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Perfusion-driven Intravoxel Incoherent Motion (IVIM)  
MRI in Oncology: Applications, Challenges, and Future Trends

Mami Iima1,2*

Recent developments in MR hardware and software have allowed a surge of interest in intravoxel incoherent 
motion (IVIM) MRI in oncology. Beyond diffusion-weighted imaging (and the standard apparent diffusion 
coefficient mapping most commonly used clinically), IVIM provides information on tissue microcirculation 
without the need for contrast agents. In oncology, perfusion-driven IVIM MRI has already shown its poten-
tial for the differential diagnosis of malignant and benign tumors, as well as for detecting prognostic bio-
markers and treatment monitoring. Current developments in IVIM data processing, and its use as a method 
of scanning patients who cannot receive contrast agents, are expected to increase further utilization. This 
paper reviews the current applications, challenges, and future trends of perfusion-driven IVIM in oncology.
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Introduction
Intravoxel incoherent motion (IVIM) was defined in 1986 by 
Le Bihan et al.1 as the “translational movements which within 
a given voxel and during the measurement time present a dis-
tribution of speeds in orientation and/or amplitude”. Such 
movements correspond mainly to molecular diffusion, but 
also to microcirculation of blood in pseudo-randomly ori-
ented capillary vessels and even to tissue vibrations used for 
MR elastography.2 The apparent diffusion coefficient (ADC) 
obtained with diffusion MRI was already shown to include a 
perfusion related component, especially when very low 
b-values are used.1 However, it was shown in 19883 that 
perfusion-related effects and diffusion-related effects could 
be separated within the IVIM composite signal, providing ad 
hoc acquisition and processing parameters were used. Diffu-
sion MRI is implemented on most clinical MRI systems and 
today widely used in clinics, and the utility of the ADC in 
oncology has been very well documented for various 
organs.4,5 The potential of perfusion-related IVIM MRI has; 
however, taken more time to be appreciated, but has enjoyed 

a significant revival over the past 10 years, as shown in Fig. 1. 
The reason for perfusion-driven IVIM MRI to lag in time is 
that IVIM effects are small, requiring very good image 
quality. With the recent developments in MR hardware and 
software, which have improved signal-to-noise ratio in IVIM 
MRI,6 it is now possible to obtain reliable estimation of perfu-
sion related IVIM parameters. An important feature of IVIM 
MRI is that it can provide quantitative information on micro-
circulation without the use of contrast agents, an important 
advantage in terms of cost, acquisition times and applicability 
to patients who cannot receive gadolinium-based contrast 
agents for different reasons. IVIM MRI can provide quantita-
tive maps of the density of small, functional blood vessels 
(related to flowing blood volume fraction) (Fig. 2), a key 
component of angiogenesis.7

Indeed, the microvasculature of tumors, which often 
exhibits multiple structural and functional abnormalities, is a 
major target of oncology treatments. Thus, perfusion imaging 
has become an important means for the management of 
cancer, whether for diagnosis, characterization, or staging of 
malignant tumors associated with active angiogenesis. It is 
also useful in assessing the response to treatment and detec-
tion of recurrence.8

Thus far, contrast-enhanced (CE) MRI using gadolinium-
based contrast media has been a used as the standard imaging 
method to assess perfusion in different organs (i.e., brain, spine, 
abdomen, breast, and heart),9 because of its better performance 
compared with other imaging techniques such as CT or ultra-
sound. CE MRI is highly accurate in evaluating the response  
to treatment, or assessing for residual disease after neo
adjuvant chemotherapy (NAC) of breast cancer.10–14 The utility  
of gadoxetic acid as a liver-specific contrast medium is 
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the emergence of contraindications such as nephrogenic sys-
temic fibrosis (NSF) in patients with impaired renal function, 
as well as reports of gadolinium deposition in the brain and 
other tissues16–18 have raised issues, especially when repeated 
exams are necessary, as in monitoring treatment response 
and active surveillance for recurrence in oncology.

