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ABSTRACT

Crude extracts from cashew apple pomace (CAP) dried at different temperatures were used in High-Pressure
Liquid Chromatography to quantify total alkaloids content (TAC), total flavanoids content (TFC), total saponin
content (TSC) and total phenolics content (TPC). Diphenyl-1-picrylhydrazyl (DPPH) was used to determine the
antioxidant capacity (AOC) of CAP. Fourier-Transformed Infrared Spectroscopy-Attenuated Total Reflectance
(FTIR-ATR) was used to identify the functional groups present in the pomace. TAC, TFC, TSC and TPC were
used as inputs to model AOC using Gaussian Process Regression (GPR), and Support Vector Regression (SVR)
and a coupled model was developed using the residuals of GPR and SVR. It was found that increasing drying
temperature decreased TAC, TFC, TPC and AOC but TSC increased. Both GPR and SVR predicted AOC with high
accuracy. Drying CAP at lower temperature preserved more bioactive compounds hence high AOC; FTIR-ATR
showed that CAP has good hydration capacity and contains majorly inorganic phosphates, aliphatic hydrocarbons
and primary alcohols. Model coupling enhanced AOC prediction.

1. Introduction

The desire for medicinal value in foods has generated research in-
terest on fruit residues and the influence of their processing methods on
the profile and bioactivity of the secondary metabolites present in them.
Cashew apple pomace has in recent times received renewed interest as
substitute for cereals in food formulation such as cakes (Akubor et al.,
2014; Adegunwa et al., 2020; Preethi et al., 2021), cookies (Ebere et
al., 2015) and biscuits (Akubor, 2016) and had been used to improve
the medicinal value of foods (Tariska et al., 2016). During the produc-
tion of confectioneries, lipids (fat and oil) are added, and lipids tend to
get rancid over time due to oxidation. As such, any endeavor that offers
anti-oxidation effect through delay or inhibition is worthwhile. Owing
to high moisture content in cashew apple pomace, prompt drying of the
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pomace to safe moisture content is necessary to inhibit microbial ac-
tivity and biochemical metabolism within the matrix (Shekarau et al.,
2020; Luka et al., 2018).

Heat sensitivity of bioactive compounds do not follow a definite or-
der of response in biomaterials, bioactive compounds are preserved
at higher temperature in some biomaterials (Nguyen and Le, 2018)
and vice versa (Ahmad-Qasem et al., 2013; Yan and Kerr, 2012; Al-
dosari, 2014), this uncertainty has made every endeavor to understand
the behavior of secondary metabolites present in fruits and vegetables
worthwhile. The antioxidant capacity of fruits and vegetables is con-
trolled by the quantity and types of bioactive compounds (Dabulici et
al., 2015; Karasu et al., 2019). Determination of the antioxidant capac-
ity of fruit and vegetable could be expensive and tedious, especially
when the samples are bulky. As such, mathematical models could be in-
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corporated into devices that can quantify bioactive compounds to at the
same time project their antioxidant capacity with the aid of sensors.

Recently, the application of Gaussian Process Regression (GPR) and
Support Vector Regression (SVR) in modeling has received special in-
terest because GPR, being a new statistical machine learning algorithm
in the context of Bayesian formulation, has the capability to use prob-
abilistic regression to determine hyperparameters of multidimensional,
small and nonlinear datasets (Lin et al., 2019), SVR has also derived
eminence due to its capability to train small dataset size effectively and
global minimization and maximization owing to its functionality base
on structural risk minimization protocol.

