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Chromatin-informed inference of transcriptional
programs in gynecologic and basal breast cancers
Hatice U. Osmanbeyoglu 1,2, Fumiko Shimizu 3,9, Angela Rynne-Vidal 4,9, Direna Alonso-Curbelo5,9,

Hsuan-An Chen 5, Hannah Y. Wen6, Tsz-Lun Yeung4, Petar Jelinic7, Pedram Razavi8, Scott W. Lowe5,

Samuel C. Mok4, Gabriela Chiosis3, Douglas A. Levine 7 & Christina S. Leslie 2

Chromatin accessibility data can elucidate the developmental origin of cancer cells and reveal

the enhancer landscape of key oncogenic transcriptional regulators. We develop a compu-

tational strategy called PSIONIC (patient-specific inference of networks informed by chro-

matin) to combine chromatin accessibility data with large tumor expression data and model

the effect of enhancers on transcriptional programs in multiple cancers. We generate a new

ATAC-seq data profiling chromatin accessibility in gynecologic and basal breast cancer cell

lines and apply PSIONIC to 723 patient and 96 cell line RNA-seq profiles from ovarian,

uterine, and basal breast cancers. Our computational framework enables us to share infor-

mation across tumors to learn patient-specific TF activities, revealing regulatory differences

between and within tumor types. PSIONIC-predicted activity for MTF1 in cell line models

correlates with sensitivity to MTF1 inhibition, showing the potential of our approach for

personalized therapy. Many identified TFs are significantly associated with survival outcome.

To validate PSIONIC-derived prognostic TFs, we perform immunohistochemical analyses in

31 uterine serous tumors for ETV6 and 45 basal breast tumors for MITF and confirm that the

corresponding protein expression patterns are also significantly associated with prognosis.

https://doi.org/10.1038/s41467-019-12291-6 OPEN

1 Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 2Computational & Systems Biology Program,
Memorial Sloan Kettering Cancer Center, New York, NY, USA. 3 Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
4Department of Gynecologic Oncology and Reproductive Medicine—Research, Division of Surgery, The University of Texas MD Anderson Cancer Center,
Houston, TX, USA. 5Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 6Department of Pathology,
Memorial Sloan Kettering Cancer Center, New York, NY, USA. 7 Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New
York, NY, USA. 8Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 9These authors contributed equally: Fumiko Shimizu,
Angela Rynne-Vidal, Direna Alonso-Curbelo. Correspondence and requests for materials should be addressed to H.U.O. (email: osmanbeyogluhu@pitt.edu)
or to C.S.L. (email: cleslie@cbio.mskcc.org)

NATURE COMMUNICATIONS |         (2019) 10:4369 | https://doi.org/10.1038/s41467-019-12291-6 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3175-1777
http://orcid.org/0000-0002-3175-1777
http://orcid.org/0000-0002-3175-1777
http://orcid.org/0000-0002-3175-1777
http://orcid.org/0000-0002-3175-1777
http://orcid.org/0000-0003-4107-2871
http://orcid.org/0000-0003-4107-2871
http://orcid.org/0000-0003-4107-2871
http://orcid.org/0000-0003-4107-2871
http://orcid.org/0000-0003-4107-2871
http://orcid.org/0000-0002-6316-530X
http://orcid.org/0000-0002-6316-530X
http://orcid.org/0000-0002-6316-530X
http://orcid.org/0000-0002-6316-530X
http://orcid.org/0000-0002-6316-530X
http://orcid.org/0000-0002-8979-3670
http://orcid.org/0000-0002-8979-3670
http://orcid.org/0000-0002-8979-3670
http://orcid.org/0000-0002-8979-3670
http://orcid.org/0000-0002-8979-3670
http://orcid.org/0000-0003-1038-8232
http://orcid.org/0000-0003-1038-8232
http://orcid.org/0000-0003-1038-8232
http://orcid.org/0000-0003-1038-8232
http://orcid.org/0000-0003-1038-8232
http://orcid.org/0000-0002-4571-5910
http://orcid.org/0000-0002-4571-5910
http://orcid.org/0000-0002-4571-5910
http://orcid.org/0000-0002-4571-5910
http://orcid.org/0000-0002-4571-5910
mailto:osmanbeyogluhu@pitt.edu
mailto:cleslie@cbio.mskcc.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cancers arise through the accumulation of genetic and
epigenetic alterations that lead to widespread gene
expression changes. Transcription factors (TFs) are

