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ABSTRACT Giant DNA viruses of eukaryotes are notable for their extraordinary genome
size and coding capacity. Once thought to be oddities in the virus world, these elusive
microbes have turned out to be widely occurring in marine, freshwater, and terrestrial
ecosystems and are commonly associated with diverse hosts, in particular microbial
eukaryotes. This commentary discusses how new sequencing techniques and informa-
tion can inform us about the interactions between giant viruses and eukaryotic hosts
during the viral replication cycle and their implications for ecological and evolutionary
processes across different spatiotemporal scales.
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Viruses are traditionally defined as small infectious biological entities. However, a
rapidly increasing number of viruses with large particles and genomes are associ-

ated with diverse eukaryotes, including vertebrates, invertebrates, algae, and various
other protists from across the eukaryotic tree of life (1). These nucleocytoplasmic large
double-stranded DNA viruses (NCLDVs) are classified as the phylum Nucleocytoviricota
(https://talk.ictvonline.org/taxonomy). While NCLDVs vary along a size continuum, their
relatively gigantic dimensions justify the use of giant viruses (GVs) to refer to this
group of viruses with shared characteristics and genes.

Except for smallpox, African swine fever, and some deadly diseases in fish, tetra-
pods, and insects, most of the seven or so GV families recognized to date—major
clades in phylogenetic trees—infect only or predominantly microorganisms. Microbial,
mostly unicellular, eukaryotes compose the vast majority of eukaryotic taxa and exhibit
immense diversity in organelles, cellular structures, and life cycles. Although they make
up less than 1% of the biomass on our planet (2), they can pose public health concerns
and exert primary roles in ecosystem functioning across a wide range of aquatic, terres-
trial, artificial, and host-associated environments. GV infections of microbial eukaryotes
can thus have important implications for our environment.

CHALLENGES AND OPPORTUNITIES IN HIGH-THROUGHPUT METHODS

Approaches to studying GVs encompass culture-dependent and culture-independ-
ent methods (Fig. 1). Since the 1970s, GVs have been observed from a number of mi-
crobial eukaryotes in the field, isolated, and cultured in the lab. Because of their experi-
mental tractability, these cultured viruses are among the better studied GVs, such as
chloroviruses infecting green algae that are often endosymbionts in ciliates and other
eukaryotes (3). Most of the GVs, however, are only known as partial genomes from
environmental sequencing data of mixed community samples. These metagenome-
assembled genomes (MAGs) allow us to tap into the genomic diversity of GVs in uncul-
tured samples (4). In addition, metatranscriptomic sequencing of expressed transcripts
can target the functional repertoires of uncultured GVs (5). Mounting evidence suggests
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that GVs are the major component of the environmental eukaryotic virome at both the
genomic and transcriptomic levels.

A major disadvantage of meta-omic approaches is their bulk sampling nature that
prevents tracing a particular genomic fragment back to a specific cell or organism.
Cooccurrence analyses can help predict the eukaryotic taxa of GV hosts (6), but the
exact hosts remain elusive due to the complex composition of communities. An alter-
native approach is single-particle sequencing that can be applied to individual virions
(7) or cells (8). The sequencing of single cells isolated by fluorescence-activated cell sort-
ing (FACS) avoids chimeric contigs stemming from different cells, and if a GV genome,
possibly in multiple copies, is inside a cell, a direct GV-host link can be established.
Single-cell RNA-sequencing (scRNA-seq) can additionally profile the transcriptomic dy-
namics during GV infection (9). In the Ku lab, we are developing an approach combining
single-cell genomic and transcriptomic sequencing to study GV-host interactions in dif-
ferent environments. While DNA fragments can indicate the existence and abundance
of GVs and other associated microbes, scRNA-seq profiles gene expression patterns of
the interacting partners (10). In addition to host range of uncultured GVs, it could be
useful to reveal complex virus-host relationships (e.g., GV infection of symbionts in
other eukaryotes) and how gene expression of a GV varies with hosts, associated
microbes, or environmental settings. Using this approach, we aim to provide snapshots
of GV-eukaryote interactions in diverse environments and long-term observations of
their dynamics in selected sites.

Despite the relative ease of acquiring omic data, many aspects of viral biology can-
not be studied without lab cultures. It is therefore important to stress the need for
high-throughput protocols for systematic isolation and culture of GVs, for example,
with the use of amoebae that enable the replication of a wide range of GVs (11) or a
customized panel of culturable eukaryotes from a potential GV source environment.
Given that MAGs represent the majority of GVs we know today, reverse genomics and
targeted isolation (12) can also be useful techniques to study selected GVs based on
their MAG sequences.

GIANT VIRUS-EUKARYOTE INTERACTIONS IN ECOLOGICAL AND EVOLUTIONARY
CONTEXTS

The replication cycle of GVs involves virus entry, gene expression, DNA replication,
virion assembly, and release (Fig. 2). Typical virion release causes cell lysis and dramatic
decline of host populations, which is a crucial mechanism for demise of massive annual
coccolithophore algal blooms and thus for global carbon cycling (13). However, release
of virions through exocytosis has also been observed in different GV-host systems (14).

