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Generating synthetic contrast 
enhancement from non‑contrast 
chest computed tomography using 
a generative adversarial network
Jae Won Choi1,2, Yeon Jin Cho1,2*, Ji Young Ha3, Seul Bi Lee1, Seunghyun Lee1,2, 
Young Hun Choi1,2, Jung‑Eun Cheon1,2,4 & Woo Sun Kim1,2,4

This study aimed to evaluate a deep learning model for generating synthetic contrast-enhanced CT 
(sCECT) from non-contrast chest CT (NCCT). A deep learning model was applied to generate sCECT 
from NCCT. We collected three separate data sets, the development set (n = 25) for model training and 
tuning, test set 1 (n = 25) for technical evaluation, and test set 2 (n = 12) for clinical utility evaluation. In 
test set 1, image similarity metrics were calculated. In test set 2, the lesion contrast-to-noise ratio of 
the mediastinal lymph nodes was measured, and an observer study was conducted to compare lesion 
conspicuity. Comparisons were performed using the paired t-test or Wilcoxon signed-rank test. In test 
set 1, sCECT showed a lower mean absolute error (41.72 vs 48.74; P < .001), higher peak signal-to-
noise ratio (17.44 vs 15.97; P < .001), higher multiscale structural similarity index measurement (0.84 
vs 0.81; P < .001), and lower learned perceptual image patch similarity metric (0.14 vs 0.15; P < .001) 
than NCCT. In test set 2, the contrast-to-noise ratio of the mediastinal lymph nodes was higher in the 
sCECT group than in the NCCT group (6.15 ± 5.18 vs 0.74 ± 0.69; P < .001). The observer study showed 
for all reviewers higher lesion conspicuity in NCCT with sCECT than in NCCT alone (P ≤ .001). Synthetic 
CECT generated from NCCT improves the depiction of mediastinal lymph nodes.

Iodinated contrast media are widely used in computed tomography (CT) to enhance tissue contrast, making it 
easier to evaluate anatomic structures and pathologies. However, iodinated contrast media have potential adverse 
effects varying from minor physiologic reactions to severe life-threatening situations, although their incidence 
has decreased with the development of low-osmolar and non-ionic contrast agents1,2. Many chest CT examina-
tions, which are undeniably crucial diagnostic tools to evaluate thoracic disorders, are non-contrast CT (NCCT), 
especially for screening purposes or initial evaluation. The use of contrast in chest CT is often unnecessary for 
detecting lung parenchymal lesions. However, contrast-enhanced CT (CECT) plays a critical role in the detailed 
assessment of the mediastinum, pleura, and vessels.

In recent years, deep learning has been applied to various tasks in medical imaging, including automatic lesion 
detection, segmentation, or image quality improvement. One of the most interesting current implementations of 
deep learning in medical imaging is synthetic image generation and the generative adversarial network (GAN) 
is considered state-of-the-art for such a task3,4. A recent study used a deep learning algorithm to synthesize con-
trast enhancement from non-contrast cardiac CT5. However, the authors only used slices where the heart was 
present and mainly focused on delineating the left cardiac chamber. We think that generating synthetic contrast 
enhancement from a full-volume NCCT without additional scan or intravenous contrast injection would prove 
more useful in clinical practice without any added risks to the patients.

This study aimed to propose and evaluate a deep learning approach using GAN for generating synthetic 
contrast-enhanced CT (sCECT) images from non-contrast chest CT.
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Methods
This retrospective study was approved by the Seoul National University Hospital Institutional Review Board 
(SNUH, IRB no. 1910-152-1073) and the Institutional Review Board of Gyeongsang National University Chang-
won Hospital (GNUCH, IRB no. 2020-07-011). Both institutional review boards waived the requirement of 
informed consent for the study. All methods were performed in accordance with the relevant guidelines and 
regulations.

Data acquisition.  We collected three separate data sets, the development set (for model training and tun-
ing) from Hospital #1 (GNUCH) and test sets 1 (for technical evaluation) and 2 (for clinical utility evalua-
tion) from Hospital #2 (SNUH). Patient inclusion is shown in Fig. 1. The development set included consecutive 
patients who underwent dual-energy thoracic CT angiography (Somatom Force; Siemens, Erlangen, Germany) 
in December 2019. There were no exclusion criteria in the development set. The development set was randomly 
split (9:1 ratio) into training and tuning sets. Test set 1 included consecutive patients who underwent thoracic 
CT angiography on various CT scanners between February 2020 and April 2020. Patients with CT examina-
tions with motion artifacts or suboptimal contrast opacification were excluded. Test set 1 was divided into test 
sets 1A and 1B based on the CT vendor. Patients whose CT vendor was the same as that in the development set 
(Siemens, Erlangen, Germany) were included in test set 1A, and test set 1B consisted of the remaining patients.

