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Abstract

Background: Women with a family history of breast cancer face considerable uncertainty about whether to pursue
standard screening, intensive screening, or prophylactic surgery. Accurate and individualized risk-estimation
approaches may help these women make more informed decisions. Although highly penetrant genetic variants
have been associated with familial breast cancer (FBC) risk, many individuals do not carry these variants, and many
carriers never develop breast cancer. Common risk variants have a relatively modest effect on risk and show limited
potential for predicting FBC development. As an alternative, we hypothesized that additional genomic data types,
such as gene-expression levels, which can reflect genetic and epigenetic variation, could contribute to classifying a
person’s risk status. Specifically, we aimed to identify common patterns in gene-expression levels across individuals
who develop FBC.

Methods: We profiled peripheral blood mononuclear cells from women with a family history of breast cancer
(with or without a germline BRCA1/2 variant) and from controls. We used the support vector machines algorithm
to differentiate between patients who developed FBC and those who did not. Our study used two independent
datasets, a training set of 124 women from Utah (USA) and an external validation (test) set from Ontario (Canada)
of 73 women (197 total). We controlled for expression variation associated with clinical, demographic, and
treatment variables as well as lymphocyte markers.

Results: Our multigene biomarker provided accurate, individual-level estimates of FBC occurrence for the Utah
cohort (AUC = 0.76 [0.67-84]) . Even at their lower confidence bounds, these accuracy estimates meet or exceed
estimates from alternative approaches. Our Ontario cohort resulted in similarly high levels of accuracy (AUC = 0.73
[0.59-0.86]), thus providing external validation of our findings. Individuals deemed to have “high” risk by our model
would have an estimated 2.4 times greater odds of developing familial breast cancer than individuals deemed to
have “low” risk.

Conclusions: Together, these findings suggest that gene-expression levels in peripheral blood cells reflect genomic
variation associated with breast cancer risk and that such data have potential to be used as a non-invasive
biomarker for familial breast cancer risk.
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Background
Current clinical standards define a woman's breast can-
cer risk based on population averages. For individuals
deemed to have a lifetime risk over 20 %, based primarily
on family history, a strict surveillance regimen is recom-
mended; this regimen typically includes twice-yearly
clinical breast exams, yearly mammograms, and yearly
breast MRI. For the five to ten percent of women who have
a strong inherited predisposition to breast cancer [1], more
aggressive prevention strategies—such as chemoprevention
or prophylactic mastectomy/oophorectomy—may be rec-
ommended in addition to or instead of surveillance. How-
ever, many women with a family history of breast cancer,
including many who carry BRCA1 or BRCA2 mutations,
never develop breast cancer. Indeed, 40-50 % of women
with a BRCA1 or BRCA2 mutation do not develop breast
cancer by 70 years of age [2]. This situation leads to uncer-
tainty for both patient and physician regarding whether to
pursue these aggressive prevention strategies, which can
cause health and lifestyle effects that many women consider
to be severe. For example, side effects of chemoprevention
can include osteoporosis, blood clots, endometrial cancer,
hot flushes, joint pain, and depression [3, 4]. Thus there is a
critical need to accurately differentiate individuals from
high-risk families who will develop breast cancer from
those who will not develop breast cancer. Screening and
prevention resources could then be focused on those
women who carry the highest risk for familial breast cancer
(FBC), while women with a lower risk could be spared the
risks and inconveniences of prophylaxis or intensive screen-
ing. Optimally, such an approach would be non-invasive
and provide estimates of risk that are tailored to each
individual.
One existing method for estimating breast-cancer risk is

based on personal health history, family health history, and
demographic variables [5]; however, this approach is de-
signed as a population-wide screening tool—not specifically
for individuals from high-risk families—and the predictive
accuracy of this method is limited [6]. Others have exam-
ined the potential to predict breast-cancer risk based on
genetic or epigenetic variation, and these approaches have
improved prediction accuracy [7–9]. We evaluated an alter-
native approach, hypothesizing that by quantifying gene-
expression activity in peripheral-blood cells, we would be
able to identify patterns that indicate a woman’s risk for
developing breast cancer, as gene-expression profiling of
normal cells has previously provided information about
disease development [10–13]. This approach aims to
overcome limitations of using genetic variants to predict
risk. For example, due to genetic heterogeneity, individuals
who develop breast cancer differ considerably in the risk
variants that they carry, and most such variants are believed
to have a subtle effect on risk. Gene-expression levels re-
flect biological activity within cells and serve as proxies for

genetic (and epigenetic) variation within normal cells as
well as tumor cells [10, 14, 15]. Indeed, it has been shown
that global expression levels in lymphoblastoid cells reflect
a person’s BRCA1 or BRCA2 mutation status, even when
the mutations lie at different genomic loci within these
genes [16]. Aberrant expression resulting from BRCA1 and
BRCA2 mutations may not be reflected phenotypically in
peripheral-blood cells; however expression levels in these
cells may indicate a propensity for normal cellular activity
within breast cells to become disrupted. Gene-expression
levels in breast tumors have been shown to reflect func-
tional germline variation. For example, expression patterns
in tumors from patients with germline BRCA1 and BRCA2
variants exhibit distinctive patterns compared to tumors
from individuals who do not carry these mutations
[14–26]. Accordingly, we hypothesized that gene-
expression-levels in normal cells should be similar across
many women who develop FBC and thus indicative of dis-
ease risk, even though the underlying genetic and epigen-
etic variation may vary considerably across these women.
For this study, we examined the potential to use

peripheral-blood gene-expression levels to identify
women who possess the highest risk for developing
FBC. We obtained peripheral blood mononuclear cells
(PBMCs) for two independent patient cohorts and eval-
uated how well this gene-expression data could be used
to differentiate between women who have developed
FBC and women who have not, independent of BRCA1/
BRCA2 mutation status. Our findings indicate that this
approach has potential to provide women from breast
cancer families with individualized estimates of breast
cancer risk and therefore to guide patient decisions re-
garding medical management.