In this article, after providing a short summary of IVIM 
MRI principles, the literature showing what perfusion-related 
IVIM MRI provides in addition to diffusion MRI (and the 
ADC) for oncologic applications is reviewed.

IVIM Principles
IVIM MRI is sensitive to both molecular diffusion in tissues 
and to microcirculation (perfusion) based on the assumption 
that the flow of blood through capillaries mimics a diffusion 
process, due to the pseudo-random organization of capil-
laries in tissue. Microcirculation contributes greatly to the 
diffusion-weighted MRI signal, S(b), together with genuine 
water molecule diffusion in tissues:

S b
S

f b D D f Fd
( )

= + +
0

1IVIM blood IVIMexp( ( )) ( )*- - � (1)

where fIVIM is the flowing blood fraction, D* is the pseudo-
diffusion coefficient associated with blood microcirculation, 
Dblood is the water diffusion coefficient in blood, and Fd, the 
diffusion-related signal attenuation. Diffusion and perfusion 
effects can be disentangled from the overall diffusion/IVIM 
MRI signal because the pseudo-diffusion coefficient associ-
ated with blood microcirculation is about ten times larger 
than the water diffusion coefficient in tissues.

In a simple model assuming diffusion is quasi-Gaussian 
in tissues (which is only valid at low b-values, in general 
<600 s/mm² in the body) one has Fd = exp(−bD) where D is 
the water diffusion coefficient in tissues. In this case, Eq. (1) 
has a biexponential shape with a “fast” pseudo-diffusion 
coefficient (D* + Dblood) and a “slow” diffusion coefficient (D). 
fIVIM is sometimes called “f” or “fp,” D* is sometimes referred 
to as “Dp,” “ADCfast,” or “ADChigh,” while D is sometimes 
called “Dt,” “ADCslow,” or “ADClow,” not to be confused with 
the standard ADC, whose calculation includes both perfusion-
related and genuine diffusion effects.1

However, diffusion signal behavior is non-Gaussian in 
tissues (especially in cancers with high diffusion hindrance 
or restriction due to cell proliferation), and fitting IVIM sig-
nals into Eq. (1) when including moderate or high b-values 
results in artificially high f-values. In those conditions, a dif-
ferent function, Fd, must be used to take into account non-
Gaussian diffusion effects, as the IVIM/diffusion signal 
attenuation curve is no longer biexponential (for more details, 
please see “Challenges”).

Fig. 1  Number of IVIM publications in 1986–2019.

Fig. 2  Changes in fIVIM with tumor growth. fIVIM increases with the pro-
liferation of neovascularity in some tumors. As the pseudo-diffusion 
coefficient associated with blood microcirculation is much larger 
than the true diffusion coefficient in tissues, fast-decaying signal 
(IVIM effect) appears at low b-values. fIVIM, the flowing blood fraction, 
increases with the proliferation of neovascularity in some tumors.

recognized for the diagnosis of hepatic lesions.15 In addition 
to assessment of vascularity, more advanced CE MRI 
methods [e.g. dynamic susceptibility contrast (DSC) and 
dynamic contrast-enhanced (DCE) imaging] provide quanti-
tative and functional information on the tumor microenviron-
ment (e.g. vascular permeability and blood flow).9 However, 
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Perfusion MRI Methods in Oncology
Angiogenesis plays an important role in the growth of 
tumors.19 Tumor vasculature largely consists of immature 
and tortuous vessels.20 The IVIM framework may be able to 
capture data on microperfusion in many tumors, as has been 
validated in several studies (please see next sections).

The main MRI perfusion techniques to date are DSC, 
DCE, and arterial spin labeling (ASL). Both DSC and DCE 
require administration of gadolinium, while ASL is contrast-
free. DSC is widely used for the clinical evaluation of stroke, 
tumors, and myocardial ischemia, which involves an intrave-
nous bolus of gadolinium chelate and the serial measurement 
of signal loss by the passage of the bolus on T2- or T2 

*-weighted 
images.21 ASL is mainly used to evaluate blood flow in the 
brain, heart, kidney, and muscle, and uses the magnetically 
labeled blood water itself as an endogenous tracer.22 DCE is 
widely used for the diagnosis or evaluation of treatment 
response of tumors, where T1-weighted images (T1WI) are 
acquired dynamically before, during, and after bolus injec-
tion of a contrast agent (CA) over approximately 5–10 min to 
allow visualization of arterial and venous phases, including 
the portal venous phase in the liver. Gadolinium contrast 
accumulates within the extracellular space during this time 
frame, and the signal intensity measurements extract quanti-
tative parameters that reflect tissue perfusion, extravascular 
extracellular space, and vessel permeability.23

Correlation of IVIM parameter f with tumor blood 
volume obtained with DCE-MRI has been reported in can-
cers of the head and neck,24 cervix,25 and some soft tissue 
cancers;26 no correlation has been found in glioma.27 IVIM 
reflects all randomly flowing blood in each voxel, while DCE 
mostly measures CA extravasation, where most of the 
recorded signals derive from the contrast material accumu-
lating in the interstitial space, so their values will differ.

Validation with Histology
The vasculature considered in IVIM imaging has incoherent 
flow. Thus, one might expect correlation between IVIM 
parameters (f or f·D*) and microvasculature histology, such 
as microvessel area or microvessel density, especially in 
tumors. There have been several studies published both in 
humans and animals, as shown in Table 1.28–38 It is interesting 
to see that the correlation can be observed both in human 
tumors and animal xenografts; however, some studies have 
found no significant correlation. Bakke et al.32 found no sig-
nificant correlation between f and microvessel density or 
vessel size in 12 rectal cancer patients, and Li et al.38 also 
found no significant correlation between f and microvessel 
density in 16 liver tumors in rabbits (r = 0.281, P = 0.291). 
Conversely, IVIM parameter maps obtained by clustering 
approaches with Gaussian mixture models might be useful 
for the identification of tumor subregions with proliferative 

activity (Ki-67 index).39 Still, the correlation between IVIM 
parameters (f or f·D*) and microvascular histology is not 
entirely clear, and further studies are needed to validate the 
correlation, both in humans and animals.

Several papers have reported the correlation between D 
and cellularity, however, the correlation between ADC and 
cellularity has been already extensively investigated in var-
ious tumors.

Clinical Applications of IVIM in Oncology
IVIM for characterization and prognostication  
of tumors
Breast
The diagnostic performance of IVIM parameters for distin
guishing between malignant and benign breast tumors has 
been reported in eight studies.40,41 Malignant lesions showed 
significantly lower D in all eight investigations, and seven of 
the studies demonstrated significantly higher fIVIM values in 
malignant lesions.40

Lower ADC values in estrogen receptor (ER) or proges-
terone receptor (PgR) positive tumors have already been 
reported in many papers.42–61 Kawashima et al.53 demonstrated 
significantly lower D and ADC values in luminal B compared 
with luminal A tumors. Iima et al.58 reported significantly lower 
sADC200–1500 values in PgR expression. IVIM parameters’ cor-
relation with hormone receptors is also worthy of investigation. 
IVIM histogram analysis revealed a significant correlation of 
fp and the pseudo-diffusion coefficient (Dp) with hormone 
receptor expression (ER or PgR),49 while Kim et al.50 found 
that Dp negatively correlated with ER and PgR expression.

Some researchers have also investigated the association 
of IVIM parameters with pathological biomarkers. Lee  
et al.51 found that Dslow 50th, 75th, and 90th percentile values 
were decreased in ER-positive tumors, and f skewness 
increased in Ki-67 positive tumors. Suo et al.52 reported that 
the ER expression significantly correlated with ADC, D and 
f, and D* significantly correlated with Ki-67 expression. Sig-
nificantly lower D* values in borderline and malignant phyl-
lodes tumors compared with fibroadenomas have been 
observed, which might reflect a slow blood velocity and have 
some association with quantity of stroma.62

Recent publications have shown the utility of IVIM for 
monitoring treatment response. Several researchers have 
reported the utility of D or f for detecting pCR (pathological 
complete response) after neoadjuvant treatment of breast 
cancers.63–65 Che et al.63 demonstrated pretreatment f-value 
of pCR group significantly higher than that of non-pCR, and 
Bedair et al.64 reported pretreatment diffusion coefficients of 
pCR group significantly lower than that of non-pCR. Cho  
et al.65 showed that histogram metrics of pseudodiffusion Dp 
significantly differed between response evaluation criteria in 
solid tumors responders from nonresponders, while ADC or 
Dt parameters did not.
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Table 1  f, D* or f·D* validation studies with histologic correlation

Humans Year Cancer Subjects (n) Correlation Correlation coefficient

Bäuerle et al.28 2013 Rectal cancer without therapy 12 f vs. microvessel area r = 0.60, P < 0.05

Bäuerle et al.28 2013 Rectal cancer after 
chemoradiotherapy

9 f vs. microvessel area r = −0.44, P = 0.29

Klau et al.29 2015 Pancreatic adenocarcinoma and PNET 36 and 6 f vs. microvessel density r = 0.85, P < 0.01

Surov et al.30 2017 Rectal cancer 17 f vs. microvessel area r = 0.68, P = 0.003

Togao et al.31 2018 Meningioma 29 f vs. microvessel density r = 0.69, P < 0.0001

Bakke et al.32 2019 Rectal cancer 12 f·D* vs. microvessel density 
or vessel size

No significant correlation

Kikuchi et al.33 2019 Pediatric intracranial tumors 17 f vs. microvessel density r = 0.832, P < 0.0001

Animals Year Cancer Subjects (n) Correlation Correlation coefficient

Iima et al.34 2014 Glioma in rats 14 f vs. microvessel density r = 0.56, P < 0.05

Lee et al.35 2014 Colorectal cancer in mice 25 f, D* vs. microvessel density f: r = 0.75, P < 0.001

D*: r = 0.78, P < 0.001

Joo et al.36 2014 Liver tumors in rabbits 21 f, f·D* vs. microvessel 
density

f: r = 0.52, P = 0.02

fD*: r = 0.62, P = 0.003

Yang et al.37 2017 Hepatocellular carcinoma mouse 
model not treated

15 f vs. microvessel density r = 0.57, P = 0.009

Yang et al.37 2017 Hepatocellular carcinoma mouse 
model treated

15 f vs. microvessel density r = 0.44, P = 0.054

Li et al.38 2018 Liver tumors in rabbits 16 f, D* vs. microvessel density No significant correlation

Brain tumors
Federau et al.66 showed that f-values positively correspond 
with glioma grade. However, a recent meta-analysis of nine 
studies in grading gliomas showed higher D* and lower D in 
high-grade compared to low-grade gliomas, but no correla-
tion of f with grade.67 Puig et al.68 have reported correlation 
of f and D* values with cerebral blood flow in glioblastomas, 
and f > 9.86% and D* > 21.712 × 10−3 mm2/s were the thresh-
olds for lower 6-month survival, with both 100% sensitivity 
and area under the curve (AUC) of 0.893 and 0.857, respec-
tively. Federau et al.69 have further reported on f and ADC 
values for predicting survival in gliomas, suggesting higher  
f (>0.112), lower ADC (<1033 × 10−6 mm2/s) and higher 
relative cerebral blood volume (>3.01) as the indicators of 
poorer prognosis, with AUCs predicting a 2-year survival  
of 0.84 for f-value, 0.86 for ADC value, and 0.76 for rela-
tive cerebral blood volume.

Head and neck
A recent meta-analysis of the diagnostic performance of 
combined IVIM parameters in distinguishing among squa-
mous cell carcinomas, lymphomas, malignant salivary gland 
tumors, Warthin tumors, and pleomorphic adenomas yielded 
a sensitivity of 85–87% and specificity of 80–100%.70 One 
example of IVIM parameters in characterizing perfusion and 
diffusion properties of head and neck tumors is shown in  
Fig. 3.71 Several studies have found significantly smaller 

D- and f-values in lymphomas compared with squamous cell 
carcinomas.72–75 D in malignant salivary gland tumors was 
also found to be significantly lower than in pleomorphic ade-
nomas, and significantly higher than in Warthin tumors.72–74 
Different numbers and combinations of b-values have been 
used in the head and neck, with a median of 10.5 b-values, 
from 0–800 to 0–1000 s/mm2.70 Significantly higher f and 
lower D-values in primary tumors compared with metastatic 
nodes have been shown in head and neck cancer.76 Liang  
et al. demonstrated that D·D* is the most significant predictor 
of lymph node metastasis in head and neck squamous carci-
noma.77 Fujima et al.78 reported that D- and K-values esti-
mated using a hybrid IVIM and diffusion kurtosis imaging 
(DKI) model were also found useful in predicting future dis-
tant metastasis in head and neck squamous cell carcinoma 
patients.

Monitoring IVIM MRI parameters during treatment 
(pattern of low pre-treatment D or f-values and an increase in 
D during treatment) was found to be useful in predicting 
response to NAC in head and neck cancers, with 64–94% 
sensitivity and 72–89% specificity.70

Liver
Intravoxel incoherent motion has a potential role in staging 
liver fibrosis, with a sensitivity of 71–81% and specificity of 
77–84%, and D has been reported to be significantly lower in 
malignant compared with benign hepatic tumors.79 Although 
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there is evidence of an association of D-values with the his-
tological grade of hepatocellular carcinoma (HCC), attempts 
at finding an association between f and D* measurements 

have been inconclusive, and their added value is still  
controversial.80 Scholars have investigated the variability of 
IVIM in grading HCC lesions, depending on the fitting 

Fig. 3  Representative contrast-
enhanced T1-weighted MR 
images (CE T1WI) with (a, e, 
m, q and u) or without (i) fat-
suppression, and PP, D, and 
TIC maps of a squamous cell 
carcinoma (SCC) node (a–d), 
lymphoma (e–h), carcinoma 
ex pleomorphic adenoma 
(i–l), pleomorphic adenoma 
(m–p), Warthin tumor (q–t), 
and schwannoma (u–x). (a–d) 
A 75-year-old man with an 
SCC node at level IIA (a), PP 
= 0.057 (b), D = 0.830 × 10−3 
mm2/s (c), TIC profile = Type 2 
(d). (e–h) A 79-year-old man 
with lymphoma in the orophar-
ynx (e), PP = 0.04 (f), D = 0.435 
× 10−3 mm2/s (g), TIC profile = 
Type 3. (i–l) A 59-year-old man 
with carcinoma ex pleomor-
phic adenoma in the palate 
(i), PP = 0.217 (j), D = 1.005 
× 10−3 mm2/s (k), TIC profile = 
Type 3 (l). (m–p) A 34-year-old 
woman with pleomorphic ade-
noma in the left parotid gland 
(m), PP = 0.099 (n), D = 1.287 
× 10−3 mm2/s (o), TIC profile = 
Type 2 (p). (q–t) A 63-year-old 
woman with Warthin tumor in 
the left parotid gland (q), PP 
= 0.227 (r), D = 0.485 × 10−3 
mm2/s (s), TIC profile = Type 4 
(t). (u–x) A 24-year-old man with 
a schwannoma (u), PP = 0.294 
(v), D = 1.550 × 10−3 mm2/s (w), 
TIC profile = Type 2 (x). White 
demarcations on the PP and 
D maps indicate tumor areas. 
Adapted from Sumi et al.71
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methods or ROI positioning.81,82 Ichikawa et al. demon-
strated that the choice of fitting methods affects IVIM param-
eter values, with smaller D-values found in poorly 
differentiated, compared with well-to-moderately differenti-
ated HCC, using all methods.81 Wei et al. reported that the 
effect of different ROI positioning approaches on IVIM and 
ADC values is significant in HCC lesions, with ADCslow most 
predictive of grading HCC (a negative correlation with HCC 
grade) (Fig. 4).82 Recent investigations have reported the 
superiority of D or its histogram analysis over ADC in evalu-
ating microvascular invasion in HCC.83,84