For evaluation of clinical utility, a separate test set with clinical relevance had to be constructed. Test set 2 
comprised consecutive patients with suspected lung cancer who underwent preprocedural CT examinations 
for electromagnetic navigational bronchoscopy between August 2019 and April 2020. Among them, patients 
with at least one mediastinal lymph node with a short-axis diameter > 1 cm (significant lymphadenopathy) were 
included. At Hospital #2, patients underwent pre-bronchoscopic CT examinations consisting of a pre-contrast 
and a routine contrast-enhanced scan on a designated single CT scanner (IQon; Philips, Andover, Massachusetts). 
We obtained paired virtual non-contrast (VNC) and CECT data for the development set and paired NCCT and 
CECT data for the test sets.

Image preprocessing.  All axial CT images were downloaded in Digital Imaging and Communications in 
Medicine (DICOM) format from picture archiving and communication systems (PACS) after anonymization. 
The size of all CT images was the same (512 × 512 pixels), and we did not resize the images. The original CT 
images ranged from − 1024 to over 3000 HU. We acquired three greyscale images from each axial CT image 
by applying three different window settings, normalized them to a range of − 1 to 1, and combined them into a 
3-channel image. We tried various combinations of CT window settings in a preliminary study, and eventually, 
those we used in this study were as follows: lung/bone window (window width, 2000 HU; level, 0 HU), vascular 

Figure 1.   Flowchart depicting patient inclusion and exclusion. Development set (A), test set 1 (B), and test set 
2 (C).
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window (window width, 1000 HU; level, 200 HU), and mediastinal window (window width, 500 HU; level, 50 
HU).

Lesion annotation.  A board-certified radiologist (Y.H.C.) and a radiology resident (J.W.C.) with 16 and 
4 years of experience, respectively, reviewed the CECT images of test set 2 and annotated mediastinal lymph 
nodes with a short-axis diameter > 5 mm. The measurement of lesion contrast-to-noise ratio (CNR) and the 
observer study were based on these annotations. There were a total of 55 annotated mediastinal lymph nodes 
(mean short-axis diameter, 8.62 ± 2.47 mm).

Deep learning model development.  Source code for training and inference of our deep learning model 
is available at https://​github.​com/​jwc-​rad/​pix2p​ix3D-​CT. The architecture of our deep learning model is illus-
trated in Supplementary Fig. S1. The basic structure of our proposed model is identical to that of the original 
pix2pix model6, except that the 2D convolutional layers are replaced with their 3D counterparts. The proposed 
model consists of a generator network and a discriminator network, as in a conventional generative adversarial 
network (GAN)4. The generator network is an encoder-decoder convolutional neural network with skip connec-
tions (U-Net)7, with an input and output size of 512 × 512 × 16. Each encoder block is composed of a convolution 
with stride, Leaky ReLu 8, and instance normalization9, whereas each decoder block consists of an upsampling 
layer, convolution with stride, ReLu8, instance normalization, and a skip connection. To reduce the checkerboard 
artifacts of a GAN, the model uses resize-convolution with nearest-neighbor interpolation for the upsampling 
layer of the decoder block10. A skip connection concatenates encoder block i and decoder block n-i, where n is 
the total number of blocks, and passes the output to a ReLu activation layer. The final output layer of the genera-
tor network uses the Tanh function8. The discriminator network is a PatchGAN6 that classifies each 70 × 70 × 4 
pixel patch as real or fake and whose convolutional module is identical to the encoder block of the generator 
network.

