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Abstract: RNA interference (RNAi) efficiency dramatically varies among different nematodes, which
impacts research on their gene function and pest control. Bursaphelenchus xylophilus is a pine wood
nematode in which RNAi-mediated gene silencing has unstable interference efficiency through
soaking in dsRNA solutions, the factors of which remain unknown. Using agarose gel electrophoresis,
we found that dsRNA can be degraded by nematode secretions in the soaking system which is
responsible for the low RNAi efficiency. Based on the previously published genome and secretome
data of B. xylophilus, 154 nucleases were screened including 11 extracellular nucleases which are
potential factors reducing RNAi efficacy. To confirm the function of nucleases in RNAi efficiency,
eight extracellular nuclease genes (BxyNuc1-8) were cloned in the genome. BxyNuc4, BxyNuc6 and
BxyNuc7 can be upregulated in response to dsGFP, considered as the major nuclease performing
dsRNA degradation. After soaking with the dsRNA of nucleases BxyNuc4/BxyNuc6/BxyNuc7 and
Pat10 gene (ineffective in RNAi) simultaneously for 24 h, the expression of Pat10 gene decreased
by 23.25%, 26.05% and 11.29%, respectively. With soaking for 36 h, the expression of Pat10 gene
decreased by 43.25% and 33.25% in dsBxyNuc6+dsPat10 and dsBxyNuc7+dsPat10 groups, respectively.
However, without dsPat10, dsBxyNuc7 alone could cause downregulation of Pat10 gene expression,
while dsBxyNuc6 could not disturb this gene. In conclusion, the nuclease BxyNuc6 might be a major
barrier to the RNAi efficiency in B. xylophilus.

Keywords: Bursaphelenchus xylophilus; RNAi efficiency; dsRNA stability; extracellular nuclease

1. Introduction

The pine wood nematode, Bursaphelenchus xylophilus, is a notorious, invasive, plant-
parasitic nematode that causes pine wilt disease [1], which is the most complex and
devastating disease in forest ecosystems in China, South Korea, Japan, Portugal and other
European countries [2–4]. It has caused significant economic and ecological damage in
China since it was first reported in Nanjing in 1982 [5]. Pine wilt disease has spread rapidly
to 19 provinces including 731 county-level administrative regions in China [6]. Upon
invasion of a pine tree, B. xylophilus can reproduce quickly and destroy the vascular system
of the entire tree, causing wilting and death in only a few weeks [7]. The main control
measures include trunk injection of nematicide and eradication of the damaged trees and
vector insects. However, large-scale application of pesticides has led to environmental
issues and health concerns [8]. Therefore, development of an efficient and environmentally
friendly approach to control B. xylophilus is urgently needed. RNA interference (RNAi)
is a cellular mechanism in which double-stranded RNA (dsRNA) molecules drive the
post-transcriptional silencing of genes with homologous sequences [9]. Since the RNAi
response was first described in the free-living nematode Caenorhabditis elegans [10], it
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has become a valuable tool for studying gene function of nematodes, and it may be a
promising approach for the control of plant-parasitic nematodes [11]. The interference of
plant-parasitic nematodes is mostly achieved by soaking [12,13]. However, the efficiency
of this approach varies widely with the nematode species [14]. In B. xylophilus, the RNAi
efficiency ranged from 30% to 80%, while some studies showed no effect [15–18]. Even when
targeting the same gene, the experimental results of different studies were inconsistent. For
example, the mortality rate of pine wood nematode is up to 80% after interference with
BxAK1 for 8 h [19]. However, in another report, the nematodes did not die or show the
expected phenotype changes by feeding yeast cells, which can express dsRNA to interfere
with AK1 and AK2 (iGEM. http://2018igemorg/Team:Kyoto/Experiments (accessed on
15 November 2021)).

