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Vascular endothelial growth factor-B: Impact on physiology and pathology
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ABSTRACT
Angiogenesis plays an important role in controlling tissue development and maintaining normal
tissue function. Dysregulated angiogenesis is implicated in the pathogenesis of a variety of diseases,
particularly diabetes, cancers, and neurodegenerative disorders. As the major regulator of
angiogenesis, the vascular endothelial growth factor (VEGF) family is composed of a group of crucial
members including VEGF-B. While the physiological roles of VEGF-B remain debatable, increasing
evidence suggests that this protein is able to protect certain type of cells from apoptosis under
pathological conditions. More importantly, recent studies reveal that VEGF-B is involved in lipid
transport and energy metabolism, implicating this protein in obesity, diabetes and related
metabolic complications. This article summarizes the current knowledge and understanding of
VEGF-B in physiology and pathology, and shed light on the therapeutic potential of this crucial
protein.
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Introduction

Angiogenesis is highly coordinated by a series of orches-
trated events, and the interactions of VEGF family to its
receptor have been well characterized. The VEGF family
is major regulators of blood and lymphatic vessel devel-
opment and growth,1 comprising VEGF-A, -B, -C, -D,
placenta growth factor (PlGF). In some literatures the
VEGF-E (an Orf-virus-encoded protein) and VEGF-F
(a variant isolated from snake venom)2 were also
included in this family. These grow factors are secreted
as »40-kDa dimeric glycoproteins and function in a
paracrine fashion by signaling to three corresponding
structurally homologous receptor tyrosine kinases
expressed on endothelium cells (ECs) – vascular endo-
thelial growth factor receptor (VEGFR)-1, ¡2 ¡3.3

VEGF-A, VEGF-B and PlGF also bind to the neuropilin
(NRP)-1 and ¡2.4 Most biological angiogenic event
occur through the VEGFR-2, whereas VEGFR-1 acts by
synergistically augmenting VEGFR-2 signaling.2 Their
binding patterns are partially overlapping, and the feasi-
ble cross-talks may amplify the diversification of intra-
cellular and intercellular interchange of communication.
For example, the PlGF strengthened the activity of
VEGF-A by displacing VEGF-A from VEGFR-1,

facilitating its availability to the VEGFR-2.5 Conversely,
the transduced VEGF-B in RIP1-Tag2 islets possibly
replaced VEGF-A and PlGF from VEGFR-1, and then
diminishing pro-angiogenic effect.6 In addition, the
VEGFs are also engaged in the conversion from white
adipose tissue (WAT) to brown adipose tissue (BAT),7

leading to increased energy expenditure, and resulting in
protection from diet induced obesity. The coexistence of
angiogenic and browning effect may coordinate the
organism to obtain a better adaptation to the external.

Discovered in 1996,8 VEGF-B has approximate 47%
and 37% amino acids sequence identical with VEGF-A
and PlGF.9 Owing to alternative splicing event, the
VEGF-B gene generates two isoforms: VEGF-B167 and
VEGF-B186, 42/60 KDa homodimers, respectively.9 Their
N-terminal contains the receptor binding domain,10

homologous with the regions in VEGF-A and PlGF,
therefore sharing the common receptors. The diversity
in their C-terminal properties affects their distribution in
the body. VEGF-B167 has a heparin-binding domain,
thus upon exudation it binds to cell surface heparin sul-
fate proteoglycans to anchor this isoform in extracellular
matrix.8 Unlike VEGF-B167, VEGF-B186 does not con-
nect the heparin, hence more diffusible.11 The ratio of
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VEGF-B167/VEGF-B186 varies significantly among spe-
cies. The VEGF-B167 is prevalent in mouse, while the
human tumor cell lines favor the VEGF-B186.

12 Physio-
logically, the VEGF-B covers manifold organs and tis-
sues, with the highest in the heart, skeletal muscle and
lower levels in other tissues in adult mice.13,14

The in vivo role of VEGF-B remained elusive for deca-
des. Due to its homologous structures, VEGF-B was ini-
tially recognized as an angiogenic factor. Subsequent
studies, however, argued against the angiogenic activity of
this molecule.15-18 Physiologically, VEGF-B has little
growth effects, as demonstrated in gain-of-function studies
using transgenic15 and adenoviral16 expression of VEGF-B
models and loss-of-function studies using VEGF-B null
mice.17,18 Under pathological conditions, this molecule can
prevent cells from apoptosis and death. It showed both sur-
vival effect in laser injury-induced choroidal neovasculari-
zation or ischemia-originated retinal neovascularization
models,19 cardiac ischemia mouse,20 and neuron-protec-
tive effect for the brain cortical neurons and retinal neu-
rons21 and motor neurons in the spinal cord.22 The two
effects may be relatively complemented, since the neural
and vascular systems are inseparable and share the com-
mon molecular mechanisms for migration.23 To underlie
the survival effects, besides the anti-apoptotic effect via
repressing the expression of pro-apoptotic BH3-only pro-
teins and other apoptosis- and cell death-related proteins,
including p53 and caspase family members,21 VEGF-B
might potentially enhance energy metabolism by regulat-
ing fatty acid (FAs) transport.9,13 Surprisingly, at the high
levels, VEGF-B acted as a growth-inhibiting molecule to
forestall overgrowth and tumor growth.6,9