instrumental in driving these gene expression programs, and the
aberrant activity of TFs—induced downstream of activated
oncogenic signaling or in concert with epigenetic modifiers—
often underlies the altered developmental state of cancer cells and
acquisition of cancer-related cellular phenotypes. Data-driven
computational strategies may help to infer patient-specific tran-
scriptional regulatory programs and to identify and ther-
apeutically target the TFs that lead to cancer phenotypes.
Ultimately, such strategies could be used to personalize therapy
and improve patient outcomes.

While several successful methods have been proposed for
learning patient-specific regulatory programs, most regulatory net-
work inference approaches in cancer use expression data only1 or at
best rely on analysis of TF motifs in annotated promoter regions2–4.
However, in a few cancers—notably luminal breast and prostate
cancer—ChIP-seq analyses of key transcriptional regulators, estro-
gen receptor (ER), and androgen receptor (AR) respectively, in both
cell line models5,6 and tumors7,8 have revealed the importance of
enhancers distal to gene promoters in gene regulatory programs.
Incorporating DNA sequence information at intronic and inter-
genic enhancers should therefore improve the modeling of tran-
scriptional regulation in tumors. Leveraging epigenomic data from
cell line models, while imperfect, provides a feasible means to make
a potentially large advance in the computational dissection of
dysregulated gene expression programs in tumors.

Extensive pan-cancer genomic analyses have shown that the
same genes and pathways are targeted by somatic alterations
across multiple tumor types. These results suggest that pan-
cancer modeling of regulatory programs could also be informa-
tive, as similar TFs may be dysregulated across cancers. So far,
however, methods for inferring patient-specific regulatory pro-
grams have been applied to one cancer type at a time1,9. Multitask
learning (MTL) refers to machine-learning algorithms that learn
models for different problems that share information and/or
parameters and provides a statistical framework for learning
patient-specific regulatory models across multiple cancers10. MTL
can improve accuracy by making use of limited data (small
sample sizes) in each task by sharing information through the
common model. This is especially important when reconstructing
regulatory networks from high-throughput data because the
number of parameters to fit is very large relative to the number of
samples. In addition, extensive training data from more common
tumor types may be able to compensate for smaller sample sizes
in similar but rarer cancers.

Large-scale cancer genomics projects such as The Cancer
Genome Atlas (TCGA) and others have suggested molecular
similarities between gynecologic cancers from different sites of
pelvic origin and breast cancers11. Specifically, uterine serous
carcinomas (UCS), high-grade serous ovarian carcinomas
(HGSOCs), and triple negative breast cancers (TNBCs) share
frequent TP53 somatic mutations and widespread somatic copy
number alterations11. HGSOCs and TNBCs also both display
inactivation of similar DNA repair pathways. Though each
gynecologic disease has a variety of histologic subtypes, the most
common and aggressive tumors including HGSOCs (OV)12,
UCS13, and the serous-like subset of uterine (UCEC)14, as well as
basal breast cancer15 were studied by TCGA. These tumors all
lack adequate treatment options for recurrent disease and accu-
rate predictors of response and resistance. Inferring patient-
specific transcriptional regulatory programs may identify and
eventually enable therapeutic targeting of transcriptional
mechanisms underlying gynecologic malignancies for individua-
lized treatment.