Efficient RNAi-induced gene silencing requires some essential processes, including
delivery of dsRNA, uptake from the hemolymph or gut, dsRNA processing by RNAi
enzymes, intracellular transport and expression of the core RNAi machinery [20]. Above
all, the stability of dsRNA is the first step to influencing RNAi efficiency before uptake.
When ingested, dsRNA should avoid dsRNase degradation and move from intestinal or
hemolymph lumen to tissues to effectively exert its inhibitory effect. In recent years, many
studies have suggested that extracellular nuclease is the important factor leading to low
RNAi efficiency in insects, such as Ostrinia furnacalis [21] and Drosophila suzukii [22]. When
silencing the extracellular nuclease or inhibiting the activity of enzymes, RNAi efficiency
is significantly improved. However, different insects have different types and activities
of extracellular nucleases in different physiological states, which may be an important
factor affecting the difference and instability of RNAi efficiency in insects [23,24]. Plant-
parasitic nematodes secrete a variety of functional enzymes during their feeding process to
digest cellular components and resist plant defense responses, among which extracellular
nucleases play an important biological role in the absorption of nutrients and removal of
alien substances [25,26]. At present, the function of plant-parasitic nematode extracellular
nucleases is scarcely studied, and their effect on RNAi efficiency is still unclear. In the study
of pine wood nematodes, there have been few proposed solutions to the problems of low
interference efficiency or ineffective interference.

Through our study we want to draw attention to whether the extracellular nucleases
of B. xylophilus can degrade dsRNA in the soaking system, affecting the stability of dsRNA
before it is taken up by nematode intestinal cells. Therefore, screening key nucleases and
clarifying the function of these enzymes in B. xylophilus RNAi has theoretical significance
for the study of functional genes and production of new control methods for B. xylophilus.

2. Results
2.1. In Vitro Degradation of dsRNA by Nematodes

The dsGFP and dsPat10 were incubated at 25 ◦C with nematodes for 24 and 48 h,
respectively. After 24 h, dsRNA showed obvious degradation and the intensity of elec-
trophoretic bands of the nematode treatment group of dsGFP and dsPat10 had significantly
reduced by 56.2% and 67.2%, respectively (Figures 1a and 2). After 48 h, the electrophoretic
bands of the nematode treatment group were almost invisible (Figure 2). The relative
intensity of electrophoretic bands was only 0.081 and 0.073 in dsGFP and dsPat10 groups,
respectively (Figure 1a).

In order to detect whether the secretions of B. xylophilus in water degrade dsRNA,
the sterilized supernatant of B. xylophilus was collected. Compared with the supernatant-
heated control group and the water-immersed control group, the unheated supernatant
treatment group of dsGFP and dsPat10 showed significantly weaker electrophoretic bands
at 24 and 48 h (Figures 1b and 3). However, not all of them were degraded (Figure 3). The
relative intensity of heated supernatant has no significant difference with the water control
in dsGFP groups for 48 h and dsPat10 groups for 48 h (Figure 1b). The degradation effect of
the supernatant group was lower than that of the nematode group (Figures 2 and 3). It is
suggested that enzymes in the soaking system of B. xylophilus could degrade dsRNA, and
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the presence of nematodes accelerates the degradation of dsRNA. On the one hand, some
of the dsRNA was ingested by nematodes; on the other hand, the nematode may secrete
more enzymes.

Figure 1. Relative intensity of agarose gel electrophoretic bands. (a) The relative intensity of elec-
trophoretic bands after dsRNA and nematodes soaked for 24 and 48 h. (b) The relative intensity
of electrophoretic bands after dsRNA and nematode secretions soaked for 24 and 48 h. Relative
intensity differences between two groups were calculated using the independent samples t test. Data
are presented as mean ± SE, *** p < 0.001; * p < 0.05; different letters indicate significant difference
(p < 0.05).

Figure 2. Agarose gel electrophoresis results of dsRNA and nematodes soaked for 24 and 48 h.
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Figure 3. Agarose gel electrophoresis results of dsRNA and nematode secretions soaked for 24 and
48 h.

2.2. Screening of Extracellular Nuclease Genes

The extracellular nucleases of B. xylophilus may contribute to the degradation of dsRNA
in vitro. To confirm whether or which nucleases secreted by nematodes cause dsRNA
degradation, we screened the extracellular nuclease genes of B. xylophilus. According
to the reported genome database of B. xylophilus, 154 nuclease genes were preliminarily
screened (Table S2), and 11 extracellular nuclease genes were screened through signal
peptide prediction. Among them, eight genes have been successfully cloned, named
BxyNuc1-8 (Accession numbers: OP482151-OP482158). The comparison table between
accession number and gene ID of these eight genes is shown in Table S3. The ORF length,
amino acid sequence length, signal peptide position, isoelectric point and relative molecular
mass of these eight genes were analyzed (Table 1). The molecular weight of the encoded
proteins was approximately 30–40 kDa. According to the phylogenetic analysis, BxyNuc1,
BxyNuc2, BxyNuc3 and BxyNuc7 are far from the other nucleases in clustering. The BxyNuc6
is in a clade with plant-parasitic nematodes and insects, and it is speculated that it may
have similar dsRNA degradation function to the reported nuclease of insects. Furthermore,
BxyNuc4, BxyNuc5 and BxyNuc8 are in a clade with mammalian parasitic nematodes
(Figure 4).

Table 1. Information table of cloned B. xylophilus extracellular nucleases.

Name Accession
Number

ORF
Length

Amino Acid
Sequence Length Signal Peptide Theoretical

pI/Mw

BxyNuc1 OP482151 993 330 20–21.VAS-KS 5.38/37,069.64

BxyNuc2 OP482152 1068 355 21–22.AEA-AG 6.37/40,630.98

BxyNuc3 OP482153 1035 344 20–21.VAA-SH 7.26/39,173.47

BxyNuc4 OP482154 933 310 17–18.GNA-AI 8.38/34,944.08

BxyNuc5 OP482155 890 296 15–16.TSA-QI 8.85/33,692.55

BxyNuc6 OP482156 927 308 18–19.ICG-TQ 9.12/35,178.94

BxyNuc7 OP482157 963 320 19–20.AQG-IG 5.72/36,009.80

BxyNuc8 OP482158 933 310 17–18.GNA-VI 8.58/34,493.57
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Figure 4. A phylogenetic tree constructed using 75 amino acid sequences from B. xylophilus, C. elegans,
plant-parasitic nematodes, insects, mammalian parasitic nematodes and microorganisms with the
maximum likelihood method (1000 bootstrap repeats).

2.3. Extracellular Nuclease Gene Response to dsGFP

In order to screen extracellular nuclease genes in response to dsRNA soaking, the
relative mRNA expression levels of the cloned nuclease genes were detected by qRT-PCR
after soaking nematodes with non-target dsGFP. The results showed that the expression
of nuclease BxyNuc4 and BxyNuc6 can be significantly upregulated by introduction of
dsGFP for 24 h. The expression of BxyNuc1, BxyNuc2 and BxyNuc3 were significantly
downregulated (Figure 5). After soaking for 48 h, the expression of nuclease BxyNuc7
was significantly upregulated compared with the control (Figure 5). Furthermore, the
expression of BxyNuc4 and BxyNuc6 were upregulated. Therefore, the nuclease genes
BxyNuc4, BxyNuc6 and BxyNuc7 were used for further experiments and may play a major
role in the degradation of dsRNA during the RNAi process of B. xylophilus.
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Figure 5. The relative expression level of nuclease genes in nematodes after soaking with dsGFP for
24 and 48 h. Gene expression differences between two groups were calculated using the independent
samples t test. Data are presented as mean ± SE, *** p < 0.001; ** p < 0.01; * p < 0.05.

2.4. The Silencing of Extracellular Nuclease Genes Improves RNAi Efficiency

Multiple experiments showed that the expression of Pat10 gene was not downregu-
lated after 24 and 36 h of interference (Figure 6a). However, the nuclease BxyNuc4, BxyNuc6
and BxyNuc7 can be effectively interfered (Figure 6b). In order to further investigate the
contributions of nucleases BxyNuc4, BxyNuc6 and BxyNuc7 to the inefficiency of RNAi in B.
xylophilus, we mixed the same concentration of nuclease dsRNA and dsPat10 (0.5 µg·µL−1)
for interference simultaneously. The results showed that the transcript levels of each nu-
clease gene were significantly reduced for 24 h (Figure S1). At the same time, the relative
mRNA expression level of Pat10 gene was 0.975, 0.827 and 0.855 in dsBxyNuc4+dsPat10,
dsBxyNuc6+dsPat10 and dsBxyNuc7+dsPat10 groups after 24 h of interference, respectively
(Figure 7a). It is indicated that after co-interference, BxyNuc6 and BxyNuc7 could signifi-
cantly downregulate the expression of Pat10 gene. Thus, we choose BxyNuc6 and BxyNuc7
to interfere simultaneously with Pat10 for 36 h. The expression of Pat10 gene was 0.641 and
0.741 in dsBxyNuc6+dsPat10 and dsBxyNuc7+dsPat10 groups, respectively (Figure 7b). It
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was therefore revealed that the RNAi efficiency of Pat10 was indeed improved over time
with the participation of nucleases BxyNuc6 or BxyNuc7.

Figure 6. The relative expression level of Pat10 and nucleases genes. (a) The relative mRNA level of
Pat10 after interfering for 24 and 36 h. (b) The relative mRNA level of BxyNuc4/BxyNuc6/BxyNuc7
after interfering for 24 h. Gene expression differences between two groups were calculated using the
independent samples t test. Data are presented as mean ± SE, ** p < 0.01; * p < 0.05.

Using dsGFP+dsBxyNuc6/Nuc7 as a group to detect the expression of Pat10 for the
purpose of excluding the influence of nuclease dsRNA alone on the interference of Pat10
gene. Compared with the control (dsGFP+dsGFP), the expression of Pat10 was 1.189, 1.056
and 0.757 in dsGFP+dsPat10, dsGFP+dsBxyNuc6 and dsBxyNuc6+dsPat10 groups, respec-
tively (Figure 7b). The results showed that dsBxyNuc6 alone (without dsPat10) does not
cause downregulation of the Pat10. However, when the nuclease was changed to BxyNuc7,
the results showed that the expression of Pat10 was 0.819 and 0.874 in dsGFP+dsBxyNuc7
and dsBxyNuc7+dsPat10 groups, respectively (Figure 7b). It is suggested that dsBxyNuc7
(without dsPat10) could cause the downregulation of Pat10. To sum up, the interference
efficiency of Pat10 gene can indeed be improved by interfering with nuclease BxyNuc6
or BxyNuc7. However, only the BxyNuc6 can directly affect RNAi efficiency, and the in-
terference of BxyNuc7 could generate downregulation of Pat10, probably because this
interference affected the vital movement of nematodes and led to changes in the expression
of Pat10. This provides a feasible method for the low efficiency of lethal gene interference.
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Figure 7. The relative expression level of Pat10. (a) The relative mRNA level of Pat10 after interfering
with Pat10 gene and nucleases BxyNuc4/BxyNuc6/BxyNuc8 genes simultaneously for 24 h. (b) The
relative mRNA level of Pat10 after interfering with Pat10 gene and nucleases BxyNuc6/BxyNuc7
genes simultaneously for 36 h. Gene expression differences between two groups were calculated
using the independent samples t test. Data are presented as mean ± SE, *** p < 0.001; different letters
indicate significant difference (p < 0.05).

3. Discussion

RNAi technology is becoming one of the most promising tools for gene function stud-
ies of nematodes. However, RNAi efficiency is relatively low and unstable in plant-parasitic
nematodes compared with C. elegans. It is known that the efficiency of gene knockdown
by RNAi is influenced by several factors including dsRNA degradation, different deliv-
ery method of dsRNA, selection of target genes and the susceptibility of organisms to
RNAi [15,23,27,28]. Our study found that dsRNA is unstable in the B. xylophilus soaking
system. The agarose gel electrophoresis results suggest that the nuclease secreted by B. xy-
lophilus is probably the major reason for this aspect. Interference with nuclease BxyNuc6
and BxyNuc7 significantly reduced the expression of these two nuclease transcripts and
substantially improved RNAi efficiency of Pat10 gene as well (Figures S1 and 7a). This pro-
vides an important basis for the follow-up research, but it still cannot rule out the possible
degradation function of other extracellular nucleases such as BxyNuc4. A phylogenetic
analysis showed high similarity among the BxyNuc6 and the nucleases that have been
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reported to degrade dsRNA in insects [20,22,29–31]. Whether the BxyNuc6 also has the
function of degrading dsRNA needs to be further verified with a protein function study.

In insects, numerous studies have revealed that a poor RNAi response is usually
associated with high double-stranded RNA (dsRNA)-degrading activity. The oral delivery
of dsRNA usually has lower RNAi efficiency compared with microinjection, and the reason
for this phenomenon is the exposure of the dsRNA to nucleases secreted in the gut juice
and the unsuitable gut pH. Due to the degradation of dsRNA, the uptake of dsRNA by cells
is not enough to cause the continuous interference of target genes, which may be the reason
for the poor interference effect of this method. Therefore, dsRNA exposure should persist
long enough to allow cellular uptake [20]. Furthermore, specifically silencing these nuclease
genes can significantly improve the interference efficiency of oral dsRNA. This result was
confirmed in multiple insect species, for example, Tribolium castaneum [32], Anthonomus
grandis [20], Ostrinia furnacalis [21] and Aedes aegypti [33]. Understanding the interaction
between the insects’ nuclease activity and dsRNA is expected to improve the application of
RNAi technology in pest control, as well as in plant-parasitic nematodes. However, the role
of extracellular nucleases in plant-parasitic nematodes remains uncertain. In C. elegans, only
an endonuclease (NM_058970.4) has been reported [34] and seven extracellular nucleases
were identified (Figure S2). In this study, a total of 11 extracellular nucleases were identified
in B. xylophilus and the function of BxyNuc4, BxyNuc6 and BxyNuc7 may be related to
dsRNA degradation in nematodes. It is implied that the B. xylophilus has stronger ability of
nucleic acid degradation outside the cell. In a leaf beetle (Plagiodera versicolora), it is proven
that the degradation products of dsRNA can be utilized by gut bacteria for growth [35].
However, in B. xylophilus, whether the degraded dsRNA is utilized by nematodes needs to
be further explored.

Different extracellular nucleases may have functional complementarity. The down-
regulation of the target nuclease gene may lead to increased expression of other nucleases.
This phenomenon has been demonstrated in the red flour beetle Tribolium castaneum [32].
Furthermore, some off-target effects also occur between different nucleases genes [32,36].
In this study, we found some extracellular nucleases were highly expressed in response
to dsGFP, and the others were significantly downregulated. Whether there is functional
complementarity between BxyNuc4, BxyNuc6 and BxyNuc7 or other extracellular nucleases
screened in this study still needs to be confirmed. At the same time, dsRNA is also likely to
be degraded in the gut of nematodes, like most insects. Since the successful implementation
of the RNAi process requires the participation of multiple links [9,23,37], whether there are
other links that affect the interference efficiency is unknown.

In the process of interference, different target genes showed different interference effi-
ciency. For example, in the root-knot nematode (Meloidogyne incognita), 20 genes involved
in the RNAi pathways were investigated, and two of the genes could not be knocked down.
Only 10 of the genes were significantly downregulated. The results showed that the genes
may respond to RNAi knockdown differently, so an exhaustive assessment of target genes
as targets for nematode control via RNAi is imperative [13]. In B. xylophilus, low RNAi
efficiency has been described for genes such as Bx-unc-87, Bx-tmy-1 and Bx-hsp-1 [15,38].
In this study, the Pat10 gene showed lower RNAi efficiency than that of the nucleases
(Figure 6). This may also be related to the gene itself or the location of gene expression [38].

In recent years, achieving RNAi by feeding nematodes fungi which can express dsRNA
is a promising method for nematode control [16,39], but the soaking method still has a
considerable role. It can preliminarily screen the functions of some important genes of
nematodes with relatively simple operation. Therefore, it is more important to improve
the interference efficiency of the soaking method. The co-interference of nucleases and
target genes has been proved to be an effective method in this study. In addition, additives
that alter the enzymatic activity or pH in the soaking system might be a good solution for
enhancing RNAi efficiency [23]. In conclusion, our study found that the in vitro protein
secretion of B. xylophilus can degrade dsRNA in the soaking system, affecting the stability
of dsRNA before it is taken up by nematode intestinal cells. Among the nucleases that we



Int. J. Mol. Sci. 2022, 23, 12278 10 of 13

screened, BxyNuc6 might be a major barrier to the RNAi efficiency in B. xylophilus. The
studies of extracellular nuclease illustrate the importance of delivery method of dsRNA
and provide a feasible idea for improving RNAi efficiency.

4. Materials and Methods
4.1. Cultivation of Nematodes

Bursaphelenchus xylophilus NXY61 was isolated from diseased Pinus massoniana in
Ningbo, Zhejiang Province, China, in May 2015. This nematode has been cultured in the
laboratory for generations. Thus, the nematodes we used were a stable genetic laboratory
strain. The nematodes were cultured on the mycelia of Botrytis cinerea on potato dextrose
agar (PDA) plates at 25 ◦C for 5 days. The nematodes were washed twice with 0.1× PBST
buffer and collected in a 15 mL centrifuge tube via centrifugation at 3000 rpm for 30 s.
These nematodes were cleaned with sterile water 3~5 times until the supernatant was clear.
In order to prevent the influence of bacteria during the experiment, the nematodes were
treated with 0.5% sodium hypochlorite for 30 s and cleaned with sterile 1× PBS buffer
twice. Finally, the activity of nematodes was observed under the microscope to ensure the
nematodes thrived, and nuclease-free water was added for further experiments.

4.2. Synthesis of dsRNA

The total RNA was extracted from nematodes using TransZol Up Plus RNA Kit (Trans-
gen Biotech, Beijing, China). cDNA was synthesized from 1 µg of total RNA using the
PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa, Beijing, China). The DNA template
was prepared for dsRNA synthesis by using PCR with primers designed to add T7 pro-
moter sites at both ends. All primer sequences are listed in Table S1. Subsequently, dsRNA
was synthesized and purified using the T7 RiboMAXTM Express RNAi System (Promega,
Madison, USA) according to the manufacturer’s instructions. Integrity of dsRNAs was eval-
uated by electrophoresis in 1.2% agarose gels, and the amounts of dsRNA were quantified
with a spectrophotometer (Nano-Drop 2000, Thermo Scientific, Waltham, USA).

4.3. Degradation of dsRNA Detected by Agarose Gel Electrophoresis

Approximately 300 nematodes were incubated with 5 µL of dsRNA (final concentra-
tion 0.5 µg·µL−1) in a 50 µL volume. Reactions were incubated at 25 ◦C for 24 and 48 h. The
sample was dissolved in an equal volume of nuclease-free water and centrifuged briefly for
30 s. Taking part of the supernatant and add RNA Loading Dye (Takara, Beijing, China),
the mixture was heated at 65 ◦C for 10 min. The dsRNA integrity was analyzed by means
of 1.2% agarose gel electrophoresis. Gels were scanned using a fluorescence laser scanner
(Azure Biosystems, Dublin, USA).

In addition, approximately 100,000 nematodes were incubated in a shaking incubator
at 180 rpm for 48 h at 25 ◦C. The nematodes were centrifuged at 5000 rpm for 3 min, and
the supernatant was sterilized with a 0.22 µm filter. A part of the supernatant was heated
at 80 ◦C for 20 min to inactivate the enzyme. A total of 45 µL of heated and unheated
supernatants was incubated with 5 µL of dsRNA (final concentration 0.5 µg·µL−1) for 24
and 48 h separately. As a positive control, the same concentration and volume dsRNA
was incubated in nuclease-free water. There were three replicates for each treatment. The
integrity of the dsRNA was evaluated using the same method as above. The gray values
of the electrophoretic bands were measured with Azure Spot software (Azure Biosystems,
Dublin, USA).

4.4. Screening and Cloning of B. xylophilus Extracellular Nuclease Genes

To obtain an initial set of candidate nucleases in B. xylophilus, the amino acid se-
quences of Caenorhabditis elegans (NP_491371.1, NP_492590.1) were used as query sequences
to search the B. xylophilus transcriptome database (PRJEA64437) using the local BLAST
program (blast-2.2.30+). At the same time, the nucleases were retrieved according to the an-
notation of the B. xylophilus genome (PRJEA64437). All screened nucleases were predicted
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by signal peptide on the SignalP-5.0 Server (http://www.cbs.dtu.dk/services/SignalP/
(accessed on 12 October 2021)) to determine whether they could be secreted out of the
cell with the signal peptide. Each retrieved full-length open reading frame (ORF) was
confirmed by PCR amplification with the 2× PCR Mix (Tiangen, Beijing, China). The PCR
program was as follows: 94 ◦C for 3 min followed by 37 cycles of 94 ◦C for 30 s, 55 ◦C for
30 s and 72 ◦C for 1 min. The predicted target band was excised and recovered using the
QIAEX II Gel Extraction Kit (QIAGEN, Shanghai, China). The samples were subsequently
sequenced by the BGI company to verify the nucleotide sequences.

The molecular weight and predicted theoretical isoelectric point (pI) were calculated
using the Compute pI/Mw tool (https://web.expasy.org/compute_pi/ (accessed on 12
October 2021)). Using the cloned extracellular nuclease sequences of B. xylophilus as
query to screen the orthologous proteins (query cover > 70%) in other species utilizing the
blastp tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 20 December 2021)). The
insect nuclease sequences were derived from articles reporting that these nucleases have the
function of dsRNA degradation. These amino acid sequences were used for the construction
of a phylogenetic tree using the maximum likelihood method (1000 bootstrap repeats).

4.5. Interference of Target Gene and Extracellular Nuclease Genes

The Caenorhabditis elegans gene pat10 is an essential component of the body wall
muscle [40] and thus is required for nematode movement. The B. xylophilus orthologs of
this gene were used in this study. Using the amino acid sequence of C. elegans pat10 gene
(wormbase ID F54C1.7) as the query sequence, the protein sequences with the highest
percentage similarity were further researched by searching the published B. xylophilus
genome in NCBI using tblastn. Sequences with the same alignment results were searched in
the dataset of the B. xylophilus genome (PRJEA64437) to obtain the cDNA sequence of Pat10.

Freshly cultured nematodes of B. xylophilus (a mix of adults and juveniles, approximately
10,000 individuals) were immersed in 100 µL solution containing dsRNA (final concentration
1 µg·µL−1) and incubated in a shaking incubator at 180 rpm for 24 h/36 h/48 h at 25 ◦C.
The dsRNA solutions which contained the same final concentrations (0.5 µg·µL−1) of Pat10
dsRNA and nuclease dsRNA were used for simultaneous interference. Equal numbers of
nematodes immersed in GFP dsRNA solution were treated as controls. There were three
replicates for each treatment. After soaking, the samples of each treatment were thoroughly
washed several times in 0.1× PBST sterile water and then used for further experiments.

4.6. Quantitative Reverse Transcription PCR (qRT-PCR)

Prior to use in qRT-PCR, cDNA was 1:4 diluted with ddH2O. All primers used were
designed with Primer Premier 6. The qPCR reaction was set up in 20 µL containing 1 µL of
cDNA, 10 µL of TB Green Premix DimerEraser (Perfect Real Time), 1 µL of each primer and
ddH2O. cDNA templates were denatured at 95 ◦C for 30 s, followed by 40 three-segment
cycles of amplification at 95 (5 s), 55 (30 s) and 72 ◦C (30 s). A melting curve analysis was
performed after the qPCR run (15 s at 65 ◦C). The actin gene of B. xylophilus was used
as the internal control. The experiment had three biological replicates and four technical
replicates. According to the cycle threshold (Ct) value and the dissolution curve, the 2−∆∆Ct

method was used to estimate the relative expression level of the target gene and verify the
interference efficiency.

4.7. Statistical Analysis

Statistical significance of differences in the mRNA expression levels among different
treatment groups was determined by one-way analysis of variance in PASW Statistics 18.0
software (at p < 0.05).

Supplementary Materials: The following supporting information can be downloaded at: https:
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