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Introduction

Organisms as evolutionarily distant 
as plants, flies, fish, and mammals 
detect invading pathogens via a panel of 
conserved, enzymatically inactive, single 
membrane-spanning proteins commonly 
known as Toll-like receptors (TLRs),1-3 

owing to their high degree of homology 
with Drosophila melanogaster Toll.4-6 At 
present, 13 distinct TLRs have been 
identified in mice (Tlr1-Tlr13), 10 of 
which are also encoded by the human 
genome (TLR1-TLR10).7,8 Conversely, 
TLR11 is a pseudogene and human cells 
are devoid of Tlr12 and Tlr13 homologs.7-9

TLRs are mainly expressed by 
immune cells including monocytes, 
mature macrophages, mast cells and 
dendritic cells (DCs) as well as by other 
cells involved in the first-line defense 
against infection (e.g., intestinal epithelial 
cells).10,11 TLRs sense indeed a wide panel 
of conserved microbial components that 
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Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-
spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a 
crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in 
anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively 
investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and 
chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration 
(FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl 
lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved 
and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists 
are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of 
TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands 
has evolved since the publication of our first Trial Watch dealing with this topic.
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are cumulatively referred to as “microbe-
associated molecular patterns” (MAMPs), 
including specific nucleic acids and 
peculiar proteo-lipidic structures like 
lipopolysaccharide (LPS).12-28 Moreover, 
several TLRs have been shown to respond 
to so-called “damage-associated molecular 
patterns” (DAMPs), i.e., endogenous 
molecules that are released by stressed, 
dying or dead cells as a signal of danger.29-34 
This is for instance the case of TLR2 and 
TLR4,35-40 both of which are expressed on 
the cell surface (similar to other TLRs that 
recognize proteo-lipidic components),8,41 
as well as of TLR9,42,43 which is mainly 
expressed in the endosomal compartment 
(hence resembling other TLRs that detect 
nucleic acids).8,41

Upon binding to their ligands, most 
TLRs form dimers that recruit the 
adaptor proteins myeloid differentiation 
primary response 88 (MYD88) and toll-
interleukin 1 receptor domain containing 
adaptor protein (TIRAP, also known as 
MAL), hence initiating the assembly of 
plasma-membrane proximal multiprotein 
signaling complex.44,45 Among 
several effects, such a supramolecular 
complex promotes the activation of 
the transcription factor NF-κB, hence 
driving the synthesis of multiple pro-
inflammatory cytokines.44,45 At odds with 
other TLRs, all of which employ MYD88 
as an obligate or facultative adaptor, TLR3 
dimers trigger a MYD88-independent 
signaling pathway that critically relies 
on toll-like receptor adaptor molecule 1 
(TICAM1, also known as TRIF) and does 
not trigger NF-κB activation.46-48 Rather, 
TICAM1-transduced signals activate 
interferon regulatory factor 7 (IRF7),49,50 
hence regulating the expression of type 
I interferons (IFNs) and other IFN-
responsive mediators.46-48 Of note, Ticam1–

/– mice exhibit defects in both TLR3 and 
TLR4 signaling,47 suggesting that TLR4 
can also employ TICAM1 as an adaptor, 
at least under some circumstances. 
Moreover, MYD88 and TIRAP have 
been shown to actively inhibit TLR3 
signaling,51-53 lending further support to 
the notion that the functional profile of 
TLR3 is rather dissimilar from that of 
other members of the TLR family.8,41,54-56

Reflecting their ligand-binding 
profile, TLRs are not only crucial for the 

initiation of an innate immune response 
against bacterial and viral pathogens,7,8 
but also participate in the organismal 
reaction to inflammatory conditions 
that usually do not involve a microbial 
component, including a wide array of 
neoplasms.43,57,58 In line with this notion, 
single nucleotide polymorphisms (SNPs) 
that alter the functionality of multiple 
TLRs have been shown to influence the 
natural progression of several tumors 
of non-viral etiology.59-77 Of note, TLR 
signaling is impaired in many neoplasms 
of viral etiology, including hepatitis B 
virus-associated hepatocellular carcinoma, 
human papillomavirus (HPV)-associated 
cervical carcinoma and Merkel cell 
carcinoma.78 At least in part, this reflects 
the ability of several viruses to avoid the 
activation of TLR9 by their own nucleic 
acids.78

Some TLRs have also been shown to 
play a critical role in the (re)activation 
of tumor-specific immune responses 
by a diverse array of chemo-, radio- and 
immunotherapeutic interventions.79-85 
Accordingly, SNPs that reduce the 
activity of various TLRs have been 
shown to negatively impact the response 
of cancer patients to therapy in multiple 
scenarios.83,86-88 At least in part, this 
stems from the key role that some TLRs 
play in the perception of cell death 
as immunogenic.79,80 Indeed, cancer 
cells subjected to specific therapeutic 
regimens, including irradiation, some 
forms of photodynamic therapy as well 
as doxorubicin-, mitoxantrone-, and 
oxaliplatin-based chemotherapy, die 
while emitting a spatiotemporally defined 
combination of DAMPs that renders them 
capable of triggering a therapeutically 
relevant adaptive immune response.79,80

Three TLR agonists are currently 
licensed by the US Food and Drug 
Administration and equivalent regulatory 
agencies for use in cancer patients. 
First, the so-called bacillus Calmette-
Guérin (BCG): an attenuated variant of 
Mycobacterium bovis originally conceived 
as an anti-tuberculosis vaccine that is 
nowadays approved as a standalone 
immunotherapeutic intervention in 
patients with non-invasive transitional cell 
carcinoma of the bladder.89 BCG appears 
to operate as a mixed TLR2/TLR4 

agonist.90,91 Second, monophosphoryl 
lipid A (MPL): a derivative of Salmonella 
minnesota LPS that is currently employed 
as adjuvant in Cervarix®, a vaccine 
specific for HPV-16 and -18.92,93 MPL 
resembles BCG in its ability to trigger 
both TLR2 and TLR4 signaling.14 
Third, imiquimod: an imidazoquinoline 
derivative and guanosine analog that is 
nowadays used for the topical therapy 
of actinic keratosis, superficial basal cell 
carcinoma and external genital/perianal 
warts (condylomata acuminata).89 At 
odds with BCG and MPL, imiquimod 
(formerly known as R837) mostly operates 
through TLR7.94-96 This said, Aldara® 
(imiquimod 5% cream as commercialized 
by 3M Pharmaceuticals) has been 
shown to mediate TLR7-independent 
immunostimulatory effects, perhaps 
owing to the pro-inflammatory activity 
of isostearic acid.97,98 Of note, picibanil – 
a lyophilized preparation of Streptococcus 
pyogenes that activates TLR2 and TLR4 
– is not licensed by the US FDA but has 
been approved for use in cancer patients 
by the Japanese Ministry of Health and 
Welfare as early as in 1975.57,99

Along the lines of our monthly Trial 
Watch series,100,101 here we summarize 
recent key discoveries on the biological 
activity of TLRs and discuss the latest 
developments on the use of natural and 
synthetic TLR agonists as therapeutic 
agents in cancer patients.

Literature Update

To the best of our knowledge, the 
results of no more than 6 studies assessing 
the clinical activity of TLR agonists 
in oncological indications have been 
published in the peer-reviewed scientific 
literature since the submission of our latest 
Trial Watch dealing with this topic (May 
2013)102 (source http://www.ncbi.nlm.
nih.gov/pubmed).

Belani and colleagues investigated 
the ability of agatolimod (CpG-
7909, PF-3512676, Promune®), an 
unmethylated CpG oligodeoxynucleotide 
that activates TLR9,103 to improve the 
therapeutic profile of the FDA-approved 
epidermal growth factor receptor (EGFR) 
inhibitor erlotinib104 in patients with 
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advanced recurrent EGFR+ non-small cell 
lung carcinoma (NSCLC). In this Phase 
II clinical trial, patients were randomized 
1:1 to receive 150 mg erlotinib per day, 
alone or combined with subcutaneous 
agatolimod (0.20 mg/kg once weekly). 
The study was terminated upon the 
enrollment of 43 patients as an unplanned 
interim analysis suggested that agatolimod 
was unlikely to significantly ameliorate 
the therapeutic activity of erlotinib. 
Median progression free-survival (PFS) 
in patients receiving erlotinib alone or 
erlotinib plus agatolimod was 1.7 and 
1.6 mo, respectively (HR, 1.00; 95% CI, 
0.5–2.0; P = 0.9335). The incidence of 
Grade 3–4 toxicities was similar in both 
study arms, the most adverse events being 
diarrhea, fatigue, decreased appetite and 
rash. Thus, agatolimod appears to be 
unable to improve PFS among EGFR+ 
NSCLC patients treated with erlotinib.105

Witzig and collaborators tested 
whether agatolimod would potentiate the 
therapeutic profile of 111In-ibritumomab 
tiuxetan and 90Y-ibritumomab tiuxetan 
(two FDA-approved, radionuclide-
conjugated monoclonal antibodies 
targeting CD20),106,107 in patients with 
relapsed B-cell non-Hodgkin lymphoma 
(NHL). Thirty patients affected by 
relapsing, biopsy-proven CD20+ B-cell 
NHL and eligible were enrolled. These 
subjects received 250 mg/m2 rituximab 
(an FDA-approved, naked monoclonal 
antibody specific for CD20)108,109 on days 
1, 8 and 15; 111In-ibritumomab tiuxetan 
on days 1 and 8; agatolimod (0.08, 0.16, 
0.32 or 0.48 mg/kg) on days 6, 13, 20, 
27; and 90Y-ibritumomab tiuxetan on day 
15, all as intravenous injections. No dose-
limiting toxicity was associated with the 
administration of agatolimod. Moreover, 
the authors observed an overall response 
rate (ORR) of 93% (28/30), including 
63% (19/30) complete remissions, a 
median PFS of 42.7 mo and a median 
duration of response of 35 mo.110 These 
encouraging results warrant further 
investigation in large, randomized clinical 
studies.

Kruit and coworkers compared the 
immunostimulatory activity of two distinct 
preparations that trigger TLR signaling, 
namely AS02B and AS15, in 75 Stage III 
or IV M1a melanoma patients vaccinated 

with full-length melanoma antigen 
family A3 (MAGEA3). AS02B includes 
MPL, QS-21 (a water soluble saponin 
extracted from the South American tree 
Quillaja saponaria Molina),111 and SB62 
(a commercial oil-in-water emulsion), 
hence activating TLR2 and TLR4.112-114 
Conversely, AS15 contains MPL, QS-21 
and agatolimod, thus operating as a 
mixed TLR2/TLR4/TLR9 agonist.11,102 
The co-administration of recombinant 
MAGEA3 with AS02B and AS15 was 
equally well tolerated. However, the use 
of AS15 was associated with 4 objective 
responses, a 6-mo PFS rate of 25%, and 
a median overall survival (OS) of 33 
mo, while that of AS02B resulted in 1 
objective response, a 6-mo PFS rate of 
14% and an OS of 19.9 mo. All patients 
developed anti-MAGEA3 antibodies, 
yet their levels were 3-fold higher in the 
AS15 arm, corroborating the superior 
immunostimulatory and clinical activity 
of this preparation.115,116 Interestingly, the 
authors also identified a 84-gene signature 
associated with clinical benefit among 
AS15-treated and less so AS02B-treated 
patients. The same signature, including 
several immunologically relevant genes 
(e.g., IFNγ-related genes, chemokine-
coding genes), turned out to predict the 
likelihood of resected NSCLC patients 
to respond to full-length MAGEA3 plus 
AS15.117

Hartmann et  al. conducted a 
prospective open-label Phase II trial to test 
the therapeutic profile of Hiltonol™, a 
particular formulation of polyriboinosinic 
polyribocytidylic acid (polyI:C, also 
known as Ampligen™) that includes 
carboxymethylcellulose and poly-l-lysine 
as stabilizing agents,118,119 in pediatric 
patients with newly diagnosed or recurrent 
brain tumors. In this setting, 47 children 
affected by variety of brain neoplasms were 
treated with Hiltonol™ as a standalone 
therapeutic intervention. The authors 
observed no dose-limiting toxicities. 
Moreover, 3 out of 12 patients with 
progressive high-grade glioma manifested 
an objective response to treatment, while 
2 out of 4 patient affected by progressive 
low-grade glioma (LGG) experienced 
disease stabilization for 18–24 mo. These 
results prompted the authors to initiate a 
second study focusing on LGG patients. 

In this follow-up Phase II clinical trial, 5 
out of 10 patients responded to treatment, 
2 of which exhibiting stable disease for 
over 18 mo.120 These data indicate that 
Hiltonol™ may constitute a promising 
therapeutic option for pediatric LGG 
patients.

Dhodapkar and colleagues tested 
the safety, immunogenicity and clinical 
activity of CDX-1401, a DC-based 
vaccine targeting the tumor-associated 
antigen NY-ESO-1,121,122 adjuvanted 
with Hiltonol™ and resiquimod, an 
imiquimod-like molecule formerly called 
R848 that operates as a mixed TLR7/
TLR8 agonist.96,123-125 This Phase I 
clinical trial enrolled a total of 45 patients 
with advanced malignancies refractory to 
available therapies. CDX-1401 promoted 
NY-ESO-1-specific immune responses 
in all patients bearing NY-ESO-1+ 
tumors,126 and the treatment was not 
associated with dose-limiting or Grade 
3–4 toxicities. Moreover, 13 patients 
experienced disease stabilization (median 
duration: 6.7 mo) and 2 subjects had 
objective tumor regression (shrinkage of 
the target lesion of approximately 20%). 
A similar response was achieved by 6 out 
of 8 patients who also received immune 
checkpoint-blocking antibodies127 within 
3 mo after vaccination. These results 
suggest that Hiltonol™ and resiquimod 
may adequately support the immunogenic 
potential of vaccines that target DCs in 
vivo, such as CDX-1401.

Paleja and collaborators investigated 
the expression levels of various TLRs on 
the peripheral blood lymphocytes of oral 
cancer patients, as well as the ability of 
these cells to respond to various TLR 
ligands. The TLR expression profile was 
altered in oral cancer patients as compared 
with healthy individuals. In particular, 
unconventional T-cell subsets including 
γδ T cells and natural killer (NK) T 
cells were found to express abnormally 
high levels of several TLRs. Moreover, 
the peripheral blood lymphocytes of oral 
cancer patients failed to respond normally 
to a panel of TLR agonists in terms of (1) 
TLR signaling, (2) proliferative burst, 
(3) IFNγ secretion, (4) upregulation 
of activation markers (e.g., CD25 and 
CD69), and (5) cytotoxic activity.128 These 
findings suggest that a deregulation of the 
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TLR system may at least in part contribute 
to the systemic immunosuppression that 
often characterizes malignant conditions.

A large body of preclinical literature 
on the use of TLR agonists as 
immunostimulatory agents against cancer 
has been published during the last 13 
mo (source http://www.ncbi.nlm.nih.
gov/pubmed). Among all these studies, 
we have found of particular interest the 
work of (1) Newton and collaborators, 
who demonstrated that a monoclonal 
antibody specific for IL-10 receptor α 
(IL10Rα) consistently improves the 
immunostimulatory and therapeutic 
potential of BCG, most likely as it supports 
BCG-induced T

H
1 responses;129,130 (2) 

Perret and colleagues, who reported 
that CpG oligodeoxynucleotides and 
Ampligen, but not imiquimod and 
Quil-A® (a saponin-type adjuvant),131,132 
are able to promote the accumulation of 
effector, rather than regulatory, T cells 
upon the subcutaneous administration of 
peptide-based anticancer vaccines, hence 
stimulating a therapeutically relevant 
T

H
1 immune response against established 

neoplasms;133 (3) Ali and coworkers, 
who not only identified the combination 
of granulocyte macrophage colony-
stimulating factor (GM-CSF) and CpG 
oligodeoxynucleotides or Ampligen as 
the most efficient adjuvant for polymeric 
anticancer vaccines (in both prophylactic 
and therapeutic settings), but also 
elucidated the critical role played by basic 
leucine zipper transcription factor, ATF-
like 3 (BATF3)-dependent DCs in this 
scenario;134 (4) Yamazaki et al., who found 
that a chemically defined TLR4 agonist, 
dendrophilin, can be used to restore 
the immunogenic potential of tumors 
lacking the endogenous TLR4 ligand 
high mobility group box 1 (HMGB1);135 
(5) Tai and colleagues, who proved 
that the perioperative administration of 
Ampligen™ can limit the loss of NK cell 
functions that is generally associated with 
tumor resection, hence exerting a robust 
anti-metastatic effect;136 and (6) Huang 
and collaborators, who showed that 
imiquimod can promote aerobic glycolysis 
in cancer cells in a TLR7- and TLR8-
independent fashion, a protective response 
centered around the upregulation of 
hypoxia-inducible factor 1α (HIF1α).137 

In this setting, imiquimod and multiple 
pharmacological interventions that 
inhibit the glycolytic flux, including 
2-deoxyglucose and 17-N-allylamino-17-
demethoxygeldanamycin,138 were found to 
exert synergistic antitumor effects, in vitro 
and in vivo.137 These data indicate that the 
therapeutic activity of imiquimod may 
involve a cancer cell-intrinsic component.

Update on Ongoing Clinical Trials

When this Trial Watch was being 
prepared (May 2014), official sources listed 
no less than 14 clinical trials launched 
after May 1st, 2013 that would assess 
the immunostimulatory and therapeutic 
profile of TLR agonists in cancer patients 
(source http://www.clinicaltrials.gov). 
Seven of these studies involve FDA-
approved molecules, i.e., imiquimod 
(6 trials) and BCG (1 trial), while the 
other 7 aim at investigating the safety 
and efficacy of hitherto experimental 
TLR ligands, i.e., Hiltonol™ (5 trials), 
the DNA-based double stem-loop 
immunomodulator139 MGN1703 (1 trial), 
and glucopyranosyl lipid adjuvant (GLA), 
a synthetic TLR4 agonist that – when 
formulated as a stable emulsion – promotes 
potent poly-functional T

H
1 responses 

upon intradermal administration140-142 
(Table 1).

In particular, imiquimod is being tested 
(1) as a standalone topical intervention, 
in HIV+ patients with high-grade anal 
squamous skin lesions (NCT02059499); 
(2) in combination with ProCervix, a 
vaccine targeting HPV-16 and -18 (source 
http : //w w w.genticel.com/products /
procervix/),143-145 in HPV+ women who 
have not yet developed high-grade cervical 
lesions (NCT01957878); (3) together 
with GM-CSF as adjuvant to a synthetic 
peptide-based vaccine (SL-701),146 in 
subjects with recurrent glioblastoma 
multiforme (NCT02078648); (4) in 
combination with cyclophosphamide (an 
immunogenic alkylating agent)147,148 and 
GM-CSF to support an autophagosome-
based vaccine derived from allogeneic 
cancer cells,149-151 administered to 
NSCLC patients (NCT01909752); 
and (5) as adjuvant to DCs loaded ex 
vivo with autologous cancer cell lysates, 

in children with high-grade brain 
tumors (NCT01902771). On a slightly 
different note, NCT01926496 has 
recently been initiated to prospectively 
evaluate the risk of subjects with actinic 
keratosis treated with Aldara® or ingenol 
mebutate (an FDA-approved substance 
commercialized as 0.015% or 0.05% 
cream under the trade name Picato®),152-154 
to develop squamous cell carcinoma 
(NCT01926496). In addition, BCG is 
currently being evaluated as a standalone 
therapeutic intervention or combined with 
a viral vector encoding mucin 1 (MUC1), 
carcinoembryonic antigen (CEA) and 
three immunostimulatory molecules, 
i.e., CD80 (also known as B7–1), CD58 
(also known as LFA-3) and intercellular 
adhesion molecule 1 (ICAM1),155-159 
in adults with high-grade non-invasive 
bladder carcinoma who failed at least 1 
course of BCG (NCT02015104).

The clinical profile of Hiltonol™ is 
currently being assessed (1) in subjects 
affected by solid tumors easily accessible 
by needle, receiving Hiltonol™ as a 
standalone therapeutic intervention 
i.t. (NCT01984892); (2) in melanoma 
patients, who receive Hiltonol™ to 
improve the immunogenicity of a 
personalized, neoantigen-targeting 
peptide-based vaccine (NCT01970358); 
(3) in individuals  with glioblastoma, who 
are treated with Hiltonol™ as adjuvant to 
a multipeptide-based vaccine (IMA950)160 
given in combination with temozolomide-
based radiochemotherapy82,161 
(NCT01920191); (4) in cutaneous T-cell 
lymphoma patients, receiving Hiltonol™ 
to boost the therapeutic potential of 
radiation therapy coupled to the histone 
deacetylase inhibitor romidepsin162-165 
(NCT02061449); and (5) in B-cell 
lymphoma patients, who are concurrently 
treated with recombinant human FLT3 
ligand (FLT3L, also known as CDX-
301)166-168 i.t. plus low-dose radiation 
therapy in the attempt to recruit DCs 
to neoplastic lesions and thus promote 
clinically relevant anticancer immune 
responses (NCT01976585). MGN1703 is 
under investigation as a standalone agent 
for the maintenance of metastatic colorectal 
carcinoma patients experiencing objective 
responses in the course of induction 
chemotherapy (NCT02077868). Finally, 
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GLA in stable emulsion is being tested as 
a standalone therapeutic intervention in 
biopsy-confirmed Merkel cell carcinoma 
patients who bear at least one injectable 
lesion (NCT02035657).

The following clinical studies discussed 
in our previous Trial Watches dealing 
with this topic10,11,102 have changed status 
during the past 13 mo: NCT00003715 
and NCT01808950, which are now 
listed as “Terminated”; NCT01264731, 
which nowadays appears as “Suspended”; 
NCT00694551 and NCT00899574, 
which are listed as “Active, not recruiting” 
but are associated with preliminary results; 
as well as NCT01410968, NCT00923910, 
and NCT01171469, which are reported 
as “Completed” (source http://www.
clinicaltrials.gov).

The reasons for the termination of 
NCT00003715 and NCT01808950 

are not specified, while the temporary 
suspension of NCT01264731 appears to 
relate to the study staff being on medical 
leave. NCT00694551 aimed at evaluating 
the clinical profile of a peptide-based 
vaccine adjuvanted with Hiltonol™ in 
prostate carcinoma patients. At present, 
safety data referring to n = 29 patients 
treated with three different doses of the 
vaccine have been released, demonstrating 
that this regimen is very well tolerated. 
Efficacy data on NCT00694551 have not 
been disclosed yet. NCT00899574 was 
intended to assess the efficacy of Aldara® 
in breast cancer patients with chest 
wall recurrence or skin metastases. No 
serious adverse effects were documented. 
Moreover, the authors report an ORR of 
20% (95% CI: 3–56) and an amelioration 
of pain or pruritus in 9 out of 10 patients 
analyzed. To the best of our knowledge, the 

results of NCT01410968, NCT00923910, 
and NCT01171469 have not been released 
yet (source http://www.clinicaltrials.gov).