Training the deep learning model.  For the deep learning implementation, we used Keras (version 2.1.5, 
https://​keras.​io/), a Python-based high-level deep-learning library, run on top of Tensorflow (version 1.4.0; 
Google Brain Team, Mountain View, CA). For the model training, we followed a standard adversarial approach 
of alternating training steps on the discriminator network and generator network4. The objective function of the 
proposed model is a weighted sum of the GAN loss and L1 loss of the generator network. Although the ratio 
of weights is a hyperparameter that may be altered for optimization, we set it to a fixed ratio of 1:100, as in the 
original pix2pix paper6. To stabilize the training process, we adopted general techniques for training GANs, 
proposed by Ian Goodfellow11 and Radford et al.8, including one-sided label smoothing and the use of the Adam 
optimizer12. For data augmentation, we performed a random vertical and horizontal shift of up to 50 pixels on 
the input before feeding the image into the model. The training parameters were as follows: Adam optimizer 
with a learning rate of 0.0002, beta 1 of 0.5, and a decay rate of 0.1 after the first 10 epochs; a batch size of 1; and 
a total of 20 epochs. Each epoch covered all possible sets of 16 consecutive axial images of the training set, which 
was approximately 3000 iterations. The entire training process took about 4 days on a cloud-based workstation 
with an NVIDIA Tesla V100 GPU (NVIDIA, Santa Clara, CA) and 26 GB RAM. As there is no gold standard 
objective measure for the performance of a GAN, we relied on the visual inspection of images synthesized by the 
generator network6,13. During the training phase, a radiologist (J.W.C.) monitored random samples of the gener-
ated images, and after the training process, he validated the results generated from the tuning set.

Applying the deep learning model.  For inference, we used only the generator network of our proposed 
model. The inference process was performed in the same manner for all data sets, regardless of whether the 
input was VNC or NCCT. As the size of the input was the same as in the training process, the direct synthesis 
of an entire CT volume of a patient was not possible. Instead, one slice at a time from the top, we repeated the 
application of the generator network to the next 16 consecutive slices while indexing the slice numbers. For a CT 
volume with a shape of 512 × 512 × N, running the generator network through the entire CT volume would first 
yield N-15 arrays with a shape of 512 × 512 × 16 that partially overlap with one another. Then, the overlapping 
slices, which would be the images with the same indexed slice number, were averaged. Finally, we reconverted 
the first channel image (lung/bone window) of the averaged output to a synthetic CT image with a range of -1000 
to 1000 HU.

Image analysis: technical evaluation.  We employed the mean absolute error (MAE), peak signal-to-
noise ratio (PSNR)14,15, multiscale structural similarity index measurement (MS-SSIM)16, and learned percep-
tual image patch similarity metric (LPIPS)17 to perform a quantitative evaluation of the tuning set and test set 1. 
A lower MAE, higher PSNR, higher MS-SSIM, and lower LPIPS indicate higher similarity to the ground truth. 
MAE and PSNR reflect the absolute numerical difference between two images, whereas MS-SSIM correlates with 
similarity in the structural composition of pixels14,18. LPIPS is a more recently suggested metric of perceptual 
distance based on widely used pretrained deep neural networks17,19. For comparison, we calculated the metrics 
for both sCECT and input images (NCCT or VNC) in the mediastinal window (window width, 350 HU; level, 
50 HU), each relative to the corresponding CECT images. We only included axial slices between the top of the 
aortic arch and the diaphragm for image similarity analysis.

Image analysis: performance in depicting mediastinal lymph nodes.  To explore the clinical util-
ity of sCECT images, we evaluated the performance of sCECT in depicting mediastinal lymph nodes using test 

https://github.com/jwc-rad/pix2pix3D-CT
https://keras.io/
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set 2. As a quantitative analysis, we measured the lesion CNR of the mediastinal lymph nodes. For each lesion, 
the measurement was performed on the axial slice of the contrast-enhanced CT, where the short-axis diameter 
was measured. We first drew a circular region of interest (ROI) inside the lesion, measuring 90% of the lesion’s 
short-axis diameter. Circular ROIs of the same size were additionally drawn inside the descending thoracic 
aorta and subcutaneous fat of the bilateral chest wall. The ROIs were then copied to the same locations on the 
non-contrast and synthetic contrast-enhanced axial images. The contrast-to-noise ratio (CNR) of all lesions was 
calculated as follows:

where HU is the mean HU value of the ROI, SD is its standard deviation, and DTA is descending thoracic aorta.
For the qualitative analysis, two blinded board-certified radiologists (Y.J.C. and S.B.L. with 8 and 3 years of 

experience, respectively) participated in a three-session review of CT images with two-week intervals using a 
Digital Imaging and Communications in Medicine viewer (RadiAnt, version 2020.1; Medixant, Poznan, Poland). 
Each session consisted of NCCT, NCCT with sCECT, and CECT images, respectively, from each patient in test set 
2 presented in random order. The reviewers were instructed to label mediastinal lymph nodes with a short-axis 
diameter > 5 mm and report lesion conspicuity on a 4-point scale (1, barely perceptible with presence debatable; 
2, subtle finding but likely a lesion; 3, definite lesion detected; and 4, strikingly evident and easily detected)20. 
The conspicuity of undetected lesions was recorded as 0.

Statistical analysis.  For comparison of image similarity metrics and lesion CNR, we applied the paired 
t-test or the Wilcoxon signed-rank test according to the Shapiro–Wilk normality test. For the observer study, the 
detection rate of the lymph nodes was compared using the McNemar test and the differences in lesion conspicu-
ity were evaluated using the Wilcoxon signed-rank test. Also, we evaluated lesion localization using the figures 
of merit (FOM) from jackknife alternative free-response receiver operating characteristic (JAFROC) analysis21. 
We report the results from the random reader, fixed case JAFROC analysis because of the small number of cases 
of our study. P < 0.05 was considered indicative of a statistically significant difference. All data were analyzed 
using MedCalc (version 12.7, MedCalc Software, Ostend, Belgium), scikit-learn library (version 0.20.3, https://​
scikit-​learn.​org/), and JAFROC software for Windows (version 4.2.1, WindowsJafroc, https://​www.​devch​akrab​
orty.​com).

Informed consent.  This retrospective study was approved by the institutional review boards, which waived 
the need for patient informed consent.

Results
Patient characteristics.  Patient characteristics and CT acquisition parameters are summarized in 
Table 1. A total of 62 patients (35 men, 27 women) with a median age of 67.5 years (interquartile range [IQR], 
58–74 years) were enrolled. The development set comprised 25 patients (median age, 66 years [IQR, 53–79]; 
13 men, 12 women). For the test set 1, among 42 patients who underwent thoracic CT angiography on one of 
four different CT scanners (Somatom Force and Somatom Definition, Siemens, Erlangen, Germany; IQon and 
iCT 256, Philips, Andover, Massachusetts) at Hospital #2, 17 patients were excluded due to motion artifacts 
(n = 9) and suboptimal contrast opacification (n = 8). The test set 1 included 25 patients (median age, 66 years 
[IQR, 58.5–72]; 14 men, 11 women). Among them, 18 patients, whose CT vendor was the same as that in the 
development set, were included in the test set 1A, and test set 1B consisted of the seven remaining patients. 
For test set 2, among 35 patients who underwent pre-bronchoscopic CT at Hospital #2, 23 patients without 
significant mediastinal lymphadenopathy were excluded. Thus, test set 2 comprised 12 patients (median age, 
70.5 years [IQR, 67–76]; 8 men, 4 women) with a total of 55 mediastinal lymph nodes (mean short-axis diameter, 
8.62 ± 2.47 mm).

Technical evaluation.  Examples of representative cases from the tuning set and test set 1 are shown in 
Figs. 2 and 3, respectively. The sCECT images showed significantly higher similarity to the ground-truth CECT 
than NCCT in all quantitative metrics in both the tuning set and test set 1 (Fig. 4, Table 2). In the tuning set, the 
sCECT images showed a lower median MAE (33.19 [IQR, 29.24–34.53] vs 34.64 [IQR, 30.73–44.67]; P < 0.001), 
a higher median PSNR (25.84 [IQR, 25.22–26.70] vs 18.72 [IQR, 18.16–19.85]; P < 0.001), higher median MS-
SSIM (0.97 [IQR, 0.96–0.98] vs 0.91 [IQR, 0.88–0.92]; P < 0.001), and lower median LPIPS (0.04 [IQR, 0.04–0.05] 
vs 0.09 [IQR, 0.07–0.10]; P < 0.001) than NCCT images. In test set 1, sCECT had a lower median MAE (41.72 
[IQR, 37.36–46.90] vs 48.74 [IQR, 39.73–54.48]; P < 0.001), higher median PSNR (17.44 [IQR, 16.37–18.60] vs 
15.97 [IQR, 14.79–17.19]; P < 0.001), higher median MS-SSIM (0.84 [IQR, 0.79–0.86] vs 0.81 [IQR, 0.76–0.84]; 
P < 0.001), and lower median LPIPS (0.14 [IQR, 0.12–0.16] vs 0.15 [IQR, 0.13–0.18]; P < 0.001) than NCCT. The 
findings were also similar in subsets of test set 1.