FIG 1 Approaches to studying giant viruses in the environment. Interactions between giant viruses and
eukaryotic hosts in diverse ecosystems can be examined using culture-dependent methods or culture-
independent meta-omic and single-particle sequencing.

Commentary

July/August 2021 Volume 6 Issue 4 e00737-21 msystems.asm.org 2

https://msystems.asm.org


In addition, it was shown that a long-term latent period of temperate infection can pre-
cede the typical lytic cell burst, which is induced by host physiological stress (15), sug-
gesting much more delicate dynamics in GV-host interactions.

GV entry into host cells remains poorly understood. For chloroviruses, host recog-
nition seems to depend on cell wall polysaccharide composition and causes differen-
tial attachment to host and nonhost cells (3). Host entry can be a major determinant
of GV host range and might explain why certain phagocytic eukaryotes, including
Acanthamoeba and Vermamoeba, are permissive to diverse GVs, although they are
not necessarily the natural hosts of these GVs (11). In addition, the infection outcome
can be determined by host antiviral pathways (16) or virophage that integrates into
the eukaryotic genome as an antiviral system and is reactivated upon infection by its
specific GV (17). Characterization of GV host range through the aforementioned
approaches is the prerequisite for understanding host switching, virus-host arms
race, and other aspects of GV biology.

Remodeling of cellular transcriptomes is another feature during GV infection. By
avoiding the drawback of bulk sequencing in averaging out intercellular differences,

FIG 2 Schematic overview of known and putative interactions between giant viruses and eukaryotes, as well as the associated ecological
and evolutionary processes and consequences.
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scRNA-seq helped reveal differential shutdown of nucleus-, chloroplast-, and mito-
chondrion-encoded transcripts in coccolithophore cells infected by coccolithovirus (9).
The cellular transcriptome is taken over by virus-encoded transcripts that come in suc-
cessive waves of genes (kinetic classes) tightly regulated by promoter elements, with
RNA and DNA polymerase transcripts followed by capsid protein and packaging
ATPase (9).

DNA replication and virion assembly are steps where variation among virions can
be generated. Although most GV genes seem to be under purifying selection, experi-
mental evolution studies have found that gene loss and duplications can happen rap-
idly when factors such as culture microbiome (18) or anti-defense genes (19) are
changed. Putative lateral gene transfers from hosts or associated intracellular microbes
have also been reported for various GV lineages (1). These processes and de novo gene
creations together shape the dynamic gene repertoires of GVs, but it is unknown how
promoters of new genes arise and help them integrate into the suitable kinetic class.
We expect the high resolution of scRNA-seq will help better resolve the kinetic classes
in different GV-host systems and contribute to our understanding of promoter and
gene expression evolution across GVs.

GVs can also go into latency instead of virion assembly and lysis, and there is a chance
that their genomes can integrate into host chromosomes and be passed down in the
host lineage, as suggested from widespread GV endogenizations in green algae (20). The
biological role of GV endogenization is unclear, and it remains to be tested whether such
processes have cumulative effects on the eukaryotic gene repertoires as do genes that
arose through organellar endosymbioses (21). It is possible that integrated GV genomic
fragments are similar to abundant nuclear copies of modern plastid and mitochondrial
DNA (NUPTs and NUMTs) that quickly become pseudogenized (22).

GIANT VIRUSES AS EVOLUTIONARY SANDBOXES FOR CELLULAR GENES

One of the biggest surprises from GVs is their coding of genes normally found in only
cellular organisms (1). In addition to translation machinery, genes apparently unrelated to
viral replication—auxiliary metabolic genes—can potentially reprogram infected cells
into a physiological-metabolic state called virocell (23). These genes can encode proteins
absent in the host or homologs of host-encoded proteins. In the latter case, the GV homologs
often have different biochemical properties that could be advantageous for viral replication. In
addition, GV genes (e.g., viral rhodopsins [8]) tend to compose a separate phylogenetic clade
divergent from cellular homologs. These observations suggest that the GV homologs went
on their separate evolutionary path and explored a different part of the protein landscape
that could eventually improve virus fitness.

One research focus in our lab is to elucidate GV gene content variation and evolu-
tion by taking into account the effects of different processes (Fig. 2) and host associa-
tions through comparative analyses. A better understanding of the gene repertoire
would shed light not only on host range evolution, but also on origins of major GV
clades and their implications for the debate on GV origin(s) (24). One such clade of par-
ticular interest is the family Mimiviridae (Imitervirales), likely representing the largest ev-
olutionary radiation of GVs known so far. It is highly abundant in aquatic environments
(4, 6), has greater taxon richness than Bacteria and Archaea (25) and the highest host
diversity among GV families (1, 6), and yet has lower within-family sequence diver-
gence than several other GV families in gene trees (4, 8).

In summary, recent advances in understanding GV-eukaryote relationships are fun-
damentally changing our view of the associated ecological and evolutionary processes
at all levels (Fig. 2). Although we are only beginning to grasp their diversity, it is excit-
ing to witness how our knowledge of GVs has been growing. By combining newly
developed methods in systems microbiology and other fields (Fig. 1), there is great
potential for better comprehending their functional roles and answering challenging
questions about their ecology and evolution, which are also relevant to our global
environment and biological resources.
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