% 2021 [16,17]

Addition of chokeberry fruit to rape honey 5 min 2.55-log reduction 2021 [18]

Mixtures of Scutellaria baicalensis and Glycyrrhiza L. extracts 12 h Up to 100% 2021 [19]

In the same research line, the antiviral properties of a porous metallic cobalt-chromium-
molybdenum superalloy filter produced by AM showed superior antiviral activity against
the bacteriophage phi 6 as a surrogate of SARS-CoV-2 [13] (Figure 7 and Table 2).
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Figure 7. Cobalt-chromium-molybdenum porous superalloy with superior antiviral activity fabri-
cated by additive manufacturing. Antiviral filters were tested using the bacteriophage phi 6 as a
surrogate of SARS-CoV-2 for biosafety reasons [13].

Coatings of polyethylene (PE) packaging based on nanoparticles of ZnO and nanopar-
ticles supplemented with carvacrol and geraniol have been tested against the bacteriophage
phi 6 as a viral model of SARS-CoV-2 [14]. The antiviral properties of metal salts, metal and
ceramic powders using Ag and Cu ions as doping agents and newly produced ceramic and
metal surfaces have also been studied against the bacteriophage phi 6 [15]. These materials
produced by spark plasma sintering and/or selective laser melting exhibited potent viruci-
dal activity and showed different surface free energies and infiltration features. PE films
with a biofunctional coating composed of layers based on CO2 extracts of raspberry seeds,
pomegranate seeds and rosemary [16] or a mixture of the three extracts obtained via cast
extrusion [17] also showed antiviral activity against the bacteriophage phi 6. CO2 extracts
are some of the most popular non-toxic, cheap and safe solvents [68]. These antiviral
materials are very promising for packaging that may protect customers’ food products
against microbial putrefaction and customers (hands) at the same time. The enhancement
of antiviral properties by adding a chokeberry fruit additive to rape honey was demon-
strated using the bacteriophage phi 6 [18]. Mixtures of Scutellaria baicalensis and Glycyrrhiza
L. extracts have also shown potent antiviral activity against this bacteriophage [19]. In
addition to studying the antiviral properties, it is very important to characterize the toxicity
of the materials and compounds in order to ensure their safe applications for human beings.
Antiviral materials that show in vitro or in vivo toxicity present low interest in antiviral
research science. Thus, no toxicity tests were performed in any of the studies reported in
Table 2, and further research should be performed in this direction to find safe antiviral
solutions for human beings.
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On the other hand, the bacteriophage phi 6 has been studied in a wide range of biotech-
nological applications as a valuable surrogate virus of SARS-CoV-2. Thus, the survival
of viruses in evaporated saliva microdroplets deposited on glass surfaces was studied
with this bacteriophage as a viral model of SARS-CoV-2 [22]. The persistence of bacterio-
phage phi 6 virions was studied in aquatic environments to better understand potential
mechanisms that may prolong their dissemination as a viral model of SARS-CoV-2 [23].
The bacteriophage phi 6 has also been used to evaluate ultraviolet-C light for rapid de-
contamination of airport security bins in the era of SARS-CoV-2 [24], and to study the
surface disinfection efficacy with chlorine and antimicrobial surfaces [25]. In a similar way,
the effectiveness of a fully automatic room decontamination system based on ozone was
assessed against the bacteriophage phi 6 as a surrogate virus for the current SARS-CoV-2
pandemic [26].

In addition, the bacteriophage phi 6 has also been used as a surrogate of other enveloped
viruses such as Ebola virus [27,28], influenza virus [29], Venezuelan equine encephalitis
virus [69], coronavirus SARS-CoV-1 and other pathogenic enveloped viruses [28,44,70–72].

Another bacteriophage, MS2, has also been used as a surrogate of SARS-CoV-2 because
it is an RNA virus that belongs to the same Baltimore group, group IV [73]. However,
SARS-CoV-2 is an enveloped virus, and the bacteriophage MS2 is a non-enveloped virus. It
is well known that non-enveloped viruses are more resistant to inactivation than enveloped
viruses [74]. Therefore, the use of phi 6 as a surrogate of SARS-CoV-2 is much more
representative than the use of MS2, as it has been experimentally confirmed [25].

5. Conclusions

The bacteriophage phi 6 can be used as a surrogate of SARS-CoV-2 and other enveloped
viruses such as Ebola and influenza for biosafety reasons. It is a virus with a round-like
shape with a lipid envelope like SARS-CoV-2. Recent antiviral studies performed with
both the bacteriophage phi 6 and SARS-CoV-2 have validated this biosafe viral model
with a broad range of materials such as calcium alginate hydrogels and composite fabrics
coated with BAK, cranberry extracts and solidified hand soap, which are used for the
fabrication of antimicrobial infection prevention clothing such as next-generation face
masks and antimicrobial face shields. These materials were capable of inactivating very
high percentages (from 94.92 to 100%) of the bacteriophage phi 6 and SARS-CoV-2 after
similar viral contact times. Therefore, antiviral tests of a broad range of biomaterials,
composites, nanomaterials, nanocomposites, coatings, extracts and compounds can be
performed using the bacteriophage phi 6 as a valuable biosafe viral model of SARS-CoV-2.
This viral model is very useful especially for researchers with no access to biosafety level 3
facilities. In fact, this bacteriophage has been used as a surrogate of SARS-CoV-2 to test a
broad range of antiviral materials and compounds of different chemical natures and forms
and in a wide range of biotechnological applications during the current pandemic.
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