Alfieri et al. (2019) used k-Nearest Neighbor to predict the antiox-
idant capacity of Sorghum using spectral data obtained from coupled
Vis-NIR with different filter pretreatment, high coefficient of determi-
nation (R?) value of 0.95 was obtained for the best performing model.
Ahmadi et al. (2019) used Quantitative Structure-Activity Relation-
ship (QSAR) to predict the antioxidant capacity of natural compounds,
their model generated R? value for training and validation up to 0.86.
Zhang et al. (2014) predicted the antioxidant capacity of Epimedium us-
ing chromatographic data with partial least square regression (PLSR).
The model predicted the antioxidant capacity with R? of 0.9985 and
RMSE of 22.8573. Martincic et al. (2015) developed Predictive Counter
Propagative-Artificial Neural Network Models (CP-ANN) and SVR based
on machine learning algorithms and statistical Multilinear regression
(MLR) model to predict the antioxidant capacity of natural compounds
using radiation data, the models generated R? values of 0.93, 0.86 and
0.89 for CP-ANN, SVR and MLR models, respectively. From pertinent
literature, all the existing developed models used to predict the antiox-
idant capacity of biomaterials used data from spectroscopy, not from
an actual profile of secondary metabolites. Models developed using
spectral data are sometimes inconsistent due to the difference in the
efficiency of pretreatment methods to accurately filter noise and the
ability of variable selection techniques to select wavelengths that truly
correlate with the response variable. Generally, studies on the predic-
tion of antioxidant capacity of fruits and vegetables and their residues
are scarce, this study uses quantitative data of metabolites to develop
predictive models, and to the best of our knowledge is the first study
to be carried out using this approach. The developed models were also
coupled using a novel approach to enhance the predictive power, the
first approach to predicting antioxidant capacity.

1.1. Gaussian Process Regression (GPR) modeling

GPR model is one of the sought after Bayesian machine learn-
ing modeling approaches due to its ability to work better with small
datasets with no problem of underfitting or overfitting and is capable of
giving information on the uncertainty of the output of the model (Wenqi
et al., 2018). It perfectly learns nonlinear datasets using the probabilis-
tic technique and estimates posterior degradation by limiting the prior
distribution to fit the supplied dataset (Liu et al., 2009).

A Gaussian process (GP) is explained by its covariance function
C(x,x’) and mean function u(x) expressed as (Equations (1)-(5))

£(x) ~ GP(C(x,X"), u(x)) @
u(x) ~ E[f(x)] (&)
Cx,x") = E[(f(x) = u())(EE) = p(x)] 3

Where x and x’ are randomly chosen variables, E is the average ex-
pected output used in probabilistic predictions.
A noisy GPR model is expressed as

yi=f(xi)+e “4)

Where ¢ is the Gaussian additive noise N(0, 62).
The input, x* are imported to establish Gaussian prior distribution
of the training response, y and the test response, y* as
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EAPA *
{ y J :N(O, {C(X,X )o2l C(X,x )D -
y* C(X,x*) C(x,x%)
C(X,X*) is a positive definite covariance matrix of n-order symmetry,
C(X,x*) is the covariance matrix (n x 1) of the test input x* and the
training input X and C(x,x*) is the covariance matrix of the test input
dataset x* under the stipulation of a given input x* and the training
dataset D. The Gaussian process calculates the test output variable, y*
following the posterior probability formula presented in Equations (6)
and (7)

y*IX]*,D=Nu (6)

] .
— — C 1’ * 7
Hy Cx*,X) (CX.X)+020)y aC (x'x7) @

The four most commonly used covariance functions (squared ex-
ponential, rational quadratic, Matern class and exponential) in GPR
modeling are expressed in Equations (8)-(11).

The squared exponential

i_ iy
CSE(Xin)=UfzeXp <—%> ®

Rotational quadratic (Cauchy)

i, xi—x)2\ "

C vy — 2(_A =& 9

RQ(X xJ) o} < a2 > ©)
The Matern class
Cy (x'x)) =a? [1 +/2M (x' =) e‘/w(xi_xj)] (10
Exponential

[ [~ ]

Ce (xixd)=e U 7 an

Where "rz’ a, 1, M are hyperparameters, and the i and j constitute the
i-th and the j-th vector in the input matrix X.