Concluding Remarks

In spite of their robust and well-
characterized immunostimulatory 
potential, the attention attracted by 
currently available TLR agonists for 
use as therapeutic agents in oncological 
indications is stably decreasing. One year 
ago, in the latest Trial Watch dealing 
with TLR ligands,102 we speculated that 
such a trend may reflect, at least in part, 
the limited availability of clinical-grade 
reagents. Several groups were indeed 
refocusing their efforts on alternative 
sources of TLR agonists, including 
commonly employed prophylactic 

Table 1. Clinical trials recently launched to evaluate the safety and efficacy of TLR agonists in cancer patients.*

Agent Indication(s) Status Phase Route Notes Ref.

BCG Bladder cancer Recruiting II Intravesical
Combined with a CEA- and

MUC1-targeting vaccine
NCT02015104

GLA
Merkel cell 
carcinoma

Recruiting I/II Intratumoral As single agent NCT02035657

Imiquimod

Actinic keratosis Recruiting IV Topical As single agent NCT01926496

Anal 
intraepithelial 

neoplasia

Not yet 
recruiting

III Anal As single agent NCT02059499

Glioblastoma
Not yet 

recruiting
I/II Topical

Combined with GM-CSF and a synthetic 
peptide-based vaccine (SL-701)

NCT01957878

Low-grade HPV+ 
cervical lesions

Recruiting II Topical
Combined with a HPV-16-

and HPV-18-targeting vaccine
NCT02078648

NSCLC Recruiting II Topical
Combined with GM-CSF, cyclophosphamide 

and an autophagosome-derived vaccine
NCT01909752

Pediatric brain 
tumors

Recruiting I Topical
Combined with DCs loaded ex vivo
with autologous cancer cell lysates

NCT01902771

Hiltonol™

B-cell lymphoma Recruiting I/II Intratumoral Combined with recombinant human FLT3L NCT01976585

Cutaneous T-cell 
lymphoma

Recruiting I Subcutaneous
Combined with radiation
therapy and romidepsin

NCT02061449

Glioblastoma Recruiting I/II Intramuscular
Combined with multipeptide vaccine, 
radiation therapy and temozolomide

NCT01920191

Melanoma Recruiting I n.a.
Combined with a personalized

peptide-based vaccine
NCT01970358

Solid tumors Recruiting II
Intratumoral

Intramuscular
As single agent NCT01984892

MGN1703 Metastatic CRC
Not yet 

recruiting
III n.a. As single agent NCT02077868

Abbreviations: BCG, bacillus Calmette-Guérin; CEA, carcinoembryonic antigen; CRC, colorectal carcinoma; DC, dendritic cell; GLA, glucopyranosyl lipid 
adjuvant; GM-CSF, granulocyte macrophage colony-stimulating factor; HPV, human papilloma virus; FLT3L, FLT3 ligand; n.a., not available; MUC1, mucin 1; 
NSCLC, non-small cell lung carcinoma. *Between 2013, May 1st and the date of submission.
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vaccines.169,170 A few chemically defined 
TLR agonists have recently been shown 
to exert therapeutic effects in preclinical 
tumor models, including dendrophilin,135 
yet the clinical interest in these agents 
appears to remain low. It is therefore 
tempting to speculate that oncologists 
may now be prioritizing other, relatively 
more specific, immunostimulatory 
interventions, such as immune 
checkpoint blockers. Several molecules 
that block immunosuppressive receptors 
expressed on activated immune cells, 
including the cytotoxic T lymphocyte-
assocaited protein 4 (CTLA4)-specific 
antibody ipilimumab171-173 and the 
programmed cell death 1 (PDCD1)-
targeting antibody nivolumab,174 have 
been shown to significantly boost the 
immunostimulatory potential of TLR 
agonists.175-177 In this scenario, it will 
be interesting to see not only whether 
TLR agonists and checkpoint-blocking 
antibodies can be combined in a safe 
and efficient manner in patients, but also 
whether the latter might one day replace 
the former as standalone adjuvants to 
active immunotherapeutic interventions.
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