To improve inferring regulatory programs across cancer types,
we developed patient-specific inference of networks incorporating
chromatin (PSIONIC), a MTL method that jointly models tran-
scriptional networks for several related cancer types by leveraging
chromatin accessibility data in representative cancer cell lines.
More specifically, PSIONIC integrates regulatory sequence from
ATAC-mapped promoters and enhancers from a panel of cancer
cell lines with RNA-seq data from patient tumors in order to infer
patient-specific TF regulatory activities. We apply our approach
to 723 RNA-seq experiments from gynecologic and basal breast
cancer tumors12–15 as well as 96 cell lines16, using a novel ATAC-
seq data set for cell line models of these cancers. ATAC-seq data
from cell lines allows us to incorporate DNA sequence infor-
mation at intronic and intergenic enhancers to improve the
modeling of transcriptional regulation from tumor data.
Although much work has been done in regression-based infer-
ence of transcriptional regulation from cis-regulatory information
in a single tumor type, we use MTL across different tumor types
to jointly learn patient-specific regulatory models. Our analysis
identifies key transcriptional regulators as well as new prognostic
markers and therapeutic targets.

Results
Pan-cancer modeling of regulatory programs. To systematically
identify TFs that drive tumor-specific gene expression patterns
across multiple cancer types, we developed the PSIONIC compu-
tational framework (Fig. 1a). We started with an atlas of chromatin
accessible events derived from cell line models of the tumor types
to be analyzed, using ATAC-seq profiling data (“Methods” sec-
tion). We represented every gene by its feature vector of TF-
binding scores, where motif information was summarized across all
promoter, intronic, and intergenic chromatin accessible sites
assigned to the gene (see the “Methods” section). Single-task
learning (STL) of a patient-specific regulatory model simply learns
the TF activities that predict normalized gene expression levels in
each tumor independently, using regularized regression (Fig. 1b,
see the “Methods” section). In PSIONIC, we instead adopted a
MTL approach called GO-MTL17 to represent patient-specific TF
activity model vectors across multiple tumor types as linear com-
binations of latent regulatory programs, where both the coefficients
in the linear combination and the latent models were learned
jointly by regression against all the normalized tumor expression
profiles (Fig. 1c, see the “Methods” section). The latent regulatory
programs capture common TF-gene regulatory relationships across
patients both within and between tumor types.

Gynecologic and basal breast cancer ATAC-seq analysis. To
enable PSIONIC modeling for gynecologic and basal breast
tumors, we first generated a reference chromatin accessibility
atlas for uterine (endometrioid, serous, carcinosarcoma), ovarian
serous, and basal breast cancers using a panel of 12 cancer cell
lines representing these five tumor types using the assay for
transposase-accessible chromatin with high-throughput sequen-
cing (ATAC-seq). We assembled an atlas of ~282K reproducible
accessibility regions for all cell lines, as well as tumor type-specific
atlases ranging from ~93 to ~153K reproducible regions (Sup-
plementary Table 1, see the “Methods” section). Principal com-
ponent analysis (PCA) identified heterogeneity in the chromatin
accessibility landscape in these gynecologic and basal breast
cancer cell lines (Fig. 2a, Supplementary Data 1). Notably, ovarian
and basal breast cancer cell lines displayed more similar chro-
matin accessibility profiles than most of the uterine cancer cell
lines. Interestingly, for the two uterine carcinosarcoma cell lines,
the copy number high SNU685 cell line clustered with ovarian
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and basal breast cancer cell lines, whereas JHUCS1 clustered with
uterine endometrioid cell lines.

Next, we assigned each accessible region in the tumor type specific
atlas to the nearest gene (Fig. 2b), and we defined the regulatory
locus complexity of a gene18 as the total number of accessible
regions within the tumor type. We grouped genes into three equally
sized classes (tertiles) based on their regulatory complexity in tumor
type specific atlases. Complexity classes were defined by dividing
genes at the 33rd and 66th percentiles of the distribution of the
number of accessible regions to produce groups with similar
numbers of genes. We found that the normalized expression levels of
low-complexity genes were lower than high-complexity and
medium-complexity genes in tumor samples from TCGA for each
tumor type (P < 1 × 10−16, one-sided Kolmogorov–Smirnov (KS)
test for all comparisons). The importance of enhancers is illustrated
by the region surrounding the MDM2 gene. Despite the ubiquitous
accessibility of the MDM2 promoter, nearby distal regulatory
elements of MDM2 were more accessible in uterine endometrioid
cell lines, consistent with higherMDM2 gene expression observed in
corresponding tumor samples from the TCGA cohort (Fig. 2c).