1.2. Support Vector Regression (SVR) modeling

SVR is one of the most reliable machine learning or statistical learn-
ing algorithms (Maroco et al., 2011) and can be used for both classi-
fication problems and regression problems. Support vector regression
extends support vector classification that utilizes continuous responses;
both applications use kernel function to achieve their target (Guenther
and Schonlau, 2016). Unlike GPR, which minimizes squared error (¢)
loss function and loss for responses, i-th, (quadratic loss), SVR min-
imizes e-insensitive loss function such that any loss below the error
margin is set to zero and above that constraint, the linear loss function
is utilized as in Equation (12)-(14)

1= 0 12)
< lyi — x|

if |y; - f(x))| < ¢, otherwise, the loss function for a linear function is
presented as

f(x)=p, —xp (13)

n
And the loss function Z max(y; — x;f — f, — €,0) 14

i=1

Where € represents the turning parameter and can be expressed as a
constraint optimization formulation as presented in Equations (15)-(16)

minimize % 1112 1s)

i —x!p—pB, <e,
subject to v x’lj Po<e (16)
-y —x;f—P,)<e
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If all the measured variables fall outside the error bound, it will not
generate any solution, hence slack variables, y; and y;* are inserted to
bring the observations within the regression line as expressed in Equa-
tion (17)

Yi=X{f—f,<e+y
—(yi=xXp=p,) Se+v} (17)
ry 20
The support vectors are those observations that fall outside the er-
ror bound. Kernel functions expedite the computation. These kernels

create a window to influence the data and are presented in Equations
(18)-(21).

eyl2
Gaussian Kernel (exponential), K(x,y) = e ( % > (18)
Gaussian Kernel radial basis function, K(x,y) = e_(yux_y”2> 19
Sigmoid kernel, K(x,y) = tanh (yxTy + r) (20)
Polynomial, K(x,y) = tanh (yxTy + r)d ,y>0 21

2. Materials and methods
2.1. Experimental methods

2.1.1. Drying of cashew apple pomace

Fresh yellow cashew apple fruits were obtained and then washed
with distilled water. The cashew apple was then shredded into smaller
sizes, fed into a fruit blender, and blended to obtain a paste. The paste
was then tied in a filter material and pressed using a hydraulic press to
express all the juice according to the method of Shekarau et al. (2020).
The pomace was kept in a plastic container and stored in a freezer at
—4°C. The pomace was then divided into twenty-seven (27) equal sam-
ples and each sample was dried at different temperatures of 60, 65, 70,
75, 80, 85, 90, 95 and 100°C in a hot air oven drier at a constant air
velocity of 2 m/s until they reach equilibrium moisture content. The
process was carried out in triplicate.

2.1.2. Microwave pretreatment of dried cashew pomace

The dried pomace samples were grounded into fine particles using
a blender. The microwave was purged with nitrogen to rid off oxygen.
The first pomace sample was immediately fed into it in a thin layer and
pretreated at 100 W for 15 minutes. This was necessary due to high
pectin crystals formed due to drying and the high fiber content of the
pomace. The nitrogen was used to inhibit oxidation while microwave
power increased the cell porosity of the sample. The process was re-
peated for all the samples at constant time and microwave power. The
pretreated samples were then poured into a cartridge water filter case
with one end covered with filter material. Carbon dioxide was used for
flushing out oxygen from the container via the inlet and discharged at
the outlet and then tightly sealed with coke stopper and was wrapped
in an aluminum foil and stored in a freezer at —4 °C.

2.1.3. Extraction of bioactive compounds

Cashew apple pomace powder samples weighing (1.5 g) were dis-
solved in a solution of ethanol and water as solvents in a volumetric
proportion of 1 : 1 of 15 mL and left under dark for 3 days at room
temperature and homogenized periodically after six hours using a ho-
mogenizer (Bioben JRJ-300, China). The solutions were filtered using
filter paper, and the crude extract was utilized for High-Pressure Liquid
Chromatography (HPLC) analysis.