Methods
Description of patient cohorts and data sets and consent
to publish
Utah
We recruited participants via the High Risk Breast
Cancer Clinic at the Huntsman Cancer Institute (Utah,
USA) under Institutional Review Board approved pro-
tocols (#00022886 and #00004965). We have obtained
consent from these patients to report individual patient
data. We collected blood samples after breast cancer oc-
currence and after participants had been in remission
for at least six months. In general, we considered partici-
pants to have a family history of breast cancer if two or
more first-degree relatives (mother, sister, daughter) had
been diagnosed with breast cancer. Among eligible par-
ticipants who met these criteria, we included all those
from whom we could obtain fresh mononuclear cells at
the time of the study. Among 83 individuals in the Utah
cohort who had a family history of breast cancer, 39 had
been diagnosed with breast cancer, whereas 44 women
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had never been diagnosed with breast cancer and were
at least 55 years of age (Table 1). Of the participants
with a breast cancer family history, 38 carried a known
pathogenic mutation (identified via commercial testing)
in BRCA1 or BRCA2. We excluded women who carried
a BRCA1/BRCA2 mutation but lacked a family history
of breast cancer. To ensure that our findings were spe-
cific to familial breast cancer, we recruited 41 individuals
with no known family history of breast cancer; 22 of
these women had developed sporadic (non-familial)
breast cancer. We matched the patients by age. The
median age of blood draw was consistent across all
patient subgroups in the Utah cohort (Table 2). We
used an analysis-of-variance test to ensure that the
difference in age across the subgroups was not statis-
tically significant (p = 0.064). In addition, because our
goal was to demonstrate an ability to differentiate be-
tween individuals who developed familial breast can-
cer and individuals who did not, we also verified that
there was not a significant difference in ages between
these two groups (t-test p-value = 0.28).

Ontario
We obtained de-identified samples via the Ontario,
Canada site of the Breast Cancer Family Registry
(BCFR). We also obtained consent from these patients
to report individual patient data. This cohort included
28 samples from women with a family history of breast
cancer who had developed breast cancer, 32 from
women who had a family history of breast cancer but
had not developed breast cancer, and 13 from women
with no family history of breast cancer, 8 of whom had
developed breast cancer. Of these 73 women, approxi-
mately half were post-menopausal. We obtained, iso-
lated, and stored blood samples for these women when
they first enrolled in the BCFR.

Genomic data acquisition and deposition
We used the RNeasy Kit (Qiagen, Hilden, Germany) to
isolate PBMCs from whole blood in cell-preparation
tubes following manufacturer (Becton-Dickinson) proto-
col. Within two hours, we extracted RNA using the
RiboPure RNA Isolation Kit, and hybridized the RNA to
Affymetrix Genechip Human Exon 1.0 ST microarrays.
Hybridization and scanning were performed at Duke
University (for Utah samples and for half of the Ontario
samples) and at Boston University School of Medicine
(for the remaining Ontario samples).

Microarray data normalization
To correct for array- and probe-level background noise,
we applied our Single-channel Array Normalization
algorithm [27] to the Affymetrix microarray data. We
subsequently used the PLANdbAffy database [28] to
limit our analysis to microarray probes that were classi-
fied as high quality ("green") and that did not map to a
single-nucleotide variant. For each microarray, we sum-
marized the remaining 2,201,005 probes into gene-level
values using a 10 % trimmed mean. In addition, we
excluded genes that contained fewer than five probes.
Because the microarrays had been processed at dif-

ferent facilities and at different times, we used the
ComBat tool [29] to adjust for confounding effects that
might arise due to these differences. We used cohort
and processing facility to define the batches. We applied
ComBat two separate times: 1) to the Utah samples and
Ontario samples that were processed at Duke University
and 2) to the same Utah samples (processed at Duke
University) and to the Ontario samples that were proc-
essed at Boston University. Strong batch effects existed
before adjustment, but after ComBat adjustment, no
clear pattern remained between batches and gene-
expression levels (Additional file 1: Figure S1). We have
deposited the raw and processed data files in Gene
Expression Omnibus (GSE47862).

Table 1 Summary of patient subgroups in the Utah and
Ontario populations

Category Utah Ontario

Family history, BRCA1/2, Cancer 16 11

Family history, BRCAX, Cancer 23 17

Family history, BRCA1/2, No Cancer 18 14

Family history, BRCAX, No Cancer 26 18

No family history, Cancer 22 8

No family history, No Cancer 19 5

Total 124 73

Patients fell into one of six groups, depending on whether 1) they had a
family history of breast cancer, 2) had been diagnosed with breast cancer
previously, or 3) were known to carry a pathogenic variant in BRCA1 or BRCA2.
The number of patients in each group is listed for each cohort