We also compared the cell line accessibility patterns with those of
primary tumors using recently published ATAC-seq signal data for
tumor samples from TCGA19 including 13 UCEC-ENDO (24 with
replicates) and 15 BRCA-BASAL (30 with replicates). Differential
analysis of endometrial and basal breast cancer cell lines identified
366 endometrial-specific peaks and 368 basal breast-specific peaks
(FDR < 10−4, log2(FC) > 3). Consistent with our cell line data, high
accessibility regions in breast cancer cell lines displayed significantly
higher accessibility in BRCA-BASAL patients than in UCEC-ENDO
(P < 10−4, one-sided Wilcoxon signed-rank test, see the “Methods”
section), while high accessibility regions in uterine endometrioid cell
lines showed significantly higher accessibility in UCEC-ENDO
patients than in BRCA-BASAL patients (P= 0.00016, one-sided
Wilcoxon signed-rank test), as shown in Supplementary Fig. 1.

Motifs underlying differential accessibility in cell lines. Next,
we determined the TFs that are most associated with open

chromatin for each tumor type through motif analyses and dif-
ferential accessibility (see the “Methods” section). We examined
the patterns of gain or loss of chromatin accessible regions
between each pair of tumor types by performing pairwise dif-
ferential read count analysis on accessible regions. The heatmap
in Supplementary Fig. 2 shows the patterns of differential
accessibility found among ~40,000 peaks across cell lines. Many
TFs whose motifs were identified at differentially accessible
regions between pairs of tumor types have roles in tumorigenesis
(Fig. 2d, Supplementary Fig. 3, Supplementary Data 2). For
example, chromatin peaks with HNF1 family motifs were more
accessible in the endometrioid subset of uterine cell lines than in
other cell types (P < 10−16, one-sided KS test). HNF1β is asso-
ciated with cancer risk in several tumors, including hepatocellular
carcinoma, pancreatic carcinoma, renal cancer, ovarian cancer,
endometrial cancer, and prostate cancer20. KLF and ETS family
motifs were more accessible in endometrioid uterine and ovarian
serous cell lines than in other cell types (P < 10−16, one-sided KS
test). These TFs have been implicated in the pathogenesis of these
endocrine-responsive cancers of female reproductive tissues21,22.
Chromatin peaks with FOS family motifs were more accessible in
basal breast, ovarian serous and uterine carcinosarcoma and less
accessible in uterine endometrioid cell lines than in other cell
types (P < 10−16, one-sided KS test). FOS family TFs have been
implicated as regulators of cell proliferation, differentiation, and
transformation.

In some cases the TF signal between cell lines might be due to
the tissue of origin. To look more closely at this issue, we examined
publicly available chromatin accessibility data in relevant normal
tissues. We generated a reference chromatin accessibility atlas for
normal uterine (n= 1), ovarian (n= 3), and breast (n= 1) tissue
using DNase-seq data by the Roadmap Epigenomics project23 and
assembled an atlas of ~397K accessibility regions. We performed
motif analysis in each chromatin accessible regions in the common
atlas. Then, we examined the patterns of gain or loss of chromatin
accessible regions between each pair of tumor types by performing
pairwise differential read count analysis on accessible regions.
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While several FOS family motifs and SMARCC1 are enriched both
in normal uterus vs. ovary as well as in the comparison of uterine
serous vs. ovarian serous, in most cases the motifs identified by
differential accessibility in cancer cell lines did not arise from the
tissue of origin based on available normal tissue accessibility data
(Supplementary Fig. 4). While many identified TFs are known to
play a role in other cancers, their impact on gene regulation has
not been characterized in gynecologic and basal breast cancers. We
therefore developed a regression framework to model the
regulatory role of TFs on gene expression in tumor samples.