2.2. Analysis

2.2.1. Quantification of bioactive compounds using HPLC

Half gram of crude extract was dissolved in hexane in a 1.0 mL vial.
Then, the vial contents were injected into a HPLC coupled with a flu-
orescence detector (Buck BLC10/11, USA) with excitation at 297 nm
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and emission at 325 nm. An analytical silica column (25 cm X 4.6 mm
ID, stainless steel, 5 um) was used to analyze the bioactive compounds
present. The mobile phase employed was a mixture of hexane, tetrahy-
drofuran and isopropanol (1000 : 60 : 4) and fed at a volumetric flow
rate of 1.0 mL/min. Standard samples for total alkaloid content (TAC),
total flavanoids content (TFC), total saponin content (TSC) and total
phenolic content (TPC) were also prepared using the same procedure.
The concentrations of the bioactive compounds in the samples were cal-
ibrated using the standard sample, and quantification of the bioactive
compounds was carried out by comparing peak areas and respective re-
tention times with authentic standard compounds. The procedure was
carried out in triplicate, and their standard deviation was calculated
according to Luka et al. (2020). The concentration of each bioactive
compound was calculated using Equation (22).

A Sample X STD x V HEX
A STD x Wt Sample

T-BioComp = (22)

Where;

T-BioComp = Concentration of bioactive compounds (mg/g)
STD = Concentration of standard

A Sample = Area of sample

A STD = Area of standard

V HEX = Volume of hexane

Wt Sample = Weight of sample

2.2.2. Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (Antioxidant
capacity) using UV-spectrophotometry

Forty milligrams of DPPH solution were dissolved in 100 mL of
methanol to form a stock solution; the solution was kept in a freezer
at —20°C.

Three-hundred-fifty milliliters of the stock solution were mixed with
350 mL of methanol to obtain the absorbance of 0.70 + 0.01 unit at
516 nm wavelength by using a UV-spectrophotometer (Jenway 6405,
China).

2.2.3. Determination of functional groups using FTIR-ATR analysis

Powdered cashew apple pomace was placed in the attenuated total
reflectance (ATR) crystal, and the spectra were obtained using Fourier-
Transformed Infrared Spectroscopy (FTIR) (Nicolet, iS50 FTIR, Uppsala,
Sweden) coupled ATR (platinum diamond) comprising of internal re-
flectant and diamond disc at 4000-400 cm™~!, air spectrum was used
as the background spectra for calibration, the spectra from the samples
were obtained at room temperature of approximately 32 °C and resolu-
tion of 4 cm™!.

2.3. Modeling

2.3.1. GPR and SVR modeling

Both GPR and SVR models were trained using MATLAB 2019a
(MathWorks Inc., Natick, MA, USA), the obtained quantities of TAC,
TFC, TSC and TPC were used as the models’ input variables. The GPR
model used 5-fold cross-validation, isentropic kernel, and automatic
kernel scaling and was set to standardize and optimize numeric param-
eters automatically. All the covariance functions in Equations (8)-(11)
were tested, and their performance was evaluated.

The SVR model was trained using automatic box constraint and
standardized data to select the support vector variables, all the ker-
nel functions in Equations (18)—(21) were tested and evaluated. The
best performing covariance and kernel functions for GPR and SVR were
selected as the training kernel.

2.3.2. Model coupling

The two trained models (GPR and SVR) were coupled in parallel
using a unique coupling procedure by utilizing the residual terms (R?
and RMSE) using Equations (23)—(28) as presented in Fig. 1.



B.S. Luka, T.K. Yuguda, M. Adnouni et al.

TAC, TFC, TSC & TAC, TFC, TSC &
TPC TPC
A 4 \ 4
GPR SVR
A 4 2 A 4
Predicted SR BMEE Predicted
TAC, TFC, TSC & TAC, TFC, TSC &
TPC TPC
\ | /
Model coupling using
Equations 23-38
A\ 4
Predicted TAC, TFC, TSC
& TPC

Fig. 1. GPR-SVR model coupling.