Table 2 Summary of ages at which blood samples were acquired

Description Minimum Median Maximum

Family history, BRCA1/2, Cancer 45 59.0 77

Family history, BRCAX, Cancer 56 58.5 78

Family history, BRCA1/2, No Cancer 46 60.0 78

Family history, BRCAX, No Cancer 55 63.0 83

No family history, Cancer 53 65.5 79

No family history, No Cancer 51 58.0 86

For participants within each group, this table indicates the minimum, average,
and maximum age at which blood samples were drawn. These data represent
117 participants from the Utah cohort. The remaining 8 Utah participants were
at least 55 years old; however, it was not feasible to collect their exact ages in
retrospect. The median age at which blood samples were acquired was
consistent across the groups (p = 0.064)
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Gene-expression data filtering
To identify blood markers that could influence mRNA
expression but that may cause confounding effects, we
used a total lymphocyte enumeration test to evaluate the
blood cells. This test provided total counts of CD4-
positive T cells, CD8-positive T-cells, CD3-positive T-cells,
B-cells and NK-cells. These counts were available for 22
samples from the Utah cohort. Furthermore, we obtained
epidemiological and demographic data via a health-
assessment survey for 63 patients from the Utah cohort.
The health survey variables we collected were age, educa-
tion level, marital status, religious preference, health
status, physical activity, age at menarche, contraceptive use,
total number of pregnancies, total number of live births,
age at first live birth, age at last live birth, breastfeeding
status, time since last menstrual period, age of menopause,
chemopreventive drug use (selective estrogen receptor
modulators), alcohol use, tobacco use, occupational history,
immunological disorder history, hypertension drug use, and
anti-inflammatory drug use. Additional files 2, 3 and 4 list
these values. Additional file 5 indicates cancer, family-
history, and BRCA1/2 status for these patients. Using a
multifactor analysis of covariance model, we excluded genes
whose expression patterns correlated with any of these vari-
ables at a 0.01 significance level. Additional file 6 indicates
which genes were excluded.

Evaluation of normal breast cell expression
We downloaded data from Gene Expression Omnibus
(GSE17072), which had been produced by Lim, et al.
[30]. These data contained gene-expression levels for
normal breast cells—acquired via prophylactic mastec-
tomy or reduction mammoplasty—for women who
had a strong family history of breast cancer and for
controls, respectively. Then using the top 250 genes
that were expressed more highly (according to average
fold change rank) in our PBMC cells from women who
had developed FBC, we used the Gene Set Enrichment
Analysis analytical technique [31] to assess whether these
genes were up-regulated in the Lim, et al. samples. For
this tool, we used default settings, except that we did not
collapse genes, and we used gene-based permutation to
estimate significance.

Software
To identify genes whose expression differed most
between FBC patients and controls, we used the Sup-
port Vector Machines-Recursive Feature Elimination
(SVM-RFE) algorithm. We used the SVMAttributeEval
module within the Weka software package [32] and
configured the algorithm to remove 10 % of genes in
each iteration.
We used the Support Vector Machines (SVM) classifi-

cation algorithm to predict whether each participant had

or had not developed FBC. To facilitate this analysis, we
used the e1071 R package (http://cran.r-project.org/
package=e1071) and the LIBSVM library [33]. We used
the radial-basis-function SVM kernel and tuned the “C”
parameter via nested cross validation. Additionally, we
used the ML-Flex software package [34] to execute the
analysis on a high-performance computing cluster.
To plot receiver operating characteristic curves, we

used the ROCR package [35]. We used a bootstrapping
procedure (10,000 iterations) to calculate 95 % confi-
dence intervals [36].
Software scripts used for this study are available from

https://github.com/srp33/BCSP.

Results
Multigene predictions perform well for both a Utah
cohort and an external validation cohort from Ontario
We filtered the genome-wide PBMC gene-expression
data by identifying genes whose expression best differen-
tiated individuals who developed FBC from controls (see
Methods). Controls were of three types: individuals with
a family history of breast cancer who themselves did not
develop breast cancer by age 55 or greater; individuals
with no family history of breast cancer who also did not
develop breast cancer; and individuals with no family
history of breast cancer who did develop (sporadic)
breast cancer. We then used expression values for those
genes to predict FBC status for each individual using the
SVM algorithm [37]. Two cohorts of samples were used
for this study: a cohort from Utah and an independent
cohort from Ontario; both included high-risk unaffected
and affected women (see Methods for cohort details).
Initially, we evaluated this approach in the Utah cohort
via ten-fold cross validation. Our gene expression-based
estimates of FBC development were consistently higher
for women from FBC families who had developed cancer
than for any subset of controls (Fig. 1a), attaining an
AUC value of 0.76 (95 % CI = 0.67-0.85). Similar levels
of accuracy were attained for women who carried a
BRCA1/2 mutation as for women with a family history
of breast cancer but with no known BRCA1/2 mutation
(termed BRCAX) (Fig. 1a; Additional file 1: Table S1).
Even at the lower confidence bounds, these AUC values
are competitive with results observed in previous studies
that used alternative approaches [7–9]. To further evalu-
ate this result, we randomly permuted the class labels
and observed that the biomarker’s accuracy was highly
significant (p = 0.001). We also repeated cross-validation
1,000 times on the Utah data and observed that on aver-
age the best prediction results were attained using 250
genes; however accuracy was consistently high, inde-
pendent of gene number (Fig. 2).
To test whether this biomarker approach could be ap-

plied more generally via external validation, we derived

Piccolo et al. BMC Medical Genomics  (2015) 8:72 Page 4 of 10

http://cran.r-project.org/package=e1071
http://cran.r-project.org/package=e1071
https://github.com/srp33/BCSP


an SVM model from the full Utah data set alone, and
then used this model to predict FBC development in the
external and independent Ontario data set. In accord-
ance with Institute of Medicine recommendations [38],
model derivation was performed solely on the Utah data

before it was tested on the Ontario samples. These pre-
dictions attained an AUC of 0.73 (95 % CI = 0.59-0.86;
permutation p-value = 0.002), showing a consistently high
level of accuracy between the cohorts (Figs. 1 and 3;
Additional file 1: Table S2).