Multitask regression explains tumor expression profiles. We
next used a MTL strategy across tumor types to learn patient-
specific regression models to predict tumor gene expression from
gene regulatory sequence derived from cell line ATAC-seq data.
Our method assumes that observed gene expression levels in each
tumor can largely be explained by the unobserved activities of a
smaller number of TF regulatory proteins through correlation
with TF-binding motif scores. Moreover, our approach shares
information across tumor samples and tumor types by repre-
senting each patient-specific regulatory model as a linear com-
bination of a latent regulatory models.

Formally, we developed PSIONIC, a multitask-learning frame-
work for integrating regulatory elements for each gene based on
motifs in ATAC-mapped promoters and enhancers from cancer
cell lines (X) with RNA-seq data from patient tumors (Y) to infer
patient-specific TF regulatory activities (W= LS) (Fig. 1c). We
adopted an algorithm for learning grouping and overlap structure
in MTL (GO-MTL)17; here, the model does not assume a disjoint
assignment of tasks (patients) to different groups (e.g. tumor
type) but rather allows patient-specific models to overlap with
each other by sharing one or more latent basis tasks, or latent
regulatory programs. Further, the matrix L represents these latent
regulatory programs, while S, the tumor weight matrix, captures
the grouping structure and specifies the coefficients of the linear
combination of latent regulatory programs for each tumor. MTL
enables selective sharing of information across other tumors,
while standard STL trains a regression model for each tumor
independently.

The application of our approach to 723 uterine, ovarian, and
basal breast tumors from TCGA identified key TFs as potential
common or cancer-specific drivers of expression changes. Our
expression dataset included samples from five different tumor
types, namely basal breast (BRCA-BASAL, n= 92), high-grade
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serous ovarian (OV, n= 255), uterine carcinosarcoma (UCS, n=
57), uterine endometrioid carcinomas (UCEC-ENDO, n= 272),
and uterine serous carcinomas (UCEC-SEROUS, n= 47). These
results were obtained using binding site predictions for 352
human sequence-specific TFs based on motif hits from the Cis-
BP database as motif data (see the “Methods” section).

Performance of PSIONIC and STL based on ridge regression
for each tumor type using 10-fold cross-validation is shown in
Fig. 3a. For statistical evaluation, we computed the mean
Spearman correlation (ρ) between predicted and measured gene
expression profiles on held-out genes for each tumor type and
obtained mean ρ= 0.384 ± 0.016 for PSIONIC, a highly sig-
nificant result (P < 10−16, one-sided Wilcoxon signed-rank test).
This regression performance was significantly better than STL (P
< 10−21, one-sided Wilcoxon signed-rank test). Similarly, our
models with motif data from promoter and enhancer regions
outperformed models where only motif hits in promoter regions
were used (P < 10−16, one-sided Wilcoxon signed-rank test). By
contrast, if we randomized motif hits for each chromatin

accessible region across all motifs, or if we randomized accessible
regions for each motif, then assigned to the nearest gene, the
prediction performance also significantly decreased (P < 10−32,
one-sided Wilcoxon signed-rank test).

When we compared 10-fold cross-validation results with
different values of K, we found that prediction performance was
stable after K= 4, with no sign of overfitting with higher K.
However, a higher number of regulatory programs did allow
PSIONIC-inferred models to better distinguish between tumors
of distinct subtypes (Supplementary Fig. 5). Therefore, K=
7 seemed to be a reasonable choice for optimizing both overall
prediction performance and capturing tumor-type-specific com-
ponents of the regulatory models (Fig. 3b, Supplementary
Fig. 6). Figure 3c shows a summary of mean tumor weights (S)
across each tumor type for each latent regulatory program. For
example, latent regulatory program 1 appeared to capture a
common gene regulatory program shared across all cancer types,
whereas latent regulatory program 2 captures TF-gene-regulatory
relationships shared by uterine serous and endometrioid tumors.