The generated residual terms were used as input weight against the
predicted outputs of GPR and SVR models. Source code was first gener-
ated using MATLAB and involved allocating function to the generated
model file ‘model.c’, the codes were then compiled (for each model) into
a makefile. The individual makefiles were then combined into a single
makefile. A combined simulation engine was then created via modifi-
cation of the main program (rt_malloc_main,c); this helped the program
initialize and call each model’s model codes. The makefile was then run
to compute the coupled model based on the supplied residual coupling
formulation and the generated predicted output from GPR and SVR.

£ +é&
L= SVR ; GPR @23)
R? =1-R? 24
resid(SVR) (SVR)
2 _ 2
Rl esiaarr) = 1~ Rigpr) (25)
(em X eresid )
(SVR)
CadiSVR) = — (26)
(gm X eresid )
sid(GPR)
€adj(GPR) = Y 27)
. i (svr) T €adiGPR)) + (Y Gpr) T €adi(SVR))
ycou = (28)
pled 2
i=1,2,3...n
Where;

£, = Mean error
€,qj = Adjusted error

R2 . d = Residual coefficient of determination of SVR model
Tesid(SVR)

Rfesi A(GPR) = Residual coefficient of determination of GPR model

R = coefficient of determination of GPR model

2
(SVR)

R = coefficient of determination of GPR model

2
(GPR)

egyr and egpr are the mean square error of SVR and GPR models, re-
spectively

yi*(SVR) and yi*(GPR) are predicted values of SVR and GPR models, respec-
tively
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3. Results and discussion

The heat sensitivity of bioactive compounds and their antioxidant
capacity after drying are presented in Table 1 and discussed accord-
ingly.

3.1. Influence of drying temperature on the profile of TSC

The profile of TSC as influenced by drying temperature in cashew
apple pomace is presented in Table 1. It can be seen that drying cashew
apple pomace at 60°C gave the lowest TSC of 8.76 mg/g, as drying
temperature increased from 60 to 65 °C, TSC reduced by 22.26%, how-
ever, as drying temperature was further increased to 70, 75, 80, 85, 90,
95, and 100°C, TSC increased significantly (p < 0.05,0.019) by 47.28,
20.93,10.79, 17.18, 5.71, 12.97 and 13.87%, respectively.

High drying temperature favors the preservation of saponins. The
highest value of 21.42 mg/g was obtained at 100 °C. The decrease in
TSC at 65°C can be due to distortion in chemical structure, which
makes their extraction and determination inefficient (Qu and Ma,
2010); or the splitting of a transesterified bond and glycosylated bond,
which, consequently, predispose saponins to hydrolase enzymes (Xu et
al., 2007). Shekarau et al. (2020) attributed the transesterification of
cashew apple pomace, during drying, to the high pectin content and
gelatinization. When drying temperature increased from 65-100°C,
TSC also increased, showing a negative correlation (Fig. 3) with other
metabolites, such response by TSC to increasing drying temperature
could be attributed to the fact that at lower drying temperature, inacti-
vation of oxidizing enzymes could not be achieved, thereby resulting
to the rapid oxidation of saponins (Mrad et al., 2012; Youssef and
Mokhtar, 2014). The sharp increase observed at 70 °C can be attributed
to increased access to the compounds in the pomace matrix during
extraction and shorter drying time, consequently inactivating saponin
hydrolase enzyme, impeding the degradation of saponins. Generally,
the preservation of TSC at elevated temperature could be ascribed to
the presence of compounds from which saponins are formed by an-
abolic reaction (Que et al., 2008).

3.2. Influence of drying temperature on TAC, TFC and TPC in cashew
apple pomace

The profile of TAC, TFC and TPC exhibited a similar response to
increasing drying temperature (Table 1) and are discussed accordingly.

The highest value of TAC (36.32 mg/g) was obtained when the po-
mace was dried at 60°C. As the drying temperature increased from
65-100°C, the TAC significantly (p < 0.05,0.022) declined by 1.34,
10.54, 9.82, 11.66, 6.85, 13.54, 11.91 and 10.21%, respectively.

Drying cashew apple pomace at 60°C gave the highest TFC of
16.65 mg/g, however, as the drying temperature was increased from
60-90 °C, the quantity of TFC decreased significantly (p < 0.05,0.027)
by 14.75, 24.92, 4.89; at 100 °C, TFC increased by 3.30%.

The drying temperature-dependent profile of TFC follows the first-
order kinetic with the highest value of 91.62 mg/g obtained at 60°C
drying temperature. From 60-100°C, the quantity of TFC decreased
significantly (p < 0.05,0.013) by 1.08, 5.18, 4.94, 4.22, 2.87, 9.45, 8.57,
4.62%, respectively.

The drying temperature-dependent profile of TAC, TFC and TPC
shows a negative relationship with drying temperature and practically
implies that the compounds mentioned above in cashew apple pomace
are heat sensitive. While many researchers attribute such decrease to
thermal degradation and cell lysis leading to leakage and break down
of bioactive compounds, Ionnou et al. (2012) added that degradation
in TFC and TPC may not always necessarily be attributed to heat sensi-
tivity. Still, the presence of oxygen and other bioactive compounds, the
presence of oxygen highly degrades quercetin and rutin (bioflavanoid).

The trend of first-order kinetic that exists between drying temper-
ature and TFC can also be due to the splitting of glycosylated bonds,



B.S. Luka, T.K. Yuguda, M. Adnouni et al.

Heliyon 8 (2022) e10461

Table 1. Profile of bioactive compounds from cashew apple pomace and their antioxidant capacity at dif-

ferent drying temperatures.

Drying temperature ~ TAC TFC TSC TPC DPPH inhibition
(o) (mg/g sample) (mg/g sample) (mg/g sample) (mg/g sample) (%)
60 36.3+0.1 16.61 +0.09 8.76 +0.52 91.63 +0.48 32.15+0.43
65 35.83+0.05 14.2+1 6.81 +0.03 89+1 31.8+0.1
70 32.1+0.3 10.6 +0.9 10.03 +0.03 87.11 +0.37 301
75 28.9+0.1 10.1 +0.6 12.13+0.34 82+2 29+1
80 25.53 +0.05 9.6+0.2 13.44+0.76 78+1 27 +1
85 23.78 +0.06 8.54+0.11 15.75+0.05 77 +1 26.7+0.2
90 21+1 7.6+0.5 16.65+0.86 72+1 24.14+0.19
95 18.1+0.2 6.6+0.7 18.81 +£0.27 70.32 +0.48 22+1
100 16.3+0.2 6.9+1 21.42+0.45 66+ 1 21+1
Mean value for n number of test (n = 3) and standard deviation.
1354
1 ™
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| 3
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Fig. 2. FTIR-ATR light absorbance profile of cashew apple pomace at different wavenumber.

which predisposes phenolics to oxidase enzymes attack and degrada-
tion. It can also be ascribed to polyphenols interaction with protein
(Xu et al., 2007; Preethi et al., 2021) or to the inability of the heat
treatment to neutralize the activity of oxidase enzymes in the pomace
matrix and the distortion in chemical structure, which make their ex-
traction and quantification inefficient (Qu and Ma, 2010). De Ancos et
al. (2000) added that, besides heat treatment, polyphenols and alkaloids
might deteriorate due to organic acid content, sugar concentration and
pH. The higher quantity of TPC relative to other bioactive compounds
present in CAP has also been reported in Preethi et al. (2021). Sim-
ilar temperature-dependent relationships were reported in a study on
vacuum-belt drying of apple pomace powder by Yan and Kerr (2012),
oven drying of olive pomace by Ahmad-Qasem et al. (2013), cabinet
drying of apple pomace by Aldosari (2014) and hot air drying of maqui
berries by (Rodriguez et al., 2016).

3.3. Influence of drying temperature on AOC of cashew apple pomace by
DPPH assay

The DPPH antioxidant capacity (oxygen scavenging activity) of
cashew apple pomace decreased with an increase in drying tempera-
ture (Table 1). This can be because the quantity of total antioxidants
(TAC, TFC and TPC) continuously decreased as drying temperature
was increased progressively. The highest oxygen scavenging activity of
32.15% inhibition was obtained at 60°C drying temperature. It can
be seen that despite the increase in TSC in the pomace with increas-
ing drying temperature, the oxygen scavenging activity did not respond
similarly. This can be attributed to heating to an elevated temperature.
The heating impedes its ability to donate electrons (Sim et al., 2017);
thus, TSC showed little or no contribution to the overall antioxidant ca-
pacity. This was corroborated by the outcome of sensitivity analysis,

where only TPC significantly influenced the change in oxygen scaveng-
ing activity, this further substantiates the finding by Sumic et al. (2017)
that TPC governs antioxidant capacity in vacuum dried mushroom. Sim-
ilarly, in a study by Preethi et al. (2021), it was obvious that increasing
the quantity of cashew apple pomace powder in cereal based extrudate
steeply increases the TFC and TPC and their corresponding AOC.

3.4. Functional groups present in cashew apple pomace

The functional groups detected at different wavenumbers by FTIR-
ATR from the cashew apple powder (Fig. 2) were majorly inorganic
phosphates, aliphatic hydrocarbons and primary alcohols.

The peak absorption at 3416.73 cm~! wavenumber characterized
by both stretch in O-H and C-H bonds corresponds to alcohols func-
tional group. The waveband at 2925.09 cm~! corresponds to the as-
signed absorbance of the esterified carboxyl group characterized by O—
H stretch; the esterified carboxyl group confirms the functional identity
of pectin. Alkenes and phenol were identified where C=C stretch (conju-
gate) and O-H bending occur at a peak wavenumber of 1636.34 cm™!
and 1374.17 cm™! respectively, in cellulosic fibers, at the wavenum-
ber 1636.34 cm~! adsorbed water form a major assignment of the
wavenumber. Amides and Nitro groups were also identified at a peak
value of 1540.83 cm~! where N-H bend and NO, bend occur, respec-
tively, the presence of amides characterized by the N-H bond can be
due to amino acid breakdown. C-O stretch and C-C(O)-stretch were
detected at a peak wavenumber of 1237.40 cm~!, which corresponds to
alcohols and esters functional groups. The esters can be formed due
to the reaction between carboxylic acid with alcohol to release wa-
ter. When the absorbance peaked at 1153.04 cm~!, C-O stretch and
C-N stretch occurred, corresponding to the spectroscopic infrared ab-
sorption of Anhydrides and Amines. Phosphines functional group was
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Fig. 3. Correlation matrix of bioactive compounds from dried cashew apple
pomace.

also detected at a wavenumber of 1024.24 cm~!, characterized by P-H
bend in the molecular motion. Peaked absorbance obtained at 576.47
cm™! falls within the bracket of wavenumber of alkyl halides functional
group, where C-Br stretch, C-Cl stretch and C-I stretch characterized
the molecular motion at that wavenumber.

The presence of amide (a derivative in which the hydroxyl group of
oxoacid is replaced by carboxylic acid) in cashew apple pomace indi-
cates the presence of pectin (Sato et al., 2011). Pectin was reported by
Boulos et al. (2000) to have high water holding capacity or absorption
(hydration) property, and this is desirable because it facilitates stool
bulking (Sahni and Shere, 2018) aided by the high fiber content of the
pomace powder. However, this finding also infers that the hydrophilic
nature of CAP may pose a threat to its shelf life and make it lose crispi-
ness.