Performance in depicting mediastinal lymph nodes.  An example of a representative case from test 
set 2 is shown in Fig. 5. The median of the lesion CNR of the mediastinal lymph nodes and background noise 

Background noise =

√

SD2
right fat + SD2

left fat

2

CNRlesion =
|HUDTA −HUlesion|

Background noise

https://scikit-learn.org/
https://scikit-learn.org/
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https://www.devchakraborty.com
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Table 1.   Patient characteristics and CT acquisition parameters. Note Siemens is located in Erlangen, Germany. 
Philips is located in Andover, Massachusetts. CECT = contrast-enhanced CT, VNC = virtual non-contrast CT, 
NCCT = non-contrast CT. *Data are median with interquartile range in parentheses.

Development set (n = 25) Test set 1A (n = 18) Test set 1B (n = 7) Test set 2 (n = 12)

Patient characteristics

Age (y)* 66 (53–79) 65.5 (52–71) 68 (62–72) 70.5 (67–76)

Sex (male/female) 13/12 11/7 3/4 8/4

Clinical indication Not specified Not specified Not specified Suspected lung cancer

CT scanning parameters

CT vendor Siemens Siemens Philips Philips

CT scanner Somatom Force Somatom Force, Somatom Defini-
tion IQon, iCT 256 IQon

Tube voltage (kVp) 70/150 with tin filter 90–110 100–120 120

Collimation (mm) 96 × 0.6 32 or 96 × 0.6 64 or 128 × 0.625 64 × 0.625

Matrix 512 × 512 512 × 512 512 × 512 512 × 512

Rotation time (s) 0.25 0.33–0.5 0.4–0.5 0.5

Pitch 0.55 0.7–1.3 0.6–1.3 1.0

Contrast protocol Thoracic CT angiography (dual-
energy CECT, VNC)

Thoracic CT angiography (NCCT, 
CECT)

Thoracic CT angiography (NCCT, 
CECT) Routine chest CT (NCCT, CECT)

Contrast amount, injection rate 90–100 mL, 3–4 mL/s 70–90 mL, 4–5 mL/s 70–90 mL, 4–5 mL/s 70–90 mL, 3 mL/s

Scan delay 10 s after bolus tracking 10 s after bolus tracking 10 s after bolus tracking Fixed 60 s

Reconstruction parameters

Slice thickness (mm)/increment 
(mm) 2/2 3/3 3/3 3/3

Kernel Br40 B30f., Br40, Bv40 B B

Iterative reconstruction ADMIRE 3 ADMIRE 3 iDose 4 iDose 4

Figure 2.   Images of a 63-year-old woman with right pneumothorax from the tuning set are presented. Non-
contrast CT (A), synthetic contrast-enhanced CT (B), and contrast-enhanced CT (C).

Figure 3.   Images of a 65-year-old woman with right pleural effusion from test set 1 are presented. Non-contrast 
CT (A), synthetic contrast-enhanced CT (B), and contrast-enhanced CT (C).
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Figure 4.   Comparison of image similarity metrics between non-contrast CT (NCCT) and synthetic contrast-
enhanced CT (sCECT) with contrast-enhanced CT as the ground truth. Mean absolute error (MAE) (A), peak 
signal-to-noise ratio (PSNR) (B), multiscale structural similarity index measurement (MS-SSIM) (C), and 
learned perceptual image patch similarity metric (LPIPS) (D). Lower MAE, higher PSNR, higher MS-SSIM, and 
lower LPIPS values indicate higher image similarity. All comparisons showed significant differences (P < 0.05).

Table 2.   Evaluation of quantitative similarity metrics. Note Data are median (interquartile range). Lower 
MAE, higher PSNR, higher MS-SSIM, and lower LPIPS values indicate higher image similarity. VNC = virtual 
non-contrast CT, sCECT = synthetic contrast-enhanced CT, NCCT = non-contrast CT, MAE = mean absolute 
error, PSNR = peak signal-to-noise ratio, MS-SSIM = multiscale structural similarity index measurement, 
LPIPS = learned perceptual image patch similarity metric.

Data set CT MAE ↓ PSNR ↑ MS-SSIM (× 100) ↑ LPIPS (× 100) ↓

Tuning set

VNC 34.64 (30.73–44.67) 18.72 (18.16–19.85) 90.56 (88.49–92.47) 8.87 (7.40–9.83)

sCECT 33.19 (29.24–34.53) 25.84 (25.22–26.70) 96.66 (96.09–97.59) 4.49 (3.85–4.84)

P < .001 P < .001 P < .001 P < .001

Test set 1

NCCT​ 48.74 (39.73–54.48) 15.97 (14.79–17.19) 81.26 (76.33–84.42) 14.89 (12.59–17.89)

sCECT 41.72 (37.36–46.90) 17.44 (16.37–18.60) 83.55 (78.58–86.12) 13.70 (11.91–15.81)

P < .001 P < .001 P < .001 P < .001

Test set 1A

NCCT​ 51.52 (45.83–56.88) 15.73 (14.72–17.51) 81.04 (75.71–84.91) 15.59 (13.01–19.13)

sCECT 44.20 (39.04–48.60) 17.48 (16.16–18.68) 83.85 (78.19–86.96) 13.96 (11.97–16.68)

P < .001 P < .001 P < .001 P < .001

Test set 1B

NCCT​ 39.89 (32.52–44.61) 16.12 (14.96–16.91) 82.05 (78.49–83.30) 13.03 (11.75–15.17)

sCECT 37.22 (30.98–39.12) 17.39 (16.64–18.50) 83.30 (80.97–84.67) 13.10 (11.85–14.61)

P < .001 P < .001 P < .001 P = .003
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in each node measurement (n = 55) in test set 2 calculated on CECT images were 4.60 (IQR, 3.79–5.79) and 
18.95 (IQR, 16.66–20.92), respectively. The median lesion CNR in the sCECT group was higher than that in the 
NCCT group (5.00 [IQR, 1.97–10.25] vs 0.52 [IQR, 0.14–1.03]; P < 0.001), while the median background noise 
in the sCECT group was also higher than that in the NCCT group (18.88 [IQR, 17.38–21.56] vs 17.79 [IQR, 
16.04–17.79]; P < 0.001). We did not statistically compare measurements between sCECT and CECT images 
because of the difference in degrees of contrast enhancement between the development set and test set 2 due to 
the CT protocols.

In the observer study on test set 2, both reviewers detected a higher number of lymph nodes on NCCT with 
sCECT than on NCCT alone (reviewer 1, 76% [42 of 55 nodes] vs 49% [27 of 55 nodes], P = 0.003; reviewer 2, 
38% [21 of 55 nodes] vs 29% [16 of 55 nodes], P = 0.06). The reader-averaged JAFROC FOMs calculated from 
NCCT alone, NCCT with sCECT, and CECT were 0.48, 0.52, and 0.68, respectively. There was no significant 
difference in JAFROC FOMs between the modalities (P = 0.059). The FROC curves from the three modalities are 
shown in Supplementary Fig. S2 Both reviewers had a higher lesion conspicuity rating for NCCT with sCECT 
compared to NCCT alone (P ≤ 0.001 for both), and both also rated CECT images higher in comparison to images 
of the other two groups (P < 0.001 for both; Fig. 6, Supplementary Table S1).

Discussion
This study demonstrated the technical feasibility of deep learning-based synthetic contrast-enhanced CT 
(sCECT) in chest CT and evaluated the performance of this approach in depicting mediastinal lymph nodes. 
In patients with mediastinal lymphadenopathy, sCECT demonstrated a higher contrast-to-noise ratio of lymph 
nodes (6.15 vs 0.74; P < 0.001) than non-contrast CT (NCCT). In an observer study on the same patients, radiolo-
gists detected more lymph nodes (reviewer 1, 76% [42 of 55 nodes] vs 49% [27 of 55 nodes], P = 0.003; reviewer 
2, 38% [21 of 55 nodes] vs 29% [16 of 55 nodes], P = 0.06) with higher lesion conspicuity (P ≤ 0.001) on NCCT 
with sCECT than on NCCT alone. The reader-averaged JAFROC FOMs calculated from NCCT alone, NCCT 
with sCECT, and CECT were 0.48, 0.52, and 0.68, respectively. There was no significant difference in JAFROC 
FOMs between the modalities (P = 0.059).

The most important strength of the current study is that we performed technical validation on a heteroge-
neous test set of CT data, including various CT vendors and scanning parameters. Many studies have shown 
deep learning applications of image-to-image synthesis in radiology, including cross-modality synthesis and 
reconstruction, but reports on external data are rare3. We believe that the quantitative performance of the pro-
posed model shows the potential for generalizability, which is essential for any deep learning model to be used 
in clinical practice22.

Few previous studies have applied deep learning for synthetic contrast enhancement in CT. Santini et al.5 
demonstrated synthetic enhancement in non-contrast cardiac CT to delineate the left cardiac chambers. Liu 
et al.23 proposed a deep learning model to generate synthetic enhancement of major arteries in non-contrast 

Figure 5.   Images of a 78-year-old man with lung cancer and multiple mediastinal lymph node metastases from 
test set 2. Non-contrast CT (A, D), synthetic contrast-enhanced CT (B, E), and contrast-enhanced CT (C, F). 
Hilar lymph nodes (arrows), which are clearly visible on contrast-enhanced CT, are better distinguished from 
adjacent pulmonary vessels (arrowheads) on synthetic contrast-enhanced CT than on non-contrast CT.
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abdominopelvic CT. However, to our knowledge, there are no previous studies that have performed end-to-
end conversion of a whole volume of NCCT into sCECT images. We believe that acquiring VNC CT in the 
development set played a crucial role in the successful training of the proposed model. Misalignment between 
non-contrast and ground-truth contrast-enhanced images is an obstacle in the development of synthetic contrast 
enhancement24,25. The VNC reconstruction of dual-energy CT enabled perfect spatial registration between the 
input and ground truth.

The observer study performed by two radiologists showed that the mediastinal lymph nodes were more con-
spicuous on sCECT than on NCCT, which can be attributed to the higher CNR of the lymph nodes. However, 
only one radiologist showed a statistically significant increase in the detection rate on sCECT images compared 
to NCCT images. The trained model relatively poorly delineated hilar and segmental lymph nodes adjacent to 
pulmonary vessels that are often difficult to detect on NCCT. Further training on a more heterogeneous group of 
patients with mediastinal lymphadenopathy may improve the model’s performance. Nonetheless, the proposed 
model successfully generated sCECT images with higher CNR in terms of technical feasibility.

Importantly, we do not claim that our deep learning implementation or methods to generate sCECT can 
replace CECT. The ultimate goal of our study on sCECT is to yield additional information, including improved 
lesion conspicuity and detectability, from NCCT, but not to predict the degree or pattern of contrast enhance-
ment of the lesions. Not only does a vast majority of chest CT not require the use of contrast media, but also 
sCECT has a potential benefit in patients under certain conditions. These include allergy to iodinated contrast 
media, frequent CT examinations, chronic kidney disease, and poor vascular access. Additionally, we believe 
that sCECT can be utilized as a type of post-processing technique. A future application of sCECT is its use in 
automated volumetric segmentation and analysis. A previous study used synthetic non-contrast CT to improve 
the generalizability of CT segmentation tasks26. Likewise, sCECT may enable segmentation tools based on CECT 
to be generalized to NCCT data.

Our study has several limitations. First, our study included a small number of patients. However, such a 
number is reasonable as generative models demand high computational loads, unlike classification models. 
Several previous studies on image synthesis in radiology were also based on small study populations18,27. Second, 
we could not strictly control CT protocols and indications because of the retrospective nature of our study. The 
ideal training and test sets might have been patients with similar diseases and similar CT protocols. However, 
dual-energy CT with routine contrast amount or CT angiography for suspected lung cancer is not commonly 
performed in clinical practice. Lastly, our proposed model may not be an optimal deep learning approach for 
sCECT. Comparison and combination with different approaches including CNN (e.g., U-Net7) and generative 
models based on unpaired data (e.g., CycleGAN28) are warranted.

In conclusion, we implemented a deep learning model for generating synthetic contrast enhancement from 
non-contrast chest CT. Synthetic contrast-enhanced CT demonstrated good quantitative performance in terms of 
image similarity metrics and improved depiction of mediastinal lymph nodes. Applying the proposed deep learn-
ing model in clinical practice requires further studies on a larger population with more heterogeneous diseases.
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