D* was reported to be more accurate than ADC in distin-
guishing responders from non-responders to loco-regional 
treatment in HCCs;85 and f-values significantly increased at 
2-week follow-up of HCCs responding to sorafenib, while no 
significant difference was found in ADC or D.86 However, 
another group later found no significant differences in f 
between responders and non-responders.87

Pancreas
Among IVIM parameters, several studies reported that f-value 
was decreased in pancreatic ductal adenocarcinoma (PDAC) 
compared with normal pancreatic tissue,88–93 while no 

significant difference in D-value was found between carci-
noma and healthy tissue,92,93 except some publications.89,90  
f was found to be most useful for the distinction between pan-
creatic cancer and chronic pancreatitis, with a trend toward 
higher f-value in chronic pancreatitis than pancreatic 
cancer.88,92,94 D- and f-values have also been found useful to 
distinguish well/moderately differentiated PDAC from poorly 
differentiated PDAC, with lower D-values and higher f-values 
in well/moderately differentiated compared with poorly differ-
entiated PDAC.95 Several groups have reported that pancreatic 
neuroendocrine tumors show higher f-values than PDAC, 
which is considered to reflect their hypervascularity.29,88,89,92

Prostate
Several studies have examined the utility of prostate IVIM 
DWI (D or ADC) in distinguishing prostate cancer from 
benign hyperplasia and normal tissue, revealing conflicting 
results in the f measurements in malignant and normal 
tissue.96,97 The characteristics of IVIM DWI and MR perfu-
sion parameters in prostate tumors and normal tissues have 
also been investigated.97,98

Pang et al.97 reported that f is significantly increased 
(7.2% vs. 3.7%) in tumors compared with normal tissues, in 

Fig. 4  MR images in a 58-year-old woman with surgically proven HCC of E–S grade 3. (a) Portal venous phase image. (b) apparent diffu-
sion coefficient (ADC) map. (c) ADCslow map. (d) ADCfast map. (e) and (f) map. (f) Intravoxel incoherent motion (IVIM) and DWI fitting of 
the diffusion signal decay. The tumor demonstrates a slightly high signal intensity on T2-weighted images and blue areas were observed on 
the ADC and ADCslow map, which indicate a poorly differentiated hepatocellular carcinoma. The IVIM-DWI model achieved significantly 
better fitting than the DWI. Adapted from Wei et al.82
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accordance with the volume transfer constant (Ktrans; 0.39 vs. 
0.18/min) and plasma fractional volume (vp; 8.4% vs. 3.4%). 
Recently, Beyhan et al.98 also found that the mean values of 
perfusion parameters obtained from the Tofts model [blood 
and tissue (Ktrans), contrast agent back-flux rate constant 
(Kep), extravascular extracellular fractional volume (Ve), ini-
tial area under curve (iAUC) and χ2] and f significantly 
increased, and the mean values of Dp and Dt significantly 
decreased in malignant lesions compared with normal tissue.

Intravoxel incoherent motion histogram metrics might be 
also useful in the pathological grading of prostate cancers, and 
it was found that D outperformed conventional ADCs in dis-
criminating low-grade from high-grade prostate cancers.99

Female pelvis
The IVIM model has also been intensively investigated in 
cervical cancer. Poorly differentiated cervical cancer was 
found to have a lower D than well/moderately differentiated 
cervical cancer.100,101 Several studies have reported lower 
f-values in cervical squamous cell carcinoma (SCC),101–103 
and the results are mixed regarding value for grading of the 
cervical tumors.101,103 Interestingly, the f-values at the 
periphery of cervical cancers were useful in distinguishing 
tumor grade with higher f in higher-grade tumors,100 and 
IVIM histogram metrics distinguished between early and 
locally advanced cervical cancers.104 Lee et al.25 demon-
strated that fD* values positively correlated with DCE-MRI 

parameter, estKtrans (estimated volume transfer constant 
between blood plasma, and the extravascular extracellular 
space, r = 0.42, P = 0.038). Li et al. recently reported that 
higher D, f, and Ve values and lower Ktrans and Kep values  
were observed in cervical carcinoma with high-expression of 
HIF-1a. DCE-MRI combined with IVIM DWI had higher 
sensitivity and accuracy than that of DCE-MRI or IVIM 
DWI for differentiating the high-expression group and  
the low-expression group of HIF-1a (P = 0.03, 0.02;  
0.04, 0.03).105

Intravoxel incoherent motion has been assessed in cer-
vical cancer treated with chemoradiotherapy (CRT), and was 
reported to be an early predictor of treatment response.106,107 
The changes in IVIM parameters (D, D*, f ) and ADC before 
and during CRT were found to be significantly higher in 
complete remission (CR) than non-CR groups.108

Others
The f-value was found to correlate with 18F-fluorodeoxyglucose 
positron emission tomography/computed tomography  
(18F-FDG PET/CT) metabolic parameters in patients with ver-
tebral bone metastases, suggesting its potential for monitoring 
treatment response.109 A recent study has shown that histogram 
analysis of f and D* may be useful for early response assess-
ment during NAC in osteosarcoma.110 The utility of IVIM 
parameters has also been demonstrated in differentiating 
malignant childhood tumor types (Fig. 5).111 Other potential 

Fig. 5  Histologically verified neuroblastoma (grade IV). (a) T2-weighted and (b) b = 150 images, and (c)–(f) parametric maps [apparent 
diffusion coefficient (ADC), D, D*, and  f, respectively]. Whole tumor ROI is shown drawn on the parametric maps. The calculated 
median values of ADC, D, D*, and f for the drawn ROI were 1155 × 10–6 mm2/s, 703 × 10–6 mm2/s, 17,762 × 10–6 mm2/s, and 23%, 
respectively. Adapted from Meeus et al.111
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clinical applications in oncology include rectal [decrease of 
ADC, pseudo-diffusion coefficient, and perfusion fraction 
with poorer tumor differentiation (r = 0.520, P < 0.001; r = 
0.447, P = 0.001; r = 0.354, P = 0.010, respectively)],112 
esophageal (higher diagnostic performance of ADCslow than 
ADC for differentiation of grades of esophageal carcinoma),113 
and lung carcinoma [significantly lower ADC calculated using 
all b-values, D- and f-values in lung cancer compared with 
obstructive pulmonary consolidation (P < 0.05)].114 Despite 
all these promising results, the clinical application of IVIM 
parameters for the assessment of treatment response has  
been limited compared with ADC owing to their only  
moderate repeatability and reproducibility (please also see 
“Challenges”).115

Challenges
There has been a growing number of publications on IVIM in 
the past 10 years, presumably due to the IVIM “wake up-call” in 
2008,116,117 reporting significant decrease in D* and ADC values 
in cirrhotic patients, which has shed some light on clinical appli-
cations of IVIM. Additional IVIM models and fitting methods 
have been explored in various organs and diseases.118

One needs to keep in mind that the behavior of DW sig-
nals is non-Gaussian (monoexponential for tissue diffusion), 
especially in highly restricted tissues such as cancers, where 
departure from a Gaussian distribution appears at b-values as 
low as 600 s/mm² (the highest b-values reported when the 
initial biexponential model was introduced were approxi-
mately 200 s/mm².) Using the standard biexponential IVIM/
diffusion model when including high b-values fails to take 
this effect into account, and the f fraction becomes artificially 
high (sometimes >40%) due to the presence of residual tissue 
diffusion effects in the perfusion-related IVIM part of the 
signal (this artifact would be the largest in tissues with hin-
dered diffusion, i.e., the most malignant areas). In addition, it 
is well known that fitting data with the biexponential model 
through the common least-squares model-fitting approach is 
sensitive to noise effects and outliers.34 Thus, development 
of a more accurate model is crucial, especially in oncology, 
and many approaches have been proposed (see “Future 
Trends”). To take care of non-Gaussian and “noise floor” 
effects visible when higher b-values are used (approximately 
1000 s/mm²), more sophisticated models must be used for 
data analysis. One popular model is the kurtosis model, 
where non-Gaussianity in diffusion displacement probability 
distributions of water molecules in tissues can be meas-
ured.6,119,120 Eventually, more effective IVIM and non-
Gaussian DWI models might lead to more accurate handling 
of IVIM parameters.

Intravoxel incoherent motion parameters (especially D*) 
have modest repeatability and reproducibility (Table 2),121–130 
perhaps due to their inherent inflexibility in the standard IVIM 
model and sensitivity to noise,6 and several approaches have 
been explored to improve their uncertainty. IVIM values are 
dependent on the acquisition parameters such as b-values,118 Ta
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TE,131 and fitting methods,81 and uniform acquisition of IVIM 
data and development of robust IVIM fitting are warranted. 
Many efforts are underway to improve the estimation of IVIM 
parameters. Removal of motion-contaminated and poorly 
fitted image data has been proposed to improve their reproduc-
ibility.132 The uncertainty of IVIM D and f estimates can be 
reduced by the use of optimized b-value schemes.133 Cardiac 
gating was found useful in improving the reproducibility of 
IVIM values in the head and neck.125

Future Trends
There remain many challenges in IVIM, both in terms of 
acquisition and processing. There is little standardized soft-
ware available to estimate IVIM parameters,40 and DWI data 
often cannot be processed online in picture archiving and com-
munication systems (PACS). Cooperation with vendors is cru-
cial for the development of software that will work in PACS, 
as well as to generate robust IVIM parameters, and a one-step 
approach for the optimization and standardization of acquisi-
tion protocols and image processing. Efforts are ongoing for 
optimizing acquisition schemes such as b-values or number of 
acquisitions within a clinically feasible scanning time.133–135 
Segmented (or two-step, stepwise, over-segmented, or asymp-
totic) model fitting has been most commonly used to estimate 
robust diffusion and perfusion parameters.118 Several groups 
have investigated the utility of Bayesian analysis as an alterna-
tive to IVIM model-fitting parameter estimation,136–138 
although parameters might be more biased in hypoperfused 
tissues with this method. Simplified approaches have attempted 
by several groups to estimate IVIM parameters without 
fitting;72,139 for instance, Sumi et al. estimated IVIM parame-
ters using a geometric method, and Teruel et al. introduced 
relative-enhanced diffusivity (RED), which is based on the 
relative increase of the ADC values calculated at a low b-value 
with respect to the ADC values measured at medium b-values. 
The optimal b-values for RED have also been investigated, 
and the authors suggest including b-values of 100 in the breast 
and 50 in the liver for RED.135

Integration of artificial intelligence (AI)/machine learning 
and IVIM in data acquisition and analysis might be an impor-
tant approach in the future. A recent study showed a machine-
learning algorithm combining MRI-derived data including 
IVIM as a potential predictive biomarker of treatment out-
comes in sinonasal SCCs. Deep neural networks have been 
explored for accurate and robust IVIM or IVIM and non-
Gaussian DWI model fitting to DWI data.140,141

Other advanced IVIM models are worthy of investiga-
tion. Flow-compensated IVIM has been explored, which 
could be helpful in removing the effect of relatively large 
vessels on f fraction at the time of acquisition. Diffusion 
time-dependent IVIM estimates have been demonstrated in 
the mouse brain; however, significant changes in IVIM 
values with changing diffusion times have not been identified 
in xenograft mouse models.125

More and more studies have investigated the clinical 
applications of IVIM in oncology over the past decade. Abun-
dant numbers of approaches and strategies have been exten-
sively explored for optimization of IVIM/diffusion data 
acquisition and processing. Work remains to improve repro-
ducibility in IVIM parameters and establish the pipeline to 
analyze IVIM/DWI data online, in cooperation with vendors.
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