The identification of amines needs further characterization to rule
out the presence of biogenic amines in high concentration since their
accumulation in the body can cause toxicity.

3.5. Sensitivity analysis (variable selection)

To choose a reliable and accurate sensitivity analysis approach,
Pearson correlation was carried out on the measured bioactive com-
pounds, and this is necessary to ascertain the level or degree of linear
statistical interaction between all the bioactive compounds at different
drying temperatures and to check for possible collinearity between the
variables, the correlation was checked base on Equation (29)

)L 29)

V Z?:l(xi -x)?

Where x; is the value of each independent variable in the sample, X is
the mean value of each independent variable in the sample.

It could be seen in Fig. 2 that there exist a very strong positive
and negative correlation between the quantity of all bioactive com-
pounds, the positive correlation ranges from 0.89 to 0.99 and the
negative correlation ranges from —0.98 to —0.89, negative correlation
indicates inverse relationship between the interacting compounds, such
strong collinearity between the metabolites has strong influence on the
integrity of the outcome of sensitivity analysis approach used, thus for-
ward step variable selection (Sequential feature selection) which is not
affected by multicollinearity was adopted and the selection procedure
was carried out using MATLAB 2019a (MathWorks Inc., Natick, MA,
USA). Sequential analysis base on defined criterion function was used to
call cross-validation partition to evaluate the criterion, the evaluation
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returned TPC as the most informative variable with estimated disper-
sion of 0.504 hence, the only variable that significantly influences the
antioxidant capacity of cashew apple pomace at p < 0.05.

3.6. Developed models and coupled model

Both GPR and SVR models proved adequate for simulating and pre-
dicting antioxidant capacity of dried cashew apple pomace at different
hot air drying temperatures; this is corroborated by the higher coeffi-
cient of determination and low residual presented in Figs. 4 and 5. The
rotational quadratic covariance function outperformed all other func-
tions in GPR, while the quadratic kernel function proved more adequate
among its counterpart kernel function in the SVR model.

Every modeling endeavor aims to obtain zero residual, which trans-
lates to perfect prediction of the response variables. The coupled model
reduced the residual further, this can be seen by the closeness of the
true and predicted responses to the line of perfect prediction and close-
ness of the residuals to the line of zero on Fig. 6 respectively, thus
confirming our novel coupling approach as a promising strategy for en-
hancing machine learning prediction of antioxidant capacity of dried
cashew apple pomace. Both GPR and SVR performed comparably with
models developed by Alfieri et al. (2019), Ahmadi et al. (2019), Zhang
et al. (2014) & Martincic et al. (2015), while the coupled model per-
formed favorably with higher accuracy than the previous models. Our
models have proved adequate for predicting AOC of CAP using but few
data samples, and were developed solely using the quantity of the most
abundant bioactive compounds in CAP with proven high oxygen scav-
enging activity.

4, Conclusion

A study on the identification of functional groups, the influence of
drying temperature on the quantity of selected bioactive compounds
and, in turn, bioactive compounds on the antioxidant capacity of
cashew apple pomace and prediction of antioxidant capacity of cashew
apple pomace has been carried out; the results draw the following con-
clusions.

Increasing drying temperature decreases the quantity of total al-
kaloid, total flavanoid, and total phenolic while total saponin in-
creases; thus, drying at a lower temperature is more beneficial.
The antioxidant activity of cashew apple pomace is dominantly
controlled by the quantity of total phenolics and decreases with
increasing drying temperature.

The functional groups found in cashew apple pomace are basically
inorganic phosphates, aliphatic hydrocarbons and primary alcohol;
the presence of pectin/amines also infers good water holding ca-
pacity of the fruit powder.

Coupled GPR and SVR model using unique coupling terms was
found to further enhance the prediction of antioxidant capacity of
cashew apple pomace compared to individual models.
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