−0.03

−0.02

−0.01

0.00

0.01

0.02

La
te

nt
 re

gu
lat

or
y p

ro
g1

La
te

nt
 re

gu
lat

or
y p

ro
g2

La
te

nt
 re

gu
lat

or
y p

ro
g3

La
te

nt
 re

gu
lat

or
y p

ro
g4

La
te

nt
 re

gu
lat

or
y p

ro
g5

La
te

nt
 re

gu
lat

or
y p

ro
g6

La
te

nt
 re

gu
lat

or
y p

ro
g7

BRCA−BASAL

OV

UCEC−ENDO

UCEC−SEROUS

UCS

OV

UCS

BRCA−BASAL

UCEC−SEROUS

UCEC−ENDO

T
P

73
N

R
5A

2
R

E
LA

N
R

4A
2

Z
N

F
42

3
M

Y
C

H
N

F
1B

F
O

X
K

1
S

M
A

R
C

C
1

P
IT

X
2

IR
F

1
IR

F
5

G
R

H
L1

E
LF

5
G

S
C

M
E

F
2B

S
T

A
T

5A
LC

O
R

R
U

N
X

2
M

E
C

O
M

D
B

P
N

F
E

2
G

A
T

A
3

JD
P

2
Z

E
B

1
K

LF
12

Z
N

F
14

3
S

P
5

M
Y

B
L2

T
C

F
4

R
F

X
2

T
W
IS
T
1

R
R

E
B

1
S

O
X

11
R

E
S

T
E

B
F

1
F

O
X

F
1

H
O

X
C

9
C

T
C

F
L

W
T

1
S

P
4

E
T

S
1

A
R
ID
3B

E
LK

4
E

T
V

5
Y

Y
1

B
A

T
F

S
T

A
T

2
N

R
4A

3
F

U
B

P
1

F
O

S
D

N
M

T
1

N
R

F
1

P
R

D
M

1
IR

F
7

E
2F

6
F

O
X

I1
M

E
F

2A
F

O
X

N
3

N
R

4A
1

Z
B

T
B

33
R

X
R

B

Effect size

4e−05
2e−05
0
−2e−05
−4e−05

a

b

e

d

ATM
MAP3K1
NF1
BRCA1
EP300
TAF1
FBXW7
ARID1A
CTCF
KRAS
PIK3R1
CTNNB1
PTEN
PIK3CA
TP53
1q21.3
1q22
1q44
19q12
19q13.2
3q26.2
8q24.21
11q14.1
6p22.3
20q13.2
19p13.12
22q13.32
8p21.2
8p23.3
8p23.2

Somatic alterations

Not available
Amplification
Wild type
Deletion

TF activity
2e−05
1e−05
0
−1e−05
−2e−05

Tumor type

BRCA−BASAL
UCEC−ENDO
OV
UCEC−SEROUS
UCS

Mutation

METABOLISM OF LIPIDS AND LIPOPROTEINS
(NFYB,SREBF2,GRHL1,ESRRA)

CIRCADIAN CLOCK
(ARNTL,BHLHE40,DBP,NR1D1,CREB1)

CELL CYCLE (E2F2,TFDP1,TP53,SMAD2)

B CELL RECEPTOR_SIGNALING
(NFATC4,FOS,NFAT5,NFATC3,NFKB1)

JAK/STAT (STAT1,STAT2,IRF9)

MYOGENESIS (MEF2A,TCF3)

DEVELOPMENT
(TCF12,FOXO3,PAX6,EBF)

WNT SIGNALING
(NFATC1,SOX17,TCF7L2,SMAD4

NUCLEAR RECEPTOR
TRANSCRIPTION PATHWAY
(THRA,NR2F6,NR4A2,HNF4G,PPARG,
NR5A2,ESR1,THRB,NR3C2)

0 50 100 150 200 250 300 350

−0.001

0.000

0.001

0.002

Latent regulatory program 1

IRF2
ESRRG

A

PITX2

SP4

WT1
MBD2

0 50 100 150 200 250 300 350

−0.002

0.000

0.001

0.002
Latent regulatory program 2

FOS

ZFX

SP5
KLF12

PLAGL1

LIN54
NFE2

DNMT1

JPD2

c

−6e−05 −4e−05 −2e−05 0e+00

ARID3B activity

UCEC−ENDO

UCEC−SEROUS

UCS

OV

BRCA−BASAL

−3e−05 −1e−05 1e−05 3e−05

TWIST1 activity

UCEC−ENDO

UCEC−SEROUS

UCS

OV

BRCA−BASAL

M
ea

n 
S

pe
ar

m
an

 c
or

re
la

tio
n

0.1

0.2

0.3

0.4

0 200 400 600

PSIONIC enhancer promoter
PSIONIC promoter
PSIONIC random motif
PSIONIC random peak
Ridge STL enhancer promoter

Tumor types

Patients

Transcription factors Transcription factors

La
te

nt
 r

eg
ul

at
or

y 
pr

og
ra

m
 1

 w
ei

gh
t

M
ea

n 
tu

m
or

-s
pe

ci
fic

 w
ei

gh
t

La
te

nt
 r

eg
ul

at
or

y 
pr

og
ra

m
 2

 w
ei

gh
t

Tumor types

BRCA−BASAL

OV

UCEC−ENDO

UCEC−SEROUS

UCS
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subtypes of tumor samples. Plot showing Spearman correlations between predicted and actual gene expression changes for all samples, sorted based on
performance of the PSIONIC model using enhancer and promoter TF-binding sites. For each method and each sample, the Spearman correlation is
computed using 10-fold cross-validation on held-out genes. Using TF-binding sites from enhancer promoter as features (mean ρ= 0.384 ± 0.016) is
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distribution of inferred ARID3B and TWIST1 TF activities across tumor types. Source data are provided as a Source Data file
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Hierarchical clustering of tumors by inferred TF activities, W=
LS, as derived from the model largely recovered the distinction
between the major tumor types (Fig. 3d, Supplementary Data 3).
In particular, clustering based on inferred TF activity mostly
stratified patients by TP53 mutation status. Uterine endometrioid
tumors have distinct patterns of TF activities, consistent with
their differing expression and mutational patterns.

Multitask regression identifies tumor type-specific TFs. Next,
we assessed TF-tumor type associations by t-test to compare
inferred TF activity between samples in a given tumor type vs.
those in all other tumor types. We corrected for FDR across TFs
for each such pairwise comparison and identified significant TF
regulators and the results are shown in Supplementary Data 4 and
Fig. 3e. FUBP1, which regulates c-Myc gene transcription, had
significantly higher inferred activity in BASAL-BRCA than in
gynecologic tumors, whereas ARID3B activity was significantly
higher in OV, consistent with its role in promoting ovarian tumor
development, in part by regulating stem cell genes24. NR5A2 (also
known as liver receptor homolog-1, LRH-1) was significantly
higher in uterine endometriod tumors, consistent with its func-
tion in regulating metabolism and hormone synthesis. Moreover,
in agreement with previous reports, WT1 activity was sig-
nificantly higher in ovarian serous25 and uterine sarcoma26;
TWIST1, a central player in the EMT, had increased activity in
ovarian serous27 and uterine serous cancers; YY1, which regulates
various processes of development and differentiation and is
involved in tumorigenesis of breast and ovarian cancer28, had
increased activity in these cancers.

In addition to confirming key TFs from previous studies, our
analysis also predicted novel TF regulators in gynecologic and
basal breast cancers. For example, MEF2A, a transcriptional
regulator implicated in muscle development, cell growth control,
and apoptosis, had significantly higher activity in OV, BRCA-

BASAL, and UCS; the activity of microphthalmia-associated
transcription factor (MITF), was significantly higher in uterine
carcinosarcoma than in other cancers and displayed high
variation across patients. Indeed, UCSs are characterized by an
admixture of at least two histologically distinct components, one
resembling carcinoma and another resembling sarcoma13. The
roles of MEF2A and MITF have not been previously character-
ized in these cancers and may present promising targets for study
and potentially for therapeutic intervention.

To investigate the potential of using PSIONIC-inferred TF
activities to predict sensitivity to TF-targeted therapeutