
Reconstructing Chromatic-Dispersion Relations and Predicting
Refractive Indices Using Text Mining and Machine Learning
Jiuyang Zhao and Jacqueline M. Cole*

Cite This: J. Chem. Inf. Model. 2022, 62, 2670−2684 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Predicting the properties of materials prior to their
synthesis is of great significance in materials science. Optical
materials exhibit a large number of interesting properties that make
them useful in a wide range of applications, including optical
glasses, optical fibers, and laser optics. In all of these applications,
refraction and its chromatic dispersion can directly reflect the
characteristics of the transmitted light and determine the practical
utility of the material. We demonstrate the feasibility of
reconstructing chromatic-dispersion relations of well-known optical
materials by aggregating data over a large number of independent
sources, which are contained within a material database of
experimentally determined refractive indices and wavelength
values. We also employ this database to develop a machine-
learning platform that can predict refractive indices of compounds without needing to know the structure or other properties of a
material of interest. We present a web-based application that enables users to build their customized machine-learning models; this
will help the scientific community to conduct further research into the discovery of optical materials.

1. INTRODUCTION
One fast-developing topic in contemporary materials science is
the high-throughput screening of prospective materials. The
traditional combination of experimental work and computa-
tional modeling is in most cases time-consuming, expensive, and
reliant on scientific intuition.1,2 Recently, the idea of using data
science to model and design materials has received increasing
attention. This has resulted in substantial improvements with
respect to increased time efficiency and prediction accuracy of
material properties.2 Using these techniques, material properties
can be predicted and simulated prior to their synthesis. By
constructing an open-source global repository of results from
simulations and property models, researchers can find a better
way to plan their experiments or computations without the need
for repeating previously undertaken experiments.
Over the course of the past 30 years, studies trying to manifest

the feasibility of modeling material properties by machine-
learning technologies have emerged from intuition. For example,
Pilania et al. trained kernel-ridge-regression algorithms on
density functional theory (DFT) calculations of polymers and
achieved an average accuracy of over 90% on validation sets that
predict the atomization energy and the band gap of polymers.3

Ward et al.4 reported a broadly applicable feature set that
contains 145 attributes to predict the properties of inorganic
materials. They trained a fast decision-tree algorithm on DFT
calculations to predict whether a composition can possibly form
ametallic glass alloy. In 2018, Zhai et al. used 47 reported data of
experimental Curie temperatures of perovskite materials to train

several machine-learning models and achieved a mean
percentage error of about 9%; they also proposed a perovskite
material, La0.66Sr0.3Ba0.04MnO3,

5 which was prospected to
exhibit the highest predicted Curie temperature.
The refractive index is one of the most fundamental optical

properties that describe how the speed of light travels within
materials with respect to the speed of light in vacuum. Physically,
the electromagnetic (EM) field inside the material is a
superposition of the incident EM field and the stimulated EM
field. The stimulated field arises from re-emissions of photons
from electrons after multiple absorption mechanisms. However,
the re-emitted photons might not be in phase with the incident
photons. As a consequence, the superposition field is observed
to be “slower” than the incident field. The refractive index of the
material is a key parameter for device designs.6 The evaluation of
refractive indices is of considerable significance for applications
in integrated optic devices such as switches, filters, and
modulators. Furthermore, knowing the refractive index and its
chromatic dispersion is crucial for the evaluation of the
suitability of a given material with nonlinear optical applications,
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for instance, their role in determining the phase-matching
configurations for efficient sum-frequency generation. There-
fore, many studies have been carried out to find an empirical
formula that expresses the refractive index in terms of other
physical properties.7−11 In general, the accuracy and general-
izability of these relationships have been improved over time due
to more materials being measured and the improvement of the
measurement techniques. However, these estimations still suffer
from their own shortcomings. Most of the estimations have
favorable predictions only on a certain type of materials
(semiconductors or Pb/SnTe alloys). These relationships
require a knowledge of the band gap, which is not an easily
accessible property for unseen or rarely used compounds. More
importantly, the refractive index originates from multiple
microscopic resonance mechanisms such as time-varying dipole
moments of electrons, atoms, and other oscillators. Under the
classical regime, the complex refractive index can be expressed in
terms of resonance frequencies, ω0, of different oscillators

12

n
Ne

m

f

i
( ) 1

( )r
j

j

j j

2
2

0 0 0
2 2

i

k

jjjjjjj
y

{

zzzzzzz∑ϵ ω
ω ω γω

= = +
ϵ − − (1)

where f j is the oscillator strength representing the quantum-
mechanical transition probability,m0 is the mass of the electron,
and γ is the damping rate. As the band gap is a property of the
electronic band transition, an expression of refractive indices in
terms of band gaps will naturally miss the contributions of other
oscillators.
Apart from theoretical modeling, efforts have also been made

to model the refractive index by a data-science approach.
Xuejing et al. collected refractive indices of 115 ionic liquids
(ILs) and built an extreme-learning-machine (ELM) intelli-
gence algorithm to predict the refractive index of ILs from
molecular descriptors calculated by quantum chemistry.13

Haghighatlari et al. developed a deep neural network (DNN)
to predict the refractive index of organic compounds based on
100,000 DFT calculations.14 They also employed topological
and physicochemical features and molecular fingerprints as
descriptors to construct numerical representations of molecules.
Such modeling efforts either required the manual collection of
data or the generation of data from DFT calculations, and the
ranges of refractive indices in their data sets were relatively
narrow: 1.35−1.60 in Xuejing’s study and 1.4−2.0 in Mojtaba’s
study. These models also require the structure of the candidate
material to be known and quantum-chemistry calculations of the
structure to be available. However, since accurate quantum-
chemistry calculations are computationally expensive, these
constraints make it hard to screen a large set of novel candidate
materials. The requirement of knowing the structure of the
material forces scientists to screen only the materials whose
structures have been reported in the literature.
This paper sets out to reveal the potential of an autogenerated

database by performing a two-part downstream analysis. The
first part of our analysis sets out to show the benefit of
reconstructing chromatic-dispersion relations from a vast
number of data sources. The second part of our analysis focuses
on the development of a machine-learning model that has
superior prediction power than empirical relations and can
operate without the need for knowing other properties of the
compound. The model is developed using source data from a
material database of 49,076 experimental values of refractive
indices for 6721 compounds.15 This database was autogenerated
using the “chemistry-aware” natural-language-processing (NLP)

toolkit, ChemDataExtractor.16 Relevant data from this database
were used to explore three machine-learning models that are
based on support-vector regression (SVR), random-forest
regression (RFR), and Gaussian-process regression (GPR).
Reference values of elemental properties17 were also used to aid
the development of the machine-learning models. A web
application is presented that allows the scientific community
to query the refractive-index database and associated reference
elemental properties with our machine-learning model to make
their own refractive-index predictions for the compound of
interest. We also demonstrate the feasibility of mapping
chromatic-dispersion relations of compounds using the
experimental database of refractive indices since it also contains
their associated wavelengths. We begin by presenting the result
of these mapping efforts.