Collectively, VEGF-B is more like a survival molecule
rather than a growth factor.24 Recently its participation
in lipid transport and energy metabolism mediation was
partially revealed, indicating its implication in lipids
accumulation relevant metabolic diseases, e.g. the type 2
diabetes mellitus (T2DM). Here, we summarized recent
advances on VEGF-B studies, with particular interest on
its potential therapeutic application in diabetes therapy.

Diabetes, from lipid depots to targeting VEGF-B
therapy

The prevalence of diabetes has been increasing during the
past decades and, more importantly, diabetes is associated
with a variety of severe complications, particularly cardio-
vascular events and renal dysfunction.25 T2DM
is characterized as insufficient insulin secretion from pan-
creatic b-cell, impaired insulin-stimulated glucose uptake
into skeletal muscle and adipose tissue and defective insu-
lin-dependent suppression of hepatic glucose output,26

and these defects collectively result in hyperglycemia.

Insulin resistance, a state that the metabolically active
cells are less sensitive to the insulin dependent glucose
handing, marks and exacerbates the T2DM. Insulin resis-
tance stimulates b-cells to augment insulin production to
lower blood glucose, and the compensate degree deter-
mines whether the individual develops diabetes or not.27

Both genic mutations and environmental factors can lead
to the T2DM, and the latter may contribute more, such as
the obesity. Obesity, via deteriorating insulin resistance,
places an depraved functional demand on the b-cell and
accelerate b-cell failure.25

The classical remedy for T2DM is stepwise, starting
from life style interventions such as caloric restriction via a
very low-calorie diet (600 kcal/day)28 or the exercise train-
ing;29 afterwards the oral monotherapy, including incre-
tion-based therapies such as glucagon-like peptide-1 and
its stable analogs,30 oral hypoglycemic agents (metformin
and thiazolidinediones); further combination therapy, and
ultimately insulin therapy.31 In the following text, we first
stated how the lipid dysregualtion contributes to insulin
resistance development, then the targeted insulin resis-
tance and VEGF-B for diabetes therapy.

Lipids metabolism, insulin resistance and T2DM

The relevance between lipid dysregulation and insulin
resistance has been widely studied. Initially the Randle
hypothesis explained that accumulative fatty acids (FAs)
impaired pyruvate dehydrogenase and glycolysis.32

Nevertheless, the diacylglycerol hypothesis33 explicated
the impaired insulin action and glucose disposal in
chronic obesity states. Studies demonstrated the diacyl-
glycerol and ceramides as pathogenic factors for insulin
resistance.34 The accumulation of them deteriorate insu-
lin resistance by activating protein kinase C (PKC) fam-
ily members35 and impairing the Akt2 action,36

separately. Mechanistically, PKC-u phosphorylates insu-
lin-receptor substrate (IRS-1) on ser 1101 to block IRS-1
tyrosine phosphorylation;35 and ceramides impedes Akt2
activation via protein phosphatase 2A dephosphorylat-
ing,36 further disrupting insulin signaling. Importantly, it
is the intramyocellular diacylglycerols,37 not the circulat-
ing lipids, that interrupt the insulin signaling and are
responsible for insulin resistance progression. Besides,
ectopic deposition of lipids in metabolically active organs
can induce pathological activation of inflammation38,39

and endoplasmic reticulum stress,38,40 the ability of
which to regulate insulin action may be reliant on their
ability to alter the levels of key signaling intermediates.38

It is highly likely that dysregulations of these pathways
collectively contribute to insulin resistance.

Indeed, recent studies suggest that it is the lipids
accumulation in liver and muscle, but not in
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subcutaneous or visceral adiposity, accounts for insulin
resistance.41 The lipids in the islets are also concerned.
Free fatty acids (FFAs) promote insulin production in
the short term42 yet repressing by interfering the co-
localization of calcium channels and the secretory
granules43,44 in the long term. Obesity and high fatty
diet (HFD) duplicated the effects of long-term incuba-
tion of islets with FFAs on the Ca2C channel distribu-
tion and insulin output.45 To figure out, the damaged
b-cell function, rather than the declined number, may
be the nature for the impaired insulin exudation.25

Fig. 1 generalized the pathological progression from
ectopic lipids deposition to insulin resistance and

T2DM development. To conclude, the ectopic lipids
aggradation is vital, and normalization of lipid storage
might be able to attenuate insulin resistance in meta-
bolically active organs such as liver and muscle.

Treating diabetes by targeting insulin resistance

The peroxisome proliferator-activated receptors
(PPARs) work as lipid sensors, modulating metabolic
events by coordinately regulating the expression of genes
linked to the energy homeostasis and insulin action, and
therefore it can be regarded as a pharmacological target
for management of metabolic disorders.49 Thiazolidine-
diones (TZDs) can directly reduce peripheral systemic
insulin resistance,50 via the mighty activation of PPARg,
inducing the fat redirection from visceral to subcutane-
ous depots.51 Given adipocytes own the highest PPARg
levels, these cells are the primary target for the glucose-
lowering actions of TZDs.52 Another insulin sensitizer-
the apelin is also concerned with the magnified

Figure 1. The progression from the ectopic lipids depots to the
T2DM. Once the lipids overwhelm the capacity of adipose tissues,
it shunts to the non-adipose tissues, leading to ectopic lipid
deposition. (1), (2). The lipids deposition in the liver/muscle
arouse the abnormal insulin behavior, resulting in muscle/hepatic
insulin resistance. The insufficient insulin action gives rise to the
glucose release from the liver and the lipids release from the adi-
pose. Whereas, the glucose uptake is limited, relative to an
increased lipids uptake by the tissue cells. (3). In the pancreatic
islets, the lipid deposition would result in b-cell dysfunction and
apoptosis,6,46 and the weaken insulin production. (4). The lipids
depots on the artery intima lead to the coronary atherosclerotic
disease, and this can further develop into latter ischemic heart
disease, eventually the heart failure (HF). (5), (6). The muscle/
hepatic insulin resistance repress the glucose uptake. To let
down the glucose level, the b-cell produces more insulin, which
does not work for the already existing insulin resistance. The
functional adaptation of the b-cell bring about a high rates of
b-cell metabolism and risk of b-cell damage from mitochondrial
and endoplasmic reticulum stress.29 (7). Insulin resistance would
impair storage of carbohydrate as glycogen in muscle, then car-
bohydrates are redirected to the liver and become substrates for
hepatic de novo lipogenesis.47 (8). The hepatic insulin resistance
can deteriorate into the non-alcoholic fatty liver disease (NAFLD),
even the more severe non-alcoholic steatohepatitis, or hepatocel-
lular carcinoma (HCC). (9) – (11). These combinations together to
cause the final T2DM. (12). The NAFLD and T2DM are regularly
co-existing. The NAFLD imposes the risk for the diabetes and its
complications, in turn, diabetes makes an individual more likely
to have more severe NAFLD with the associative complications of
cirrhosis and mortality.48

Figure 2. The involvement of the VEGF-B in the lipids translation,
and the observed phenotype in the targeted VEGF-B treatment
in various rodent animals. The black line stands for the pathways
under physical conditions; the red for the pathological conditions;
the green for the changes after the neutralizing VEGF-B strategies
(the VEGF-B¡/¡ model or VEGF-B antibody treatment). Under
normal conditions, the PGC1-a regulates the coexpression of
VEGF-B and the lipids oxidation associated genes, thus establish-
ing a balance between the VEGF-B medicated lipids uptake and
the energy demands of the metabolic cells, and the excessive lip-
ids are stored in the adipocytes. When pathologic, the redundant
lipids in the non-adipocyte tissues cause the abnormal insulin
behavior, inducing the subsequent insulin resistance and the
T2DM. Genetic or pharmacological inhibition of VEGF-B signaling
leads to the (1). Decreased distribution of FATP3/4 on the ECs;
(2). Less intracellular lipid droplets in working tissues; promoted
insulin sensitivity and glucose uptake, ameliorated glucose
tolerance; metabolic transformation from FAs to glucose oxida-
tion; a lower risk for CVD; protected islet architecture and b-cell
apoptosis; (3). Lipids redistribution to adipose tissues, leading to
weight gain.
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phosphorylation of Akt and glucose uptake in skeletal
muscle.53

Hurdles remain since most TZDs exert the risk of
cardiovascular morbidities, and rosiglitazone has been
withdrawn from the market.54 To solve this issue, the
selective peroxisome proliferator-activated receptor
estrogen receptor modulators55 might provide a more
tolerable therapy for T2DM, without the cardiomegaly
adverse effect or fewer. Additionally, the dual agonists of
PPAR-a/g or even PPAR-a/g/d pan agonists56 showed
promising results in the simultaneous treatment of
diabetic hyperglycemia and dyslipidemia.

VEGF-B and lipids transportation

The VEGF-B is critical in coordinating ECs-mediated
long-chain fatty acids (LCFA) uptake with the energy
demand of the surrounding tissue via its co-expression
with the mitochondrial gene cluster,13 consisting primar-
ily of genes coding for proteins within the oxidative
phosphorylation machinery.57 This may be under the
transcriptional regulation of estrogen-related receptor a
and co-regulator peroxisome proliferator-activated
receptor gamma coactivator-1 alpha (PGC-1a).58 VEGF-
B released by the tissue cells promotes the distribution of
fatty acids transport proteins (FATP)3 and FATP4 on
the ECs, via its binding to VEGFR-1 and NRP-1, further
facilitating the lipids transport into the tissue cells. The
receptor knockout studies abolished the growing expres-
sion of FATP3/413 while the co-expression of two FATPs
led to the highest uptake of LCFA, suggesting a synergis-
tic effect. Both isoforms of VEGF-B promoted the
expression of FATP3/4 in several lipid-metabolizing
peripheral tissues at transcriptional and translational lev-
els, with the soluble form-VEGF-B186 being more effi-
cient.13 VEGF-B167, with a better tissue specificity, might
be more likely to fulfill the tissue-specific demand of FA
uptake to cooperate with the oxidative capacity of spe-
cific tissue.59 In summary, the VEGF-B creates a meta-
bolic cross-talk between the ECs and the tissue cells,
hence guaranteeing the energy accommodation and
simultaneously tackling intracellular lipids accumulation
and lipotoxicity.60 However, the passively lipids trans-
portation in obesity states can progressed into the insulin
resistance and the subsequent T2DM.

Targeted VEGF-B therapy for T2DM

Due to its important roles in mediating lipid trans-
port and metabolism, VEGF-B has been proposed as
a novel therapeutic molecule for T2DM remedy via
existing methods including gene deletion, gene slicing
and the neutralizing monoclonal antibodies (mAbs).

Both the construction of genetically engineered
VEGF-B¡/¡ model13,61 and VEGF-B neutralizing bod-
ies treatment13 ameliorated the diabetic phenotype,
although the obesity phenotype remained. Many
insights have been provided, despite in the animal
models, providing the likelihood of developing the
therapy tactics for the patients. In the VEGF-B¡/¡

models,13 the first phenotypic alteration observed is
the declined levels of FATP3/4, resulting in the
degressive lipids uptake, thereupon smaller and less
abundant intracellular lipid droplets in heart, muscle,
liver and BAT. Then, the accompanied promoted
insulin sensitivity, glucose transporter-4 distribution
on the membrane, glucose uptake; decreased plasma
glucose and ameliorating glucose tolerance were
observed, accordingly maintaining the euglycemia.
These led to a compensatory amplification in carbo-
hydrate utilized for energy production, indicating a
metabolic transformation from FAs oxidation to glu-
cose burning. Then, the unconsumed FAs were trans-
ferred to WAT, causing a growing body weight.
Maybe the FAs uptake into the WATs is a process
utilizing molecules other than VEGF-B?59 Nonethe-
less, various VEGF-B deficient mouse strains exhib-
ited inconsistent phenotypes in baseline conditions,46

and the phenotypes described above are the compre-
hensive analysis of several studies.13,61 For the impact
of VEGF-B deletion in HFD mice and in diabetic db/
db mice, a gene dosage effect in males was observed
since the VEGF-BC/¡ mice showed slightly elevated
blood glucose levels compared with VEGF-B¡/¡

mice.61 Also, the VEGF-B¡/¡ mice showed lower
plasma triglycerides (TGs) and LDL/VLDL-bound
cholesterol ratio, and higher levels of HDL-bound
cholesterol, suggesting a lower risk for cardiovascular
diseases (CVD).61 Moreover, therapeutic inhibition of
VEGF-B preserved islet functionality and insulin pro-
duction by protecting islet architecture and guarding
against b-cell apoptosis, possibly via the blunted lipo-
toxicity.61 Antibody-mediated pharmacological con-
trolling of VEGF-B phenocopied most of outcomes
aforementioned. The neutralizing VEGF-B antibody
(2H10) blocked the VEGF-B to binding its receptors,
bringing about a long-lasting neutralization effect.2

Despite these progresses, cautions should be taken
when further translating to humans. Many T2DM
patients also suffer from myocardial ischemia, coro-
nary artery disease and diabetic neuropathy, thus
would potentially benefit from VEGF-B coronary arte-
riogenic, neuron-protective and neurogenic effects.46

Since the VEGF-B levels did not differ between T2DM
patients and normal controls,62 abrogating these effects
may be detrimental. The tumor angiogenesis inhibiting
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effects also deserve cogitation.46 Maybe the tissue
specific deletion or the shRNA and the targeting
delivery of anti-VEGF-B-body represent the possible
curative orientation. A pinpointed understanding of
the tissue/cell-specific expression pattern of VEGF-B
and VEGFR-1 is necessary, and reporter-gene express-
ing models may help.63

Robciuc64 et al. implied the promise of VEGF-B
transgenic or VEGF-B protein delivery to ameliorate
insulin sensitivity (to improve insulin sensitivity or to
ameliorate insulin resistance), diminishes obesity, and
alleviate metabolic syndrome, by displacing VEGF-A
from VEGFR-1 to activate VEGFR-2 and increasing
adipose tissue vascularity, thereupon providing a thera-
peutic tactics for counteracting obesity. Similar findings
were reported in another report.59 The contradiction
aroused that how to settle the discrepancies between
the two studies.13,64 We compared, in order to make
them seem harmonious. (i) The insulin resistance
in the two studies was derived from the insufficient vas-
cularization and consecutive hypoxia and the ectopic
fat accumulation, thus the VEGF-B linked downstream
angiogenic event and the suppression of the VEGF-B
medicated lipids trafficking could help, respectively. (ii)
The VEGF-B gain-of-function may be applicable to the
early period when the body owns the functional islets
and normal insulin levels, mainly act on the adipose tis-
sue; however, the VEGF-B loss-of-therapy is probably
suitable for the terminal stages, targeting for the non-
adipose tissue. (iii) Were the amelioration of the gain-
of-therapy can be enlarged to the muscular tissues,
such as muscle and liver, its suitability could be
enlarged. If so, the possible side effect of the VEGF-B
loss-of-function in the diabetes patient might be evaded
and conversely can exert both anti-diabetic and neu-
ron-protecting, cancer-inhibiting effects. (iv) Were
restricted, along the deterioration of insulin resistance,
the therapeutic regimen develops from the single gain-
of-function to the combination of the gain/loss-of-func-
tion. Therefore, to suppress the VEGF-B in the muscu-
lar tissue and to enhance the role of VEGF-B in the
adipose tissue simultaneously and to avoid the potential
side-effect, a tissue-specific delivery of VEGF-B is

required, which may be achieved by the newly designed
tPep-VEGF-B targeting the adipose tissue.65

Cardiovascular diseases, to achieve the tissue
specific effect

Mickle studies have implicated the role of VEGF-B in
cardiac development, indicating its potential therapeutic
application in treating heart diseases. The heart owns the
highest mRNA level of VEGF-B13,14 and the developing
heart (pre- and postnatal) exhibited the primary VEGF
related factor expression.12,66 During embryonic (E12.5-
17.5) and early postnatal (P3) development, the most
prominent cardiac VEGF-B expression changed from
right to left ventricular wall,67,68 however the right ven-
tricular wall after postnatal cardiac remodeling (P18)
and in the adult, implying the coordination of its expres-
sion adaptation with the changes in cardiac energy
requirements at various development stages.63,69 Gene
knockout studies showed that VEGF-B does participate
in coronary vasculature development and normal physi-
ological responses to ischemia and vascular occlusion.18

And, the HF patients showed the declined VEGF-B,70

both in ischemic and dilated cardiomyopathy. Mice lack-
ing VEGF-B displayed mild cardiac phenotypes, such as
the slightly smaller heart and dysfunctional coronary
vasculature in Bellomo VEGF-B¡/¡ mice67 and a pro-
longed PQ interval in Aase VEGF-B¡/¡ mice.71 Though
minor phenotype differs, these inferred a protective role
of VEGF-B in the normal or ischemic heart. Additional,
individuals with diabetes are prone to suffer from CVD.
Given the apparent role in the cardiac development and
amelioration in the metabolic symptoms, VEGF-B ther-
apy may show its appliance value in the HF patients.

Although several tactics are applied in the ischemic
cardiomyopathy, such as acute coronary care, reperfu-
sion of occluded coronary vessels and improvements in
pharmacologic therapy, the mortality is still substantially
ascending.72 Genetic therapeutic vascular growth to
induce the angiogenesis and arteriogenesis event may be
an succedaneous approach for those with myocardial or
peripheral ischemia who are unsuitable to conventional
revascularization options.73 Table 1 simplified several

Table 1. Summary of VEGF-B overexpression studies

isoforms animal Vectors observed activity Ref

VEGF-B167 Rat Ad angiogenic 74
VEGF-B Rat TG angiogenic/myocardial hypertrophy 75
VEGF-B Rat TG/AAV angiogenic/metabolism/myocardial hypertrophy 70
VEGF-B Mice TG metabolism/myocardial hypertrophy 15
VEGF-B167 Rat AAV antiapoptotic 76
VEGF-B186 Pig/Rabbit Ad angiogenic/metabolism/antiapoptotic 77

Abbreviations: Ad, adenoviral; TG, transgenic; AAV: adeno-associated virus.
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VEGF-B gene transfer studies, providing us the insight of
its protective role in myocardial ischemia and HF
models.

Although VEGF-B is dispensable for maintaining nor-
mal cardiac capability under unstressed conditions,17,78

mounting evidence suggested distinct but complemen-
tary roles for VEGF-B in the maintenance of cardiac
contractility and coronary perfusion.70 Opposited to the
pathological cardiac hypertrophy, the VEGF-B overex-
pression derived adaptive hypertrophy did not deterio-
rate into HF,70 and this maybe also a paracrine event: the
VEGFR-1 produced by the cardiomyocytes79 however
distributed on the ECs, establishing the ECs-Cardiomyo-
cyte cross-talks. As for the metabolic altering, the
strengthened MAPK and weakened AMPK signaling
modulate cardiomyocytes to favor glucose oxidation and
macromolecular biosynthesis.70 The enhanced glucose
utilization could avoid the ischemic myocardium and
limit the myocardial ischemia/reperfusion injury, by aug-
menting the energy production in the energy-depleted
myocardium.80,81 Coincidentally, such a metabolic shift
was also occurred on the VEGF-B¡/¡ mice,13 and may
be favoring the glucose oxidation is profitable for cardiac
ability. The vascular growth also linked to the ECs
metabolism.82 Potentially, the exogenous VEGF-B
expression can touch off the endogenous expression of
co-expressed mitochondrial genes, given endogenous
VEGF-B levels are highest in the heart.8 The antiapop-
totic impact was accounted to the antiapoptotic gene
expression profile in cardiomyocytes and the metabolic
change. To summarize, the effect of VEGF-B overexpres-
sion reflected in three aspects, cardiac growth promoting
effect therefore displayed a compensatory hypertrophy;
angiogenic effect and its related metabolic effects to
modulate metabolism of ECs82 and cardiomyocytes;70

the protection of cardiomyocytes; from apoptosis; the
manipulation of cardiac stem cell to protect against
short- and long-term ischemia-reperfusion injury.83 The
combination of these yielded a prolonged beneficial
influence on the heart, making the VEGF-B a promising
candidate for the treatment of myocardial ischemia.

There are a few points worthy further investiga-
tions. First, a complementary relevancy existed
between these effects: the cardiac hypertrophy could
be the relevant consequence of the others. Vasculari-
zation is crucial for adaptive hypertrophy, as enlarged
heart tissue must match with the concordant expan-
sion of the coronary vasculature to maintain an ade-
quate supply of oxygen and nutrients for the
heart.15,84 The VEGF-B mediated lipids accumulation
in the heart might also contributed, since inherited
and acquired cardiomyopathies have the marked car-
diac intracellular lipid accumulation.85

Second, despite some similar phenotype changes were
observed in two studies, discrepancy existed, even
completely contradictory results. For example, in the two
studies,70,77 the common myocardial-specific angiogene-
sis and arteriogenes activity were observed. Whereas, in
rabbits and the pigs,77 the aggrandizement of FATP4
expression and lipids and glycogen accumulation in the
myocardium were observed; while there is no difference
in cardiac or skeletal muscle FAs influx between the
VEGF-B transgenic, gene-deleted and wild type rats.70 It
is important to note that FAs and TGs levels were
reduced in the transgenic rat. The reason might be the
FATP4 was actually a fatty Acyl-CoA synthase,86 which
meant the FATP4 directs the FAs to synthetic pathways
rather than oxidation.

Third, the diverse mechanisms may lead in the same
myocardial hypertrophy phenotype. For example, the
transgenic mice developed an invalid cardiac hypertro-
phy due to an enlarged size of the cardiomyocytes but
lacked an arteriogenic phenotype, failed to compromise
heart ability;15 however, the cardiac hypertrophy
observed in the transgenic or AAV-VEGF-B overexpres-
sion rats could be attributed to the coronary tree expand-
ing and reprogram of the cardiomyocyte energy
substrate utilization from FAs oxidation towards glucose
oxidation.70 In turn, the alike manifold lipid and glyco-
gen accumulation in the myocardium caused the meta-
bolic changes,77 cardiac hypertrophy,70 mitochondrial
lipotoxicity and the consecutive mouse death,15 respec-
tively in three distinct studies.

Furthermore, just noticing the angiogenic role of
VEGF-B in vivo, an apparent disagreement exists rang-
ing from no angiogenic ability at all in several tissues
after adenovirus gene delivery;87 ability to potentiate
rather than bringing about angiogenesis when trans-
duced into the endothelial barrier;88 a restricted revascu-
larization in the ischemic myocardium.18,77 Several
factors had been proposed to participate, such as the
diversity of genetic background, VEGF-B isoforms or
means for VEGF-B overproduction (recombinant pro-
teins, naked plasmid DNA or adenoviral vectors).89

In this respect, adenoviruses and AAV vectors adminis-
tration represented the most efficient vectors to transfer
genes into the adult myocardium and ensured a
prolonged effect.90 The AAV vectors had acquired
increasing popularity due to its ability to transduce post-
mitotic cells, such as cardiomyocytes, at high efficiency
and to drive lasting periods of gene expression with
noticeable inflammation.91 Other vector systems, such as
the first generation adenoviruses, could activate innate
immune responses.92

Regarding the VEGF-B as an endogenous protective
and repair-promoting cardiac proteins, its overexpression
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can be efficacious to prevent cardiac damage and enhance
tissue repair.93 The other members, VEGF-A94 and
PlGF95 also showed protective ability. Howbeit, the risk of
adverse effects, consisting of bleeding, leakage, hypoten-
sion, malignancy, had limited clinically systemic adminis-
tration of VEGF-A for the revascularization of ischemic
tissues;96 and the Ad-PlGF induced myocardial angiogen-
esis and cardiac hypertrophy was abolished by the nitric
oxide synthase inhibitor L-arginine Methyl Ester
(L-NAME).97 The L-NAME did not cancel VEGF-B activ-
ity, emphasizing the uniqueness of VEGF-B. To explain
these different effects, Ad-VEGF-B186 and Ad-PlGF might
signal through different receptor binding sites and/or
structural variants, or alternatively, acted by recruiting
distinct co-receptors to the signaling complex,13 thereby
inducing various downstream events,77 which was verified
since VEGF-B did not rescue development in PlGF defi-
ciency mice.95 In comparison, the VEGF-B has marked
superiority over its family members. First, VEGF-B
showed high selectivity to stimulate angiogenesis, espe-
cially in the ischemic myocardium,18 being expected to
stimulate angiogenic without causing adverse effects. The
upregulation of VEGF-B levels in the ischemic heart but
not in the ischemic muscle might partly account for its
specificity. Another possible mechanism might be the dis-
tinct ECs differentiation in the isolated tissue and
organs.98 Then, VEGF-B provided a more balanced vascu-
larization, embracing microvessel maturation, arteriogene-
sis besides mere angiogenesis. Nevertheless, the rAAV-
VEGF-A barely led to vessel formation but failed to
enhance collateralization and perfusion, unless platelet-
derived growth factor-B was co-transfected.99 Moreover,
high amounts of VEGF-B were well tolerated, predicating
the much wider therapeutic window than VEGF-A or
VEGF-C.70 This uniqueness of VEGF-B warrant further
cogitation of the therapeutic potential of VEGF-B for pro-
moting functional recovery of myocardial ischemia.

Neurodegenerative disorders, potent protection
without angiogenic by- effect

VEGF-B also manifested its safeguarding role in the neu-
rodegenerative disorders. Indeed, the up-regulated
transcriptional activation of VEGF-B in response to mid-
brain neurodegenerative challenges was observed in Par-
kinson’s Disease (PD), and VEGF-B produced by
astrocytes and motor neurons exerted a neuroprotective
affect.22,100 Preclinical studies in PD101 and amyotrophic
lateral sclerosis model22 had shown promising results,
despite the lack of clinical studies. VEGF-B treatment
rescued brain neurons from apoptosis in stroke mouse21

and protected cultured primary motor neurons against
degeneration,22 with little retinal neovascularization

effect. The co-expression of VEGF-B with FAs oxidation
relative mitochondrial genes was observed in rat mid-
brain, suggesting the mitochondria as the target site.102

Moreover, VEGF-B possessed the considerably robust
survival ability,101,102 as a single VEGF-B186 protein
treatment at a dose of 3 mg per rat partially protected
dopaminergic fibers in the striatum and rescued the
dopaminergic neurons in the caudal sub-region of the
substantianigra.101

The neurobiological activity of VEGF-A consists of
neuroprotection, neurogenesis, and angiogenesis.103

Whereas, VEGF-B lacks the undesired adverse angio-
genic vitality,100 consequently it could be regarded as a
trophic divisor to reduce effects of neurodegeneration.
And, the VEGF-B had no visible neurorestoration
effect.102 Given the tempting neuroprotective activity
combined with negligible angiogenic/permeability activ-
ity,21,22 strategies such as adding exogenous VEGF-B or
up-regulating the endogenous VEGF-B levels to
strengthen this natural protective response may have the
potential to be a disease modifying therapy for PD.100

Cancer, dual effects on cancer metastasis
and growth

The correlation of VEGF-B with cancer remains unclear.
Considering the cancer tissues had the higher VEGF-B
level,104 The VEGF-B might promote the cancer progres-
sion, especially in advanced cancers. However, the
VEGF-B also retarded tumor growth in the RIP1-Tag2
mouse of pancreatic neuroendocrine tumorigenesis,6 and
the reduced blood perfusion in VEGF-B-T241 tumors
might explain, at least in part, the anti-tumor growth
effect.105 The antigrowth effect might also be accounted
for the approximate 15% heavier weight displayed in the
VEGF-B¡/¡ mice.6,13 The VEGFR-1 may explained the
antigrowth and antiangiogenic effect, since it is served as
the decoy receptor of VEGF-A.106 The VEGFR-1 had a
negative role in developmental vascularization, and
VEGFR-1¡/¡ embryos died early due to VEGF-A depen-
dent vessels overgrowth and disorganization.107 More-
over, the VEGF-B advanced tumor invasiveness both in
HCC patients108 and mouse tumors,105 via remodeling of
the tumor microvasculature, leading to leaky vascular
networks that are highly permissive for invasion.105 So,
VEGF-B might have paradoxical roles in cancer initia-
tion and further progression, inhibiting growth and pro-
moting metastasis, which insinuated the uncoupling of
the metastasis and primary tumor growth.105

Overall, the tumor retains the higher VEGF-B levels,
associated with high rates of distant failure and poor
overall survival,109 and it was responsible to expect that
lowering the VEGF-B may show anti-cancer effect.
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Actually, the recent reported metformin made it.110 To
let down it, several methods have been put forward. The
gene deletion therapy can provide the prolonged effect
though the tissue specific deletion barriers and the exist-
ing physical function of VEGF-B astricted its application.
Similar therapeutic outcomes can be achieved by admin-
istrating monoclonal antibodies. Given its potential role
for in vivo function characterization and the identifica-
tion for the new therapeutic strategies, more therapeutic
antibodies against human VEGF-B, and small molecule
tyrosine kinase inhibitors are deserved to be raised.

Concluding remarks and future prospects

VEGF-B is inert under physiological conditions while
showing a potent and safe therapeutic potential in treat-
ing metabolic dysregulations, correlative with its widely
distribution and multifaceted features. These seeming
contradictory features enable the VEGF-B the valuable
therapeutic significance in clinical at an attractive safety
profile, even the feasibility of developing into the drugs.

The studies of recombinant VEGF-B protein had been
limited, due to the burdens in the purification and the
lacking of VEGFR-1 mediated responses that might
form the basis of a simple cell-based assay system.14 The
exist for VEGF-B purification are largely based on affin-
ity chromatography.65,111 Comparing with the molecular
pharmacological interventions, gene therapy may pro-
vide a long-lasting therapeutic effect.72 In terms of the
mAbs, more studies are warranted to interpret the intrin-
sic molecular basis and to design new molecules with
optimized pharmacokinetics/pharmacodynamics, given
a series of variables such as potency, half-life, binding
stability, bioavailability, and dosing regimen of the exist-
ing VEGF-A blockers reflected in clinical efficacy112 and
the complex relationship between clinical studies.113

And, considering the unsuspected feed-back loops and
cross-talk between diversified signaling pathways, the
efficacy of conventional molecule has been less than
expected, there by the design of mAbs that targeting
multiple pathways, especially the intracrine (intracellular
and autocrine) signaling pathways, perhaps be an
optional orientation, such as epidermal growth factor
receptor-VEGF(R) pathway cross-talk in the cancer
angiogenesis.114

Nevertheless, it is just the multiple features that also
limit its application, such as the side effect of the VEGF-
B in diabetes. Among these models, diabetes represents
the most promising, however others are limited to the
rodent studies. More studies are under consideration to
uncover the more precise role of VEGF-B under physio-
logical conditions and its possible application in treating
diseases. How does the context-dependent varied

features switch occur? How it achieved the cardiac spe-
cific angiogenesis effect? Also, were the VEGF-B gain-of-
therapy enlarged its ability to the muscular tissues, how
to actualize the cell/tissue specific delivery of the VEGF-
B or its antibodies to avert the possible by-effect, and the
development of the long-acting analogs or some other
VEGF mimetics are also worth exploring. The clarify of
the cross-talk of the family members, if necessary be spe-
cific to the tissue, is also a huge task in the long time.
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