A

B

Fig. 1 Predictions of familial breast cancer status in two independent cohorts. a In a cross-validated design, we predicted familial breast cancer
status for 124 women from Utah. This cohort included women who did or did not have a family history (FH) of breast cancer, who did or did not
carry a BRCA1 or BRCA2 mutation (BRCAX if not), and who had or had not developed breast cancer. The “Genomic model score” values represent
probabilistic predictions made by the support vector machines algorithm. Higher values indicate a higher probability that a given individual had
developed familial breast cancer. These scores were much higher for individuals who had a family history of breast cancer and developed a breast
tumor, irrespective of BRCA1/BRCA2 mutation status. b In a training/testing design, we predicted whether individuals in the independent Ontario
cohort had developed familial breast cancer. The support vector machines algorithm was trained on the full Utah data set. Again, the scores were
considerably higher for women with a family history of breast cancer who had developed a breast tumor

Fig. 2 Cross-validation performance of gene-expression biomarker with different quantities of genes. For the gene-expression biomarker, we used
the SVM-RFE method to identify genes whose expression differed most consistently between individuals who developed familial breast cancer and
individuals who did not. The sizes of these gene subsets ranged in size between 25 and 300 genes. In repeated cross-validation (1,000 iterations),
predictive accuracy peaked at 250 genes and was consistent when the number of genes was 150 or higher
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Risk prediction accuracy is independent of treatment
effect
Blood samples for these patients were collected
retrospectively—at least six months after treatment
had been administered to individuals who developed
breast cancer. To alleviate the concern that gene-
expression changes in women who developed FBC were
caused by lingering treatment effects, we also collected
PBMC samples for women who had developed sporadic
(non-familial) breast cancer and had received treatment.
In our initial analysis, we grouped these women with the
participants who had no history of breast cancer and
broadly classified this group as “controls”. To further
assess whether the predictive gene-expression patterns we
identified are specific to women who develop FBC and

thus have potential to predict disease risk, we assessed
how well the SVM algorithm could distinguish between
individuals who developed FBC and those who developed
a sporadic tumor. This comparison was identical to
the initial assessment, except that the control group
excluded individuals who did not develop breast
cancer. In this setting, the predictions attained similar
levels of accuracy (Utah AUC= 0.77 [0.64-0.88]; Ontario
AUC = 0.69 [0.49-0.89]) as the initial analysis, although
the confidence intervals were wider due to the smaller
sample sizes. These findings indicate that PBMC gene-
expression patterns may be useful to predict FBC risk.
In addition, we tested whether similar genes were dys-

regulated in our predictive model if the sporadics-only
control group was included or not. The SVM-RFE

A B

C D

Fig. 3 Sensitivity and specificity of biomarker predictions. Because the support vector machines predictions (genomic model score) are probabilistic,
we evaluated various cutoff thresholds at which patients could be considered to have had a “high” probability of developing familial breast cancer.
a-b Receiver operating characteristic curves illustrate the balance between sensitivity and specificity across many probability thresholds for the Utah
and Ontario cohorts. c-d As the genomic model scores increase, a larger proportion of patients who fell above the threshold would have been
predicted accurately to develop familial breast cancer. As the threshold approaches its maximum, the predictive accuracy for patients above the
threshold is nearly perfect; however, such high thresholds would result in low sensitivity levels. A threshold near 0.2 may be optimal. Panel C
represents predictions for Utah participants who had a family history of breast cancer; Panel D represents the Ontario cohort. The dashed lines represent
predictions for individuals who carried a BRCA1 or BRCA2mutation. The dotted lines represent predictions for BRCAX individuals. (Plotted lines were fitted
using a LOESS model [span = 0.5] for smoothing)
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algorithm ranks each gene according to how strongly
the gene-expression values differ between the patient
groups. We found that the rankings were highly similar
(Spearman's rank correlation rho statistic = 0.43), whether
the control group contained sporadic patients only or the
full control set. This finding suggests that individuals who
develop familial breast cancer exhibit different gene-
expression patterns than individuals who do not develop
familial breast cancer, even when compared solely against
individuals who had received prior diagnosis/treatments.
To affirm that the expression differences in the FBC

women were not confounded by treatment with estrogen
receptor pathway inhibitors, we independently evaluated
a publicly available data set that profiled PBMC gene-
expression levels for post-menopausal women who had
or had not been treated with tamoxifen or aromatase in-
hibitors, respectively (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE12517). We applied the Support
Vector Machines algorithm to rank the genes according
to differences in expression between women who had re-
ceived a given treatment and post-menopausal women
who had not received either treatment. We compared
these gene rankings from this study to the original ana-
lysis that compared women who had developed familial
breast cancer against controls. The gene rankings were
not correlated for either treatment (Spearman’s rho for
taxomifen = 0.030, aromatase inhibitors = 0.029). This re-
sult suggests that the genes perturbed by hormone treat-
ments are different from those that discriminate
between women who develop familial breast cancer and
those who do not.