2. RESULTS AND DISCUSSION
2.1. Reconstruct Dispersion Relations of Different

Types of Materials. Chromatic dispersion is a phenomenon
whereby light beams of different optical frequencies travel at
different velocities inside the material; this originates from
different resonance strengths at different frequencies. As a real-
life example, when sunlight is dispersed by droplets of water in
the air, rainbows can be observed.
Material dispersion can be a desirable or undesirable effect in

optical applications. For example, spectrometers are constructed
from the advantage that light is dispersed when passing through
glass prisms. However, chromatic dispersion is a serious
consideration in long-haul optical fibers. Pulses always have
finite spectral widths (bandwidth), and the dispersion will
essentially stretch or flatten the initially sharply defined binary
pulses of information. Thus, the large dependence of the pulse
propagation on the chromatic dispersion requires knowing
accurate chromatic-dispersion information about materials in
optical-fiber applications. Refractive index and extinction
coefficient are closely related to each other via the Kramers−
Kronig relations.12,18 If the chromatic dispersion of a material is
obtained, the absorption spectrum can then be calculated
directly. This will help scientists to investigate crystal structures
of materials and microscopic quantum-mechanical states of the
molecules.
Owing to the costly nature of designing and conducting

experiments, existing studies often focus on measuring refractive
indices within a narrow range of wavelengths.19,20 The first
contribution of our work is to show the ability of reconstructing
chromatic-dispersion relations from refractive-index data that
have been aggregated under different measurement wavelengths
from a vast number of document sources. The complementary
nature of these multiple source data can help researchers to
ascertain information about dispersion relations that were not
reported in the literature for compounds of interest to them. We
begin with case studies of reconstructing chromatic-dispersion
relations of several types of materials. The reconstruction was
accomplished by fitting a second-order Sellmeier21 equation
using the ordinary least-squares method with an L2 regulariza-
tion on the fitting parameters. Their reconstructed dispersion
relations are compared with the reported reference values taken
from articles that are not present in our text-mining database of
refractive indices and associated wavelengths.15 The refractive
indices and dispersion relations of these materials have been
widely reported, making these materials ideal candidates for
evaluating our database and refractive-index-prediction toolkit.
Moreover, the chromatic dispersion dn/dλ, the group-velocity
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dispersion (GVD), at the sodium D-line (589.6 nm), and the
Abbe number of each candidate were calculated and compared
with reported values. Overall, there are 138 compounds in our
database that have more than 5 refractive-index data points of
distinct measurement wavelengths, 78 compounds that have
more than 8, and 59 compounds that have more than 10. When
seeking a better quality of the reconstruction, we recommend
using lower-order fitting functions for compounds that have no
more than five data points of distinct wavelengths.
2.1.1. Reconstructed Chromatic-Dispersion Relations of

Glasses. Barium fluoride (BaF2) is an inorganic compound that
occurs in nature as the rare mineral frankdicksonite.22 As a
promising optical material with high density, it is commonly
used to fabricate optical glasses, optical fibers, and laser
generators. BaF2 is transparent from the ultraviolet to the
infrared, and it is used in windows for infrared or ultraviolet
spectroscopy. As one of the fastest scintillators, it is also used for
the detection of X-rays, γ rays, or other high-energy particles.23

The corresponding dispersion relation of BaF2 that has been
automatically reconstructed from our database sourced from the
scientific literature15 is shown in Figure 1. Values in our database

were obtained from five articles and covered a wide wavelength
range. Error bars show the standard deviation between values of
individual measurements mined for the same wavelength where
multiple data exist. The reconstructed Sellmeier equation (eq 2)
shows a high correlation with the generally reported trend. The
denominators of our fitted equation also suggest that two of the
absorption peaks of BaF2 are at 0.1172 and 30.17 μm
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Chalcogenide glasses represent another important family of
glasses within inorganic glasses. They have drawn increasing
attention from both scientists and industry due to their excellent
transmittance in the infrared region, a continuous shift of the
optical absorption edge, and good mechanical properties.20

They have been used as infrared-transmitting materials in a wide

range of optical devices such as far-infrared thermography
systems, As−Se optical fibers, and acousto-optic modulators.25

The wavelength dependence of refractive index for
As40S40Se20, reconstructed from information in our NLP-
generated database, is shown in Figure 2. The data points in

our database were mined from three different articles. The
reconstructed dispersion relation again shows a high correlation
with the reported trend, although the fitted Sellmeier equation is
slightly adrift by two outliers at near-infrared wavelengths. To
the best of our knowledge, this is the first report of a fitted
Sellmeier equation on As40S40Se20
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The absorption mechanism of inorganic glasses is mostly due
to electronic-state transitions. Thus, inorganic glasses often
display an absorption peak within the near-ultraviolet wave-
length band. Our NLP-generated database has shown its
potential in accurately reconstructing chromatic-dispersion
relations of glasses within visible and near-infrared wavelengths,
with additional functionalities of calculating group-velocity
dispersion and Abbe number at given wavelengths. The fitted
Sellmeier equation also provides the possibility of roughly
estimating absorption peaks for the glasses. A more accurate
estimation of the absorption peak may be achieved using a
higher-order Sellmeier equation.

2.1.2. Reconstructed Chromatic-Dispersion Relations of
Oxides. As the second-most common oxide on the Earth,
aluminum oxide (Al2O3) has been used widely in the material
industry owing to its high hardness, excellent chemical stability,
and high melting temperature. Al2O3 has also been found to
present promising applications as an optical material. Owing to
its low absorption among ultraviolet and visible bands, alumina
films can be combined in multilayers with silicon dioxide (n =
1.48) for UV-laser applications.26 Amorphous Al2O3 also plays
an important role in optical applications such as optical lenses
and windows, antireflection coatings, and optical waveguides.27

As it is a very popular material, there exist 56 refractive-index
data with wavelength information of Al2O3 in our database,

Figure 1. Reconstructed chromatic-dispersion relation of BaF2
alongside reported values24 that are not present in the corpus of
scientific literature that was text-mined to afford our database.15 The
red line indicates the reconstructed Sellmeier equation. Error bars on
the red points show the standard deviation between values of individual
measurements mined from different sources.

Figure 2. Reconstructed chromatic-dispersion relation of As40S40Se20
alongside reported values20 that are not present in the text-mined
corpus. The red line indicates the reconstructed Sellmeier equation.
Error bars on the red points show the standard deviation between values
of individual measurements mined from different sources.
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which were mined from 22 articles. The reconstructed Sellmeier
equation is shown in Figure 3. The dispersion reconstruction

shows a very similar trend to reported literature values. Some
data points in our database are observed to deviate from
literature values in the visible band, which is probably due to the
fact that the refractive indices of Al2O3 are dependent on the
degree of oxidation, the substrate temperature, and the crystal
density achieved. Meanwhile, results from our NLP-generated
database15 successfully predict the existence of an absorption
peak below 300 nm.26 It is worth noting that there is only one
value below the fitted peak. This brings possible sensitivity to the
Sellmeier model. If this value is absent or incorrect, the fitting
process might be affected. Users are recommended to pay extra
attention to the data points that are near-resonance
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2.1.3. Reconstructed Chromatic-Dispersion Relations of
Organic Solvents. It has been widely reported that the solvent
environment will affect the optical behavior of multiple synthetic
products during the chemical synthetic process.30−32 As an
example, acetone or propanone (chemical formula
CH3COCH3) serves as an important organic solvent in its
own right, in industry, at home, and in the laboratory. Many
articles have reported the refractive indices of acetone when
used as a solvent. Investigating the wavelength dependence of
refractive indices of acetone will help the scientists better
estimate the possible effect of acetone on the optical property of
the product prior to the synthetic process
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The reconstructed dispersion (Figure 4) relation strongly
agrees with the trend reported in the literature. The change in
the refractive index of acetone as a function of wavelength is less
than 2% across visible and near-infrared bands. This absorption-
free behavior makes acetone a promising solvent in chemical
synthesis under visible and near-infrared light environments.

2.1.4. Reconstructed Chromatic-Dispersion Relations of
Elements. The optical properties of crystalline semiconductors
play significant roles in pure physics and materials-science
research. Knowledge of parameters related to these properties,
primarily for silicon and III−V semiconductors, has attracted
great attention and received a high priority in microelectronics
and optoelectronics since the establishment of these indus-
tries.33 The reported and reconstructed dispersion relations of
silicon are shown in Figure 5.
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A total number of 153 records on silicon from 12 articles were
filtered from our database with measurement wavelength

Figure 3. Reconstructed chromatic-dispersion relation of Al2O3
alongside reported values28,29 that are not present in the text-mined
corpus.15 The red line indicates the reconstructed Sellmeier equation.
Error bars on the red points show the standard deviation between values
of individual measurements mined from different sources.

Figure 4. Reconstructed chromatic-dispersion relation of acetone
alongside reported values19 that are not present in the NLP-generated
database.15 The red line indicates the reconstructed Sellmeier equation.
Error bars on the red points show the standard deviation between values
of individual measurements mined from different sources.

Figure 5. Reconstructed chromatic-dispersion relation of silicon
alongside reported values34,35 that are not present in the NLP-
generated database.15 The red line indicates the reconstructed
Sellmeier equation. Error bars on the red points show the standard
deviation between values of individual measurements mined from
different sources.
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information. The original values in our database strongly agree
with the reported trend. Both the reference and reconstructed
diagrams show a clear refractive-index peak at around 380 nm.
This refractive-index peak results from enhanced band
transitions of electrons within crystalline silicon. As the photon
energy increases, it is not just the electrons that already have
energies close to that of the band gap; the electrons within lower
bands can also interact with the photon. Therefore, a larger
number of electrons can interact with the photon, which results
in an enhancement of photon absorption. It is worth noting that
the inverse-hyperbolic nature of the Sellmeier model is less
capable of giving an accurate estimation of the refractive index
near the absorption peak, which can be observed from the
compromised fit in the subplot of Figure 5, but it nonetheless
gives a rough estimation of the location of the absorption peak.
2.1.5. Calculations of Parameters Related to Chromatic-

Dispersion Relations. In optics and lens design, the chromatic
dispersion dn/dλ, GVD, and Abbe number are frequently used
to characterize the dispersion of certain materials. To gain a
better understanding of our database application toolkit for
reconstructing dispersion relations, these parameters were
calculated from the fitted Sellmeier equations and are presented
in Table 1. Parameters of BaF2 and acetone were found to be in
very good agreement with reported values as they are colorless
crystals and transparent liquid under visible light. Parameters of
Al2O3 were found to deviate within the same order of magnitude
as reported values; this deviation stands to reason, as Al2O3 is
not absorption-free within the measured wavelength ranges and
the refractive indices of Al2O3 possess larger noise levels in our
database. Parameters of silicon show a deviation from the
literature result by 1 order of magnitude. This confirms the
aforementioned fact that the fitting of the Sellmeier equations on
silicon is less useful as a result of the complex shape across its
absorption peak. To the best of our knowledge, this is the first
report of these parameters of As40S40Se20.
Apart from the calculation of these empirical parameters, we

performed a two-sample Kolmogorov−Smirnov (KS) test36 to
quantitatively measure the goodness of the fittings, whereby the
two samples are (1) raw data points taken from reported studies,
i.e., the blue points in Figures 1−5, and (2) refractive indices
predicted by the fitted Sellmeier equations at discrete wave-
lengths of the reported values. The null hypothesis is set to be
that the samples are drawn from the same distribution, i.e., the
ground truth of the chromatic dispersion relation. The
alternative hypothesis is that they are drawn from two distinct
distributions. P-values that report the results of these tests are
presented in Table 1. The large p-values of the first four
compounds indicate that the null hypothesis of these
compounds cannot be rejected. The statistical significance of
the fitted Sellmeier equations is thus shown to be sufficiently
capable of representing the experimentally validated dispersion

relations. Meanwhile, a small p-value of silicon (≪0.01) again
confirms that the fitting result of silicon is less satisfactory.

2.2. Predicting Refractive Indices of Inorganic Materi-
als. We have seen a highly accurate reconstruction of the
chromatic dispersion relations. However, our database applica-
tion toolkit is not only designed to perform these reconstruc-
tions but a distinct contribution of our work is that the text-
mined refractive-index records are automatically paired with the
elemental properties of their constituent elements. Using these
features and a database with high diversity, we are able to
construct physically interpretable machine-learning models of
refractive indices and therefore perform generic refractive-index
predictions. Details of the full list of descriptors used in this
study and how they were constructed can be found in Table S4
and Section S2 of the Supporting Information.

2.2.1. Model Development. Our machine-learning models
were developed by deploying the pipeline in the Methods
section. The support-vector regression (SVR) model performed
best. Further details of results for other models can be found in
the Supporting Information Section S3. All models were
validated using two methods: predicting the refractive index of
an external set of materials that are not presented in our database
to estimate the accuracy of our models and “leave-one-out”
cross-validation to compare the generalizability of our models.
The performance of trained machine-learning models was
compared against cognate results that stem from the use of
empirical relationships to determine the refractive index of a
compound that was developed by Moss,7 Ravindra et al.,8 and
Reddy et al.,9 whereby

n E

n E

n

108 eV (Moss revised)

4.084 0.62 (Ravindra et al.)

ln(0.102 ) (Reddy et al.)

0
4

g

0 g

χ

=

= −

= − Δ * (7)

Unlike the traditional empirical approaches,7−9 our study
demonstrated the potential of employing machine-learning
techniques to find the most related physics-inspired descriptors
that determine the refractive index. The SVR model suggests
that the average column number, average row number, average
number of p valence electrons, average electron affinity, average
density, and the maximum difference in electronegativity of the
constituent elements are the six most important features.
The average column number and average row number can

directly reveal the information of the ionic radii of the
constituent elements. The ionic radii are associated with the
refractive index according to the Lorentz−Lorenz equation.38
The number or the configuration of valence electrons
contributes to the refractive index via atomic electronegativ-
ity.39−41 For example, in TiO2, the electronic configuration of Ti
is [1s2 2s2 2p6 3s2 3p6 3d2 4s2] and of O is [1s2 2s2 2p4]. The

Table 1. Predicted Chromatic Dispersion dn/dλ, Group-Velocity Dispersion (GVD) at 589.6 nm, Abbe Number Calculated
Using the Equations Outlined in Methods, and the p-value of the Two-Sample Kolmogorov−Smirnov (KS) Testa

chromatic dispersion (μm−1) GVD (fs2/mm) Abbe number

compound this study reported this study reported this study reported p-value

BaF2 −0.027 −0.029 47.20 54.95 92.23 81.78 0.986
As40S40Se20 −1.620 N/A 6350 N/A 3.343 N/A 0.953
Al2O3 −0.024 −0.055 49.12 91.17 156.3 72.31 0.876
Acetone −0.032 −0.033 69.74 65.81 56.13 54.46 0.999
Silicon −0.229 −2.300 499.1 N/A 45.68 N/A 1.8 × 10−8

aThe reported values were obtained from Mikhail’s calculations37 based on the reported refractive-index literature of these chemicals.
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highest occupied molecular orbital (HOMO) is formed by the
hybridization of 3d orbitals of titanium and 2p orbitals of
oxygen. Meanwhile, the lowest unoccupied molecular orbital
(LUMO) is made up of only pure 3d orbitals of titanium. This
gives rise to a difference in the nature of the HOMO and LUMO
called “dissimilar parity”.42 This dissimilarity will reduce the
transition probability of the excited electron in the LUMO
falling back to the HOMO, leading to a reduction of electron−
hole pair recombination.42 The average electron-affinity
descriptor is a measure of the capability of the constituent
atoms to attract electrons. It can affect the optical refractive
index by putting an impact on the ability to form instantaneous
dipoles when atoms are exposed to external fields. The density of
the compound is expected to be proportional to the average
density of its constituent elements, and it will affect the refractive
index through the number density of molecule per unit volume.
The inclusion of the maximum difference in electronegativity
between cations and anions, Δχ*, has a direct bearing on the
concept of chemical bonding in nature.9 Meanwhile, the
correlation between energy gaps and maximum differences in
electronegativity has been enlightened by Duffy in a rough form
ofΔχ* = 0.2688Eg.

43 For materials that can be well described by
the classical oscillator theory, Herve and Vandamme show that
accurate results of the refractive index can be directly calculated
from the energy gap.11 To this end, by virtue of the automated
feature-selection algorithm, we have shown that our machine-
learning model can be directly related back to the underlying
theory, and it will provide a fundamental base for the
generalizability of our model.
2.2.2. Model Evaluation. We begin our model-evaluation

process by predicting refractive indices of unseen data. Twenty-

three refractive index data of 23 compounds that are not in our
database15 (i.e., an out-of-sample test data set) were collected
from the literature, mainly semiconductors, insulators, and
oxides.9 The average absolute and percentage deviations from
known values were calculated and are presented in Table 2. Our
predictions are compared with the estimations obtained from
the empirical relationships proposed by Ravindra,8 Moss,7 and
Reddy,9 while there has been no report in the literature on the
direct predictions of refractive index for this wide variety of
materials using atomic features of their constituent elements.
The prediction accuracy of the presented model is shown to

match or beat empirical relationships7−9 for materials that
possess a refractive index between 1.5 and 3.5. For the case of
materials that possess one conduction band and one valence
band such as aluminum phosphorus (AlP),44 Finkenrath45 has
pointed out that the important factor of electronic transition is
not that the band gap, Eg, is expanded by the Fermi energy, EF,
but rather that the decrease of ϵ∞ is caused by the deficit of all
band states between EF and −[Eg + (me/mh)EF]. Our model is
shown to have the potential of avoiding this shortcoming of
estimating the refractive index from the band gap, with a
deviation from the experimental value of 0.106 on AlP for our
model compared with a 0.53 from Ravindra, a 0.38 from Moss,
and a 0.249 from Reddy. Again, a considerable contribution of
this work is to provide predictions of refractive indices without
the need for knowing any other information such as band gaps or
optical electronegativities, which will make our prediction fast
and more applicable to inorganic compounds with unseen
compositions. Figure 6 shows a graphical representation of the
present approach, compared with Ravindra’s relationship, Moss’
relationship, and Reddy’s relationship.

Table 2. Refractive-Index Predictions Using the Machine-Learning and Feature-Selection Methodsa

refractive index, n

material SVR RFR GPR Lit. Ravindra Moss Reddy

CuI 2.468 2.462 2.077 2.35 2.26 2.38 2.517
BN 2.187 1.965 1.896 2.1 1.23 2.13 2.073
AIN 2.196 2.022 2.102 2.16 1.73 2.23 2.264
AlP 2.856 2.734 2.472 2.75 2.22 2.37 2.501
CuAlS2 2.329 2.424 2.490 2.4 1.91 2.28 2.346
CuAlSe2 2.549 2.607 2.571 2.6 2.41 2.44 2.606
CuInTe2 3.322 3.289 3.088 3.4 3.5 3.16 3.65
AgGaS2 2.568 2.553 2.482 2.4 2.41 2.44 2.606
AgGaTe2 3.309 3.039 3.038 3.3 3.4 3.05 3.504
AgInTe2 3.375 3.044 3.090 3.4 3.46 3.12 3.699
ZnSiP2 2.744 2.539 2.826 3.1 2.78 2.59 2.857
ZnGeAs2 3.200 3.365 3.152 3.5 3.37 3.01 3.459
ZnSnP2 2.978 2.997 2.751 2.9 3.05 2.75 3.092
CdGeP2 2.968 3.014 2.785 3.3 3.02 2.72 3.057
Ga0.2Al0.8As 3.109 3.129 3.050 2.97 2.48 2.46 2.649
Ga0.6Al0.4As 3.253 3.430 3.135 3.12 2.88 2.64 2.934
CdGe(P0.2As0.8)2 3.249 3.214 3.218 3.46 3.59 3.3 3.822
CdGe(P0.6As0.4)2 3.082 3.107 2.797 3.32 3.3 2.95 3.368
CsI 1.565 1.941 1.591 1.82 0.18 1.97 1.759
CsBr 1.447 1.643 1.505 1.67 1.89 1.584
CsCl 1.407 1.533 1.426 1.61 1.86 1.52
BaO 1.862 1.835 1.993 1.98 0.86 2.07 1.95
mean absolute error 0.151 0.168 0.210 0.370 0.252 0.158
mean percentage error [HTML]333333 5.60% [HTML]333333 6.19% [HTML]333333 7.77% 12.40% 9.33% 5.82%

aA minimum mean absolute error (MAE) is achieved with support-vector regression (SVR) and genetic-algorithm (GA) feature selection. The
estimations calculated from empirical relationships 7−9 are listed for a better comparison. Results from the full set of models, which were explored
to predict these refractive indices, are provided in the Supporting Information (Table S8).
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To investigate how an individual substance depends on the
selected descriptors, we additionally performed a local
interpretation study on three randomly selected substances,
AlN, CsI, and ZnSiP2. Shapley values

46 of the SVR model and
the selected descriptors are calculated and visualized in Figure 7.
It is important to clarify two descriptors as a preface to the results
of these case studies below. The “average row number” and
“average column number” descriptors refer to the composition-
ally averaged position of each element of a compound within the
periodic table, whose period number and group number define
the row and column numbers described herein, respectively. For

example, the average row number for the archetypal optical
reference material, SiO2, is calculated according to the period
number for Si (3) in the periodic table + 2 × the period number
for O (2), all divided by 3 to yield the average row number, 2.33.
Similarly, the average column number of SiO2 is calculated
according to the group number of Si (16) in the periodic table +
2 × the group number of O (16), all divided by 3 to afford the
average column number, 16.00. Thereby, these two descriptors
are encodings of the periodic table that machine-learning
algorithms can use to relate the physical property of a compound
to a compositionally averaged elemental trend in the periodic
table that pertains to this property.
The Shapley value is the average expected marginal

contribution of one player, in our case, one descriptor, to the
prediction, after all possible combinations have been considered.
We now consider, in turn, the results of our three case studies.
For AlN, two key descriptors that tend to pull its predicted
refractive index toward a smaller value are the average row
number (2.50) and themaximum difference in electronegativity,
Δχ* (1.43), while an average electron affinity of 0.692 and an
average column number of 14 tend to “push” its prediction
toward a larger value. Similar roles of the average column
number, the average electron affinity, and the average row
number are observed in ZnSiP2. However, for ZnSiP2, a Δχ* of
0.54 tends to push its refractive index strongly toward a larger
value instead of “pulling” it. Combining this finding with the
observation that the strongest pulling tendency of the Δχ*
descriptor comes from a Δχ* of 1.87 in the case of CsI, we
suggest that our SVR model tends to assign a positive
contribution to a smaller Δχ* value (≤1); this is comparable
with theΔχ* value for a typical polar covalent bond (∼0.9). The
results convey a distinct and quantitative model relationship
between the polarizability of the compound and its composition,
as one would expect for an optically active material. A similar

Figure 6. Predictions of refractive indices obtained from different
methods versus known experimental values. The present method
matches or improves the performance of the state-of-the-art empirical
methods, while it does not rely on additional experimental measure-
ments, such as the band gap, that are needed by the empirical methods.
The red line indicates the relation y = x.

Figure 7.Visualization of the Shapley values of the SVRmodel of compounds AlN (top), CsI (middle), and ZnSiP2 (bottom). Bars in red indicate that
this descriptor “pushes” to increase the prediction; bars in blue indicate that this descriptor “pulls” to decrease the prediction. The base value represents
the value that would be predicted when no feature is known for the current output, i.e., the mean prediction of the test set. Only descriptors with top
contributions are annotated.
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trend is observed for the average electron affinity; this is
reasonable as this property reflects the ability to form
instantaneous dipoles when compounds are exposed to external
fields. It is worth noting that the average column number (9) of
CsI is calculated by averaging the column number of cesium (1)
and that of iodine (17), while its Shapley value indicates that this
descriptor tends to “pull” its prediction by ∼−0.3. The extent of
this pulling effect is comparable with the deviation (−0.255)
between the prediction and the ground-truth value of the
refractive index of CsI. Without the consideration of the
maximum difference in the column number, the average column
number may lower the reliability of our result and bring a certain
level of distortion to the final prediction. Overall, the local
interpretation of AlN, CsI, and ZnSiP2 suggests that most of
their selected descriptors contribute to the resultant prediction
to a reasonable extent. The case of CsI also emphasizes the
necessity of incorporating maximum-difference descriptors into
model development.
Apart from its superior model accuracy, another key factor in

describing the quality of our model is its generalizability. Within
the framework of the learning theory, the algorithm stability has
been employed as a useful tool to prove bounds on the
generalization error of the model.47,48 The term “algorithm
stability” refers to how much the prediction of the model
changes when the training set is slightly modified. This idea is
consistent with the metrics purposed by Huber of measuring the
robustness of a statistical model.49 That is, (1) the model has a
relatively high accuracy on the predicting targetwhich is also
the most fundamental requirement of modern machine-learning
models, (2) small variations in model hypothesis should only
afford a small deviation in model performance, and (3) large
variations in the model hypothesis should not bring a
catastrophic effect on model performance. By employing the
leave-one-out metrics described in the Methods section, the

standard deviations of model predictions are visualized in the
form of a hex plot and a histogram in Figure 8.
The histograms along the x-axis of these three plots are

identical and indicate the distribution of refractive indices in our
data set. The value on the y-axis represents the standard
deviation of their predictions when one datum in the training set
was omitted (see the Methods section). SVR and GPR show
similar behavior in their standard deviations, where they both
achieved a mean standard deviation of 0.002. This low level of
variation suggests that the expected change of model prediction
is exceedingly mild, approximately 0.1%, when the model
hypothesis is changed slightly, i.e., one data point of the training
set is omitted. The lowest standard-deviation level of the GPR
suggests a success in preventing the model from overfitting by
introducing a noise term, α, to the diagonal of its covariance
matrix. However, the RFR was found to possess a significantly
larger instability on its predictions, approximately 1 order of
magnitude larger than that of the SVR and GPR. This behavior
of the RFRmight be a result of the fact that an algorithm built on
tree-based predictors will have a larger potential of overfitting
when there is an increased amount of noise in the sample.50 The
problem of overfitting and the resultant model instability cannot
be fully eliminated due to the nature of the algorithm itself and
the existence of complex noise in our database.15 In conclusion,
the SVR model with a genetic-algorithm-feature reduction
shows the best predictive accuracy on unseen data and a
promising stability when changing the model hypothesis. Thus,
the SVR was considered to be our best model and set to be the
default model in our prediction toolkit and web application.
Apart from empirical methods, efforts attempting to model

refractive indices via machine-learning methods with a larger
data set have appeared over recent years.51−56 These efforts have
used data from two large databases of glass, INTERGLAD57 and
SciGlass,58 which contain more than 300,000 refractive-index

Figure 8. Top: hexagon plots that describe the joint probability distributions between the refractive-index value and the standard deviation of in-
sample predicted values when the model hypothesis has been slightly changed. Bottom: corresponding histograms and statistics of these standard
deviations. An original copy of this figure with more details, where the x and y scales are not fixed between plots in a line can be found in the Supporting
Information (Figure S4).
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data of glasses. However, these databases are commercial
databases (before 2019 for SciGlass) and they have been
compiled manually.56 The refractive-index data presented in
those studies lie within a range of 1.40−2.75. Compared with
those efforts, the presented study is built on an open-source,
autogenerated database from the scientific literature. Our model
also covers a larger range (1.0−4.0) of refractive indices, and it is
not limited to glassy materials. Although the predictive power of
our model is slightly lower than those who used bigger data
sets,51−56 we have revealed the potential and demonstrated the
prospect of modeling the refractive index using an autogen-
erated database. This approach is intrinsically advantageous
because more materials and properties can be added to our
database by scripting methods. Thereby, the database can
continue to grow, such that we will progressively be able to build
predictive models with even greater detail and predictive power.

3. CONCLUSIONS

The pipeline and methodology presented in this study
demonstrate the ability to fully integrate data that have been
extracted from the scientific literature into machine-learning
pipelines for material-property prediction. By aggregating data
over a large number of independent sources, we were able to
produce a large experimental database of certain material
properties and negate the limitations of relying on small
annotated data sets.
Overall, these case studies demonstrate that we can accurately

reproduce chromatic-dispersion relations using the data mined
from scientific literature and predict modest refractive indices
for inorganic materials, using their elemental features as a basis.
Compared with previous studies, our method could provide
more accurate estimations than empirical calculations and cover
a wider range of materials than computational modeling. Unlike
estimations from empirical relationships,7−9 our model does not
require any other information of materials such as band gaps or
structural information but only elemental properties of their
constituent elements. More importantly, the features automati-
cally selected by the model were shown to provide profound
physical insights according to current theories. The method
exhibited in the study can be generalized in material design and
controllable synthesis of other compounds, and it could further
improve studies concerned with using machine learning to assist
material design.
Looking ahead, we will continue to enhance our material

discovery platform by adding new properties and new
descriptors to the existing database, such as the dielectric
constant and structural descriptors, as well as experimental
parameters that are associated with each measurement. As the
database continues to grow, and more properties are added, we
will be able to build predictive models with even more details
and generalizability, as the optical properties are intrinsically
associated, and experimental parameters may play a significant
role in determining material properties. An ultimate goal of our
study is to predict and experimentally validate new classes of
compounds for optical material applications.

4. METHODS

The methodology for this work can be summarized in five
stages: database creation, data standardization, chromatic-
dispersion-relation reconstruction, refractive-index prediction,
and the development of a web-based application.

4.1. Autogenerated Data Extraction and Database
Creation. The data set used in this work is a database of
refractive indices and dielectric constants for inorganic and
organic compounds. A detailed description of this database and
how it was constructed is given elsewhere.15 Thus, only a brief
summary is provided herein. The data were automatically mined
from text and tables contained within journal articles of the
Royal Society of Chemistry, Elsevier, and Springer publishers,
using a modified version of the state-of-the-art “chemical-aware”
natural-language-processing (NLP) toolkit, ChemDataExtrac-
tor (version 2.0).16 A total number of 186,196 articles were
sourced using the search query “refractive index” from the
academic publishers mentioned above.
The mining procedure applied to these articles used a rule-

based text parser, a semisupervised text parser,59 and a table
parser,16 while the toolkit utilizes machine-learning processes,
such as conditional random field model,60 to identify chemical-
named entities and assign part-of-speech tags to words. This
process yielded a set of 49,076 mutually consistent data records
of 6,721 unique compounds. These data were collated in the
database-management framework, MySQL, containing the
chemical formula of a compound and its associated refractive
index. Each entry was tagged with the digital object identifier
(DOI), the authors, the journal name and the year of
publication, etc., for the purpose of backvalidation. A detailed
description of the format of the data record can be found in the
Supporting Information (Table S1).

4.2. Data Standardization. The raw database generated by
ChemDataExtractor61 is noisy and nonstandardized, as a certain
fraction of records is false positive due to imperfection of the
NLP process. To transfer the database into a usable data set for
large-scale analysis and machine learning, an automated data-
standardizing process was applied to remove improper entries
and standardize the form of data records. This standardization
process contains four stages:

• Duplicate refractive index unification.
• Conversion of inorganic chemical formulae to Hill

notation.62

• Outlier value removal.
• Machine-learning descriptor construction.

It is often the case that one compound possesses multiplicate
refractive indices mined from different sources in the raw
database. A case in point is that SiO2 was found to have 948
records in the database as it is a very popular material in optical
applications. We employed the idea that the likelihood of a
record of being correct is proportional to the frequency that its
value was mentioned in the literature. Thus, for each unique
compound, a kernel density distribution (e.g., Figure 9) was
fitted to the histogram of its refractive-index values, and the peak
value of its kernel density distribution was taken as its unique
refractive index value.
The conversion of inorganic chemical formulae to Hill

notation62 used the National Cancer Institute’s Chemical
Identifier Resolver (CIR) through their Python wrapper,
CIRpy,63 to convert the inorganic chemical names into the
Hill formula.62 Only compounds with valid Hill formulae were
retained in the machine-learning data set. As the refractive index
of a material becomes significantly larger when approaching its
absorption peaks, only compounds with modest refractive
indices between 1 and 4 (accounting for 95.3% of the total data)
were retained in the data set. At last, the set of descriptors used in
machine learning was automatically constructed for each
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compound. The set of descriptors contained purely elemental
properties at the atomic level, which were sourced from
reference tables.17 This information includes, but is not limited
to, intrinsic properties such as atomic weight, electronic
properties such as atomic electronegativity, and thermal
properties such as enthalpy of fusion. A detailed list and legend
of descriptors used in this study can be found in the Supporting
Information (Table S2).
4.3. Reconstructing Chromatic Dispersion Relations.

For gases, if we agree to stay away from resonances, the damping
can be ignored, and the formula for the index of refraction can be
simplified with the binomial expansion,64 1 1 1
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For most substances, the natural frequencies ωi are scattered all
over the spectrum in a rather chaotic fashion. However, for
transparent materials, the nearest significant resonances
typically lie in the ultraviolet, so that ω < ωj. In that case, eq 7
takes the form64
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Or in terms of the wavelength in vacuum (λ = 2πc/ω)
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This equation is known as Cauchy’s formula. In particular,
Cauchy’s formula is only valid for regions of normal dispersion
in the visible wavelength range. In the infrared, the equation
becomes inaccurate, and it cannot represent regions of
anomalous dispersion. The Sellmeier equation is a later
development of Cauchy’s work that handles anomalously
dispersive regions and more accurately models a material’s
refractive index across the ultraviolet, visible, and infrared
spectra. A two-term Sellmeier equation can be generally written
as
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The original data points in our database were fitted to this two-
term Sellmeier equation to provide the reconstruction of the

chromatic dispersion. The fitting was achieved using the
“Nelder−Mead” minimization method provided by the Scikit-
learn library65 together with an L2 regularization on fitting
parameters. All original values in our database can be easily
referenced back to their original articles by their DOIs. This
permits backward validation and investigation of interesting or
spurious values.
GVD is the phenomenon of the group velocity of light in a

transparent medium depending on the optical frequency or
wavelength. It was calculated as
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The Abbe number, VD, is an early measure of the magnitude of
chromatic dispersion introduced by Ernst Abbe
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The denominator is also called the principal dispersion. The
Abbe number depends on the refractive indices at only three
different wavelengths: nF for 486.1 nm, nD for 589.6 nm, and nC
for 656.3 nm.

4.4. Prediction and Feature-Selection Methods. In this
work, we employed three machine-learning models: support-
vector regression (SVR), Gaussian-process regression (GPR),
and random-forest regression (RFR). These models were
chosen among a wide range of machine-learning algorithms
based on their model performances, model generalizability, and
capability of interpretation. All of the prediction methods were
implemented using the Scikit-learn Python library.65

SVR66 presents one of the most robust prediction methods
based on the statistical learning framework or VC theory
proposed by Vapnik and Chervonekis.67 The SVR problem can
be formalized as
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where x xf b( ) Tω= + is the model we want to learn, yi is the
target value, C is the regularization constant, and lϵ is the ϵ-
insensitive loss function. By introducing slack variables ξi and ξî,
the Lagrange multipliers, α, α̂, μ, and μ ̂, and the radial basis
function kernel,K(x,xi), the solution of the Lagrange function of
eq 14 can be expressed as
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GPR68 is a nonparametric model. It does not aim at finding an
optimized weight, ω, to fit the pattern, but it follows a simple
idea of “similar inputs yield similar output”. Since GPR inherits
the mathematical foundation of Bayesian regression, it is able to
provide a complete posterior for its predictions, i.e., not only the
value of prediction but also its confidence interval. GPR assumes
all data targets, i.e., f(x), belong to a Gaussian process

f x GP m x K x x( ) ( ( ), ( , )){ } ∼ ′ (16)

where m(x) is the mean function of a Gaussian process, and
K(x,x′) is the kernel function. In this work, we used the same

Figure 9.Kernel density distribution of records of SiO2 in our database.
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kernel function that was used in SVR. After seeing training
points, the regression problem then becomes solving conditional
probability given the multivariate Gaussian distribution. The
expected mean, μy*, and standard deviation, Σy*, of the predicted
value y* have the following form

K x x K x x I y m x m x

K x x K x x K x x I K x x

( , )( ( , ) ) ( ( )) ( )

( , ) ( , )( ( , ) ) ( , )

y

y

2 1

2 1

μ σ

σ

= * + − + *

Σ = * * − * + *

*
−

*
−

(17)

RFR is a supervised learning algorithm based on decision trees,
which uses ensemble learning method regression. Given a set of
training samples D = {(x1,y1), (x1,y1), ...., (xm,ym)} and a set of
featuresA = {a1, a2, ...., ad}, the generation of the decision tree is a
recursion process: (i) generate the first node, (ii) split the
sample set based on one selected feature a* that will yield the
best splitting result and omit that feature from the feature set,
(iii) generate d branches for each feature ai in the feature set, and
(iv) for each branch, generate a node and perform steps (ii)−
(iv) until the node reaches one of the following cases:

• All samples in the present node belong to the same class;
no need to split again.

• The present feature set is empty, or all samples have the
same value on all features; unable to split.

• The present node has no sample; unable to split.

Based on the decision tree-based estimator69 and bagging,70

random forest71 introduces a random choice of features into the
decision-tree training process. This will enhance the general-
ization ability of the algorithm further from the increasing
diversity between base estimators.
Feature selection and hyperparameter optimization were

employed in the model-development process to find the most
relevant descriptors, reduce model complexity, and improve
model performance. For the feature selection, a genetic
algorithm (GA) was found to outperform traditional methods
such as selecting features based on a Pearson correlation
coefficient or mutual information between the predictor and the
target. A GA is a model-oriented stochastic method for function
optimization based on the mechanics of natural genetics and
biological evolution.72 It does not aim to identify shallow
relationships between descriptors and a target; instead, it lets the
model itself decide a most reasonable set of descriptors. An
initial set of subsets of predictors, called a population, are created
randomly. For each subset in the population, their performance

Figure 10. “F-H” pipeline that was designed to optimize both the feature set and the hyperparameter of the model.
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is measured by a 10-fold cross-validation score. The subsets with
the best performance are combined randomly to produce later
generations that make up the next population, and it is expected
that a better-performed subset will show up. To do so,
individuals are selected and undergo cross-over (mimicking
genetic reproduction) and also are subject to randommutations.
This process is repeated over and over again until convergence is
reached, i.e., the performance of the best subset does not change
with generation.
For the hyperparameter optimization, the grid search method

was used in this work. By setting the range and steps of
hyperparameters, this method will loop through all combina-
tions of hyperparameters within that range and release the best-
performed hyperparameters. However, an obvious issue here is
that the GA was evaluated based on the model tuned by
hyperparameter optimization, and the hyperparameter opti-
mization depends on the feature selected by GA. As the
mathematical approach to this problem is arduous, we thus
proposed the following “feature-hyperparameter” (F-H) pipe-
line (Figure 10) that performs feature selection and hyper-
parameter optimization iteratively to reach an optimum.
The general idea of this workflow is to find an optimized

(feature, model) set by iterating the GA and grid search until the
performance of (feature, model) becomes stable and converged.
The evaluation metric of the model performance was chosen to
be the mean absolute error of a 10-fold cross-validation. In a 10-
fold cross-validation, the data set is split into 10 groups of equal
size after shuffling. Each unique group is sequentially taken as
the test set, while the remaining groups are taken as the training
set. The average value of the 10 resulting mean absolute errors
was used to score themodel. The workflow is described in words
as follows. A GA is first employed in the model with default
hyperparameters, M1, and it generates the first selected feature
set, F1. This is followed by the first grid search that will generate a
newmodel, M2, based on the feature set F1. Now, the percentage
difference, δm1, between the 10-fold cross-validation score of
(M1,F1) and (M2,F1) is calculated and stored in the cache. The
GA is then applied again to the model M2 to generate a new
selected feature set, F2. The percentage difference between the
10-fold cross-validation score of (M2,F1) and (M2,F2), δf1, is then
calculated and stored in the cache. This process is terminated if
(1) the current score in the cache is the highest score and (2) the
change in scores in the past three consecutive iterations is less
than 0.1%.
As an example, the support vector regression (SVR) is

presented and visualized herein as our best model to
demonstrate the model development process. Details of
development results of other models can be found in the
Supporting Information (Section S3). The feature-selection
process and the hyperparameter optimization of the SVR were
performed alternately according to the F-H pipeline to find a
global minimum ofMAE. This minimization process is shown in
Figure 11.
According to the “bias-variance dilemma”,73 a more complex

model usually exhibits lower fitting errors on the training set but
it may perform worse on the test set, i.e., overfitting. In general,
the complexity of a machine-learning model is proportional to
the number of features that it uses. The feature-reduction
process is capable of both reducing the model complexity,
shortening the training time, increasing the model general-
izability, and removing features that are unrelated to targets. It
can also reduce the undesirable effect of “multicollinearity”, i.e.,
a linear correlation between two descriptors in a multiple

regression model, as it may bring a severe change to the
prediction value if the input attribute is slightly changed.
Analysis of the effect of the feature reduction on reducing
multicollinearity can be found in the Supporting Information
Section S4. The genetic algorithm feature selection process of
SVR is visualized in Figure 12.
For SVR, the controllable hyperparameters are C, γ, and ϵ.

Parameter C determines the strength of the L2 regularization,
and it was tuned from 0 to 10 with a step size of 1. Parameter γ is
related to the σ value of the radial basis function (RBF) kernel by
γ = 1/2σ2. If γ is too large, the RBF function will be too narrow,
which may lead to overfitting. γ was tuned from 0 to 0.3 with a
step size of 0.005. Parameter ϵ is a slack variable where the
prediction with a residual less than ϵ was not counted in the loss
function. ϵ was tuned from 0 to 0.05 with a step size of 0.001.
The optimization process was performed in a three-dimensional
space, and to give a better visualization, this process is illustrated
in Figure 13: a plot of the variation of the MAE on two of these
parameters while the remaining one is at its optimized value.
Detailed information about the hyperparameter-optimization
process for the other two models can be found in Section S3 of
the Supporting Information.
It is worth noting that the repeated grid-search method for

hyperparameter optimization is a brute-force method and it
suffers from poor computational scalability. Consider a model
that has n hyperparameters to be optimized and each
hyperparameter has k options to evaluate in the grid search.
The time complexity scales exponentially as O(kn). This
compares with the time complexities in training the employed
machine-learning models as follows: O(m2d) for SVR,74

O(m2dmtrees) for RFR,71 and O(m3) for GPR,68 where m is
the size of the training set, d denotes the number of features, and
mtrees represents the number of trees in RFR, and the time
complexity of a basic genetic algorithm O(gps) with g being the
number of generations, p being the population size, and s being
the size of the individual subset.72 The repeated grid search
method thus becomes the bottleneck within computational
scalability of our algorithm. Accordingly, we recommend using a
hyperparameter optimization approach with better computa-
tional scalability such as random search75 or Bayesian

Figure 11. Variations of the model mean absolute error in the F-H
iteration process. The algorithm first takes a step toward the x-direction
for genetic feature selection and then takes another step toward the y-
direction for hyperparameter optimization, eventually performing these
steps alternately until convergence has been reached.
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optimization76 if the model that is used has more than five
optimized hyperparameters.
4.5. Model Stability EvaluationMetrics. In our study, the

algorithm stability is accessed by measuring the level of variation
in the predictions of the samples in the following leave-one-out
cross-validation:

1. Take the first data point in the data set, x0, as [test point].
2. Take the remaining n − 1 data points as [training set],

where n is the total number of data in the data set.
3. Loop through each data point, xi, in the [training set]:

• Take xi point out of the [training set]. Now, the
training set is of size n − 2.

• Fit the model on the current training set (size n −
2).

• Record the model prediction on the [test point] x0
and reset the model.

• Put xi back to the training set.
4. Calculate the standard deviation of the n − 1 predictions

of x0.
5. Repeat this process for the second, third ... last data points.

At last, we obtain one standard-deviation value for each data
point in our data set. Details of the comparative analysis between
models are discussed in the Results and Discussion section.
4.6. Creating a Web-Based Application for Refractive-

Index Prediction. A web-based platform (https://
opticalmaterials.org) was created to embed the aforementioned

machine-learning capabilities into the utility of our database15 so
that the user can predict refractive indices of any compound of
interest. Five machine-learning methods were employed: linear
regression, ridge regression, support-vector regression, Gaus-
sian-process regression, and random forest regression. The
prediction tool has high flexibility in that the users can customize
the feature-selection process; between GA, KBest, or using any
combination of features they wish; or customize the hyper-
parameter-optimization process; using a grid search or any
hyperparameters that they wish. A periodic table is embedded
onto the website to help the user to quickly pick the combination
of elements of interest. Details of these functionalities can be
found on the documentation page of the website application.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00253.

Detailed descriptions of the format of the database record,
features used for developing the predictive model, and the
developing process of the GPR and the RFR models
(PDF)

Accession Codes
Python and its associated packages can be downloaded free of
charge from https://www.python.org. The web application
associated with this work is available at https://opticalmaterials.

Figure 12. Reductions of the number of selected features and mean absolute errors in a 10-fold cross-validation versus generation in the genetic-
algorithm-feature-selection process.

Figure 13. Hyperparameter optimization in SVR. For each plot, one parameter was kept fixed and the MAE variations on the other two parameters
were visualized on a two-dimensional (2D) contour. The optimized values of these parameters are labeled by a cross on the plot.
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org. This contains all underpinning data, a data analysis user
interface with an associated demo, usage documentation, and
source code references with citing and licensing information.
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