Evaluating the balance between sensitivity and specificity
of predictions
The SVM prediction scores are probabilistic values ran-
ging between zero and one. Higher values suggest a rela-
tively high risk of familial breast cancer, and lower
values suggest a relatively low risk. In clinical settings, it
is often desirable to identify a single cutoff threshold
above which individuals are considered to have “high”
risk. We used receiver operating characteristic curves to
confirm that the sensitivity and specificity of our predic-
tions remain strong across a broad range of thresholds
(Fig. 3a-b). Then to identify a single threshold that may
be best in clinical settings, we plotted the proportion of
patients who were predicted to have “high” risk and who
actually developed FBC, against a range of thresholds
(Fig. 3c-d). As expected, this value increased as the
threshold increased. Accordingly, at higher thresholds, a
large proportion of patients predicted to have “high” risk
would received accurate predictions. However, a tradeoff
would be lower sensitivity (fewer individuals who
actually developed FBC would be predicted to carry a
high risk). Visual inspection of Fig. 3c-d suggests that a

cutoff threshold near 0.2 may be optimal because the
slope begins to level off (or drop temporarily). If a
threshold of 0.2 were used to identify individuals at the
highest risk of breast cancer in the Ontario cohort, the
sensitivity would be 0.68 and the specificity would be
0.71, equating to a positive likelihood ratio of 2.35 and a
negative likelihood ratio of 0.45. Put another way, for a
woman with a 50 % chance of breast cancer based on
family history and BRCA status, a prediction greater
than 0.2 would suggest a 70 % chance of developing
breast cancer, and a score less than 0.2 would indicate a
31 % chance of developing breast cancer.

Biological interpretation
Interestingly, many genes—for example, DSC1, FN1,
ST6GALNAC5, TP63, SHB, and WNT3—used in the
above biomarker are known to play important roles in
regulating cell–cell adhesion and cell–ECM interactions
(see Additional files 7 and 8 for complete lists). To evalu-
ate these genes at the biological pathway level, we applied
the GATHER algorithm [39] to the 250 genes that best
distinguished affected FBC women from controls in the
Utah and Ontario data (Additional files 9 and 10); this ap-
proach indicated a significant association between FBC
development and pathways that play a role in cell adhesion,
including KEGG Adherens Junctions and Extracellular
Matrix-receptor Interaction (p-values < 0.05, Table 3). This
finding suggests that these pathways may be fundamentally
dysregulated in multiple cell types, potentially including
asymptomatic breast tissue, which may be a mechanism
that leads to increased risk of familial breast cancer. To as-
sess whether the gene-expression patterns associated with
FBC status in our PBMC samples also occur in normal
breast cells, we examined publicly available data from Lim
et al. [30] and found that patients with a strong family
history of breast cancer have significantly higher overall
expression (p = 0.001, see Methods) for genes that were
overexpressed in our FBC samples.

Discussion
Women from FBC families face greater uncertainty
regarding their personal risk of breast cancer than the

Table 3 Top pathway results from GATHER analysis

Term ID Term p-value

hsa04520 Adherens junction 0.00149

hsa00590 Prostaglandin and leukotriene metabolism 0.00775

hsa04350 TGF-beta signaling pathway 0.0132

hsa04510 Focal adhesion 0.014

For genes that exhibited consistent fold-change directions in the Utah and
Ontario gene-expression data (Additional files 7 and 8), we sorted the genes
by average rank of fold change and t-test p-values. The 250 top-ranked genes
were used to query GATHER [39] for KEGG pathways most strongly associated
with this gene list. Pathways that attained a p-value less than 0.05 are shown
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general population [40]. Accurate risk prediction is im-
portant in part because 54 % of high-risk women fail to
follow appropriate screening procedures for breast-
cancer prevention, even when they have health insur-
ance, receive reminders, and have a positive attitude
toward screening [41]; however, increased perceived risk
translates into increased willingness to consider effective
prevention strategies such as tamoxifen [42]. Various
risk-prediction models based on clinical and/or genomic
data have been proposed, yet the discriminatory accur-
acy of these models has been modest (AUC 0.56-0.70)
[6–9, 43]. Multiple studies have shown that higher ac-
curacy levels can be obtained using gene-expression pro-
files of peripheral blood cells in the context of early
detection [44, 45]. However, these studies have focused
on general breast-cancer risk, and their approaches were
tested in single cohorts. Our goal was to develop a clas-
sification approach specific to women from high-risk
families—based on PBMC gene expression—and to val-
idate this approach in an external cohort consisting of
women from a different geographical location.
Researchers have placed much emphasis on identifying

additional susceptibility variants [46]; however, known
susceptibility variants account for at most ~30 % of famil-
ial breast cancer risk [47], and common variants currently
show only moderate predictive capabilities for risk [8].
Here, we identify expression-based changes reflective of a
person's risk to develop breast cancer. We emphasize the
importance of additional, prospective studies with larger
sample sizes to further evaluate the clinical potential of
our approach (and alternative approaches); however, the
confidence intervals for our results demonstrate that our
sample size was large enough to obtain statistically mean-
ingful results. Furthermore, previous studies that have
used transcriptomic predictors for prognostic and diag-
nostic purposes have been deemed informative using simi-
lar or smaller cohort sizes [44, 45, 48].
We propose that additional approaches could be used to

inform women about their personal breast cancer risk. In
this study, we identified multigene expression patterns in
peripheral blood cells that differ between individuals who
have developed familial breast cancer and those who have
not. Importantly, the peripheral-blood expression patterns
were predictive of familial breast cancer, independent of
BRCA1/BRCA2 mutation status. In addition, our ap-
proach distinguished between individuals who developed
familial breast cancer and those who developed sporadic
breast cancer, suggesting that our approach’s predictive
ability was not the result of prior cancer or its treatment
and that the gene-expression patterns may be driven by
inherited risk factors common to many women from
high-risk families. [49]. Additional studies are critical to
prospectively evaluate the risk-predictive utility of our ap-
proach in different clinical settings.

Conclusion
Our approach has the possibility to alter how women
with a family history of breast cancer make decisions re-
garding their health. Indeed, the risk-estimation ap-
proach we present here has the ability to provide a risk
assessment for each individual woman. For example,
each woman within a given family or multiple women
who carry a known susceptibility variant could be
assigned different individual risks based on their gene-
expression profile, leading to more personalized preven-
tion decisions. These risk assessments could provide
reassurance for women who are not as highly pre-
disposed and thus may opt for monitoring and/or che-
moprevention rather than prophylactic mastectomy.
Alternatively, a high predicted risk could provide evi-
dence to support prophylactic surgeries or chemopre-
ventive intervention.
Further studies will be needed to develop multi-data

risk models that incorporate gene-expression based
models with other informative data such as family his-
tory, clinical and demographic characteristics, and germ-
line variants. Additionally, it will be helpful in the future
to evaluate whether our findings generalize to women
who have only one known first-degree relative with
breast cancer (in this study, we focused on women with
multiple affected first-degree relatives). However, the ac-
curacy of our results indicates that gene expression
based biomarkers hold promise for assessing individual
breast cancer risk in a minimally invasive manner and
that they can be applied broadly to women from high-
risk families.

Ethical approval
The institutional/ethical review boards at the University
of Utah and Mount Sinai Hospital approved collection
and dissemination of data for this study.

Additional files

Additional file 1: Supplementary Tables and figures. (DOC 313 kb)

Additional file 2: Summarized clinical, demographic, and treatment
data. Summary of clinical, demographic, and prior treatment data for 61
individuals who responded to the health-assessment survey. (PDF 36 kb)

Additional file 3: Raw clinical, demographic, and treatment data.
Raw clinical, demographic, and prior treatment data for 61 individuals
who responded to the health-assessment survey. (PDF 50 kb)

Additional file 4: Descriptions of variables used in health-assessment
survey. Descriptions of variables that were used in the health-assessment
survey. (PDF 41 kb)

Additional file 5: Cancer, family-history, and BRCA1/2 status for all
patients. This file indicates cancer, family history, and BRCA1/2 status for
patients in the Utah and Ontario cohorts. (PDF 51 kb)

Additional file 6: Genes filtered based on correlation with potential
confounders. Genes filtered based on association between gene-expression
levels and clinical, demographic, prior treatment, or lymphocyte enumeration
data. (PDF 82 kb)

Piccolo et al. BMC Medical Genomics  (2015) 8:72 Page 8 of 10

dx.doi.org/10.1186/s12920-015-0145-6
dx.doi.org/10.1186/s12920-015-0145-6
dx.doi.org/10.1186/s12920-015-0145-6
dx.doi.org/10.1186/s12920-015-0145-6
dx.doi.org/10.1186/s12920-015-0145-6
dx.doi.org/10.1186/s12920-015-0145-6


Additional file 7: Genes selected for the first half of the Ontario
cohort. Genes selected via SVM-RFE from the Utah cohort for the Ontario
(36 samples) biomarker predictions. (PDF 53 kb)

Additional file 8: Genes selected for the second half of the Ontario
cohort. Genes selected via SVM-RFE from the Utah cohort for the Ontario
(remaining samples) biomarker predictions. (PDF 67 kb)

Additional file 9: Gene-level summary of expression data for Utah
and Ontario cohorts. Fold change values represent the ratio of average
gene expression for FBC individuals who developed cancer relative to
expression levels for those who did not. (PDF 4554 kb)

Additional file 10: Summary of differentially expressed genes.
Genes for which the average expression was consistently either higher or
lower in FBC individuals relative to controls for the Utah and Ontario
cohorts. (PDF 987 kb)

Abbreviations
MRI: Magnetic resonance imaging; FBC: Familial breast cancer;
PMBC: Peripheral blood mononuclear cells; BCFR: Breast Cancer Family
Registry; SVM-RFE: Support Vector Machines-Recursive Feature Elimination;
SVM: Support Vector Machines; AUC: Area under receiver operating
characteristic curve; KEGG: Kyoto Encyclopedia of Genes and Genomes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AHB, WEJ, and SRP designed the study and performed data analysis. SRP
performed computational analyses. PJM and ALC provided intellectual input.
AHB, IA, SSB, ALC, TC, AES developed the clinical and genomic resources
used in the study. AHB, WEJ, and SRP wrote the manuscript. ALC, AES, PJM,
and SSB provided critical review of the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
We thank the study participants without whom this project would not have
been possible. We acknowledge Patricia Bild and Mary Johnson who inspired
this study. We acknowledge allocations of computer time from the Center
for High Performance Computing at the University of Utah and the Fulton
Supercomputing Lab at Brigham Young University. Dr. Holly Dressman
provided advice and processed microarray samples.

Funding
A Bild was supported by R01GM085601 (NIH), institutional funds, and a
private donor. S Piccolo received funding via 5T32CA093247 (NIH). W
Johnson and S Piccolo received support from 1R01HG005692. The Utah
Breast Cancer Family Registry was supported through cooperative
agreement from the National Institutes of Health U01CA69446, the National
Center for Research Resources, and the National Center for Advancing
Translational Sciences, National Institutes of Health grant UL1RR025764, and
by award number P30CA042014 from the National Cancer Institute. The
content is solely the responsibility of the authors and does not necessarily
represent the official views of the NCI or the NIH. This work was also
supported by grant UM1 CA164920 from the National Cancer Institute. The
content of this manuscript does not necessarily reflect the views or policies
of the National Cancer Institute or any of the collaborating centers in the
Breast Cancer Family Registry (BCFR), nor does mention of trade names,
commercial products, or organizations imply endorsement by the US
Government or the BCFR.

Author details
1Department of Pharmacology and Toxicology, University of Utah, Salt Lake
City, UT, USA. 2Division of Computational Biomedicine, Boston University
School of Medicine, Boston, MA, USA. 3Department of Biology, Brigham
Young University, Provo, UT, USA. 4Lunenfeld-Tanenbaum Research Institute,
Mount Sinai Hospital, Toronto, Ontario, Canada. 5Huntsman Cancer Institute,
Salt Lake City, UT, USA. 6Department of Medicine, University of Utah, Salt
Lake City, UT, USA. 7Department of Oncological Sciences, University of Utah,
Salt Lake City, UT, USA.

Received: 14 May 2015 Accepted: 21 October 2015

References
1. Lalloo F, Evans DG. Familial breast cancer. Clin Genet. 2012;82:105–14.
2. Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin

Oncol. 2007;25:1329–33.
3. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM,

et al. Tamoxifen for prevention of breast cancer: report of the National Surgical
Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst. 1998;90:1371–88.

4. Cuzick J, Sestak I, Forbes JF, Dowsett M, Knox J, Cawthorn S, et al.
Anastrozole for prevention of breast cancer in high-risk postmenopausal
women (IBIS-II): an international, double-blind, randomised placebo-
controlled trial. Lancet. 2014;383:1041–8.

5. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting
individualized probabilities of developing breast cancer for white females who
are being examined annually. J Natl Cancer Inst. 1989;81:1879–86.

6. Rockhill B, Spiegelman D, Byrne C, Hunter DJ, Colditz GA. Validation of the
Gail et al. model of breast cancer risk prediction and implications for
chemoprevention. J Natl Cancer Inst. 2001;93:358–66.

7. Sawyer S, Mitchell G, McKinley J, Chenevix-Trench G, Beesley J, Chen XQ,
et al. A role for common genomic variants in the assessment of familial
breast cancer. J Clin Oncol. 2012;30:4330–6.

8. Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver WR,
et al. Performance of common genetic variants in breast-cancer risk models.
N Engl J Med. 2010;362:986–93.

9. Xu Z, Bolick SCE, Deroo LA, Weinberg CR, Sandler DP, Taylor JA. Epigenome-
wide Association Study of Breast Cancer Using Prospectively Collected Sister
Study Samples. J Natl Cancer Inst. 2013;105:694–700.

10. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, et al.
Genetic analysis of genome-wide variation in human gene expression.
Nature. 2004;430:743–7.

11. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex
disease traits with global gene expression. Nat Rev Genet. 2009;10:184–94.

12. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping
the genetic architecture of gene expression in human liver. PLoS Biol.
2008;6:e107.

13. Mohr S, Liew C-C. The peripheral-blood transcriptome: new insights into
disease and risk assessment. Trends Mol Med. 2007;13:422–32.

14. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, et al.
Gene-expression profiles in hereditary breast cancer. N Engl J Med.
2001;344:539–48.

15. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, et al. An
expression signature for p53 status in human breast cancer predicts
mutation status, transcriptional effects, and patient survival. Proc Natl Acad
Sci U S A. 2005;102:13550–5.

16. Waddell N, Ten Haaf A, Marsh A, Johnson J, Walker LC, Gongora M, et al.
BRCA1 and BRCA2 missense variants of high and low clinical significance
influence lymphoblastoid cell line post-irradiation gene expression. PLoS
Genet. 2008;4:e1000080.

17. Bild AH, Chang JT, Yao G, Joshi M-BB, Lancaster JM, Wang Q, et al.
Oncogenic pathway signatures in human cancers as a guide to targeted
therapies. Nature. 2006;439:353–7.

18. Liu Z, Wang M, Alvarez JV, Bonney ME, Chen C, D’Cruz C, et al. Singular
value decomposition-based regression identifies activation of endogenous
signaling pathways in vivo. Genome Biol. 2008;9:R180.

19. Rhodes D, Kalyana-Sundaram S, Tomlins S, Mahavisno V, Kasper N,
Varambally R, et al. Molecular concepts analysis links tumors, pathways,
mechanisms, and drugs. Neoplasia. 2007;9:443–54.

20. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, et al. Oncogenic pathway
combinations predict clinical prognosis in gastric cancer. PLoS Genet.
2009;5:e1000676.

21. Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, et al. Effects
of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev.
2007;21:1382–95.

22. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY. Module map of
stem cell genes guides creation of epithelial cancer stem cells. Cell Stem
Cell. 2008;2:333–44.

23. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al.
Systematic RNA interference reveals that oncogenic KRAS-driven cancers
require TBK1. Nature. 2009;462:108–12.

Piccolo et al. BMC Medical Genomics  (2015) 8:72 Page 9 of 10

dx.doi.org/10.1186/s12920-015-0145-6
dx.doi.org/10.1186/s12920-015-0145-6
dx.doi.org/10.1186/s12920-015-0145-6
dx.doi.org/10.1186/s12920-015-0145-6


24. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, et al. A
gene expression signature associated with “K-Ras addiction” reveals
regulators of EMT and tumor cell survival. Cancer Cell. 2009;15:489–500.

25. Huang F, Reeves K, Han X, Fairchild C, Platero S, Wong TW, et al.
Identification of Candidate Molecular Markers Predicting Sensitivity in Solid
Tumors to Dasatinib: Rationale for Patient Selection. Cancer Res.
2007;67:2226–38.

26. Zhang XH-F, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, et al. Latent
bone metastasis in breast cancer tied to Src-dependent survival signals.
Cancer Cell. 2009;16:67–78.

27. Piccolo SR, Sun Y, Campbell JD, Lenburg ME, Bild AH, Johnson WE. A
single-sample microarray normalization method to facilitate
personalized-medicine workflows. Genomics. 2012;100:337–44.

28. Nurtdinov RN, Vasiliev MO, Ershova AS, Lossev IS, Karyagina AS. PLANdbAffy:
probe-level annotation database for Affymetrix expression microarrays.
Nucleic Acids Res. 2010;38(Database issue):D726–30.

29. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

30. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal
progenitors as the candidate target population for basal tumor
development in BRCA1 mutation carriers. Nat Med. 2009;15:907–13.

31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A.
2005;102:15545–50.

32. Hall M, National H, Frank E, Holmes G, Pfahringer B, Reutemann P, et al. The
WEKA data mining software. ACM SIGKDD Explor Newsl. 2009;11:10.

33. Chang C-C, Lin C-J. LIBSVM: A library for support vector machines. ACM
Trans Intell Syst Technol. 2011;2:27:1–27:27.

34. Piccolo SR, Frey LJ. ML-Flex : A Flexible Toolbox for Performing Classification
Analyses In Parallel. J Mach Learn Res. 2012;13(Mar):555–9.

35. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: Visualizing the
performance of scoring classifiers. 2009.

36. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an
open-source package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics. 2011;12:77.

37. Vapnik VN. Statistical Learning Theory. New York: Wiley; 1998.
38. Michael CM, Nass SJ, Omenn GS. Evolution of Translational Omics: Lessons

Learned and the Path Forward. Washington, D.C.: The National Academies
Press; 2012.

39. Chang JT, Nevins JR. GATHER: a systems approach to interpreting genomic
signatures. Bioinformatics. 2006;22:2926–33.

40. Peto J, Mack TM. High constant incidence in twins and other relatives of
women with breast cancer. Nat Genet. 2000;26:411–4.

41. Smith RA, Cokkinides V, Brooks D, Saslow D, Shah M, Brawley OW. Cancer
screening in the United States, 2011: A review of current American Cancer
Society guidelines and issues in cancer screening. CA Cancer J Clin.
2011;61:8–30.

42. Meiser B, Butow P, Price M, Bennett B, Berry G, Tucker K. Attitudes to
prophylactic surgery and chemoprevention in Australian women at increased
risk for breast cancer. J Womens Health (Larchmt). 2003;12:769–78.

43. MacInnis RJ, Bickerstaffe A, Apicella C, Dite GS, Dowty JG, Aujard K, et al.
Prospective validation of the breast cancer risk prediction model BOADICEA
and a batch-mode version BOADICEACentre. Br J Cancer. 2013;109:1296–301.

44. Aarøe J, Lindahl T, Dumeaux V, Saebø S, Tobin D, Hagen N, et al. Gene
expression profiling of peripheral blood cells for early detection of breast
cancer. Breast Cancer Res. 2010;12:R7.

45. Sharma PP, Sahni NS, Tibshirani R, Skaane P, Urdal P, Berghagen H, et al.
Early detection of breast cancer based on gene-expression patterns in
peripheral blood cells. Breast Cancer Res. 2005;7:R634–44.

46. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL,
et al. Large-scale genotyping identifies 41 new loci associated with breast
cancer risk. Nat Genet. 2013;45:353–61.

47. Stratton MR, Rahman N. The emerging landscape of breast cancer
susceptibility. Nat Genet. 2008;40:17–22.

48. Spira A, Beane JE, Shah V, Steiling K, Liu G, Schembri F, et al. Airway
epithelial gene expression in the diagnostic evaluation of smokers with
suspect lung cancer. Nat Med. 2007;13:361–6.

49. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML,
et al. Risks and Benefits of Estrogen plus Progestin in Healthy Postmenopausal
Women: Principal Results From the Women’s Health Initiative Randomized
Controlled Trial. Volume 288. 2002.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Piccolo et al. BMC Medical Genomics  (2015) 8:72 Page 10 of 10


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Description of patient cohorts and data sets and consent to publish
	Utah
	Ontario

	Genomic data acquisition and deposition
	Microarray data normalization
	Gene-expression data filtering
	Evaluation of normal breast cell expression
	Software

	Results
	Multigene predictions perform well for both a Utah cohort and an external validation cohort from Ontario
	Risk prediction accuracy is independent of treatment effect
	Evaluating the balance between sensitivity and specificity of predictions
	Biological interpretation

	Discussion
	Conclusion
	Ethical approval

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding
	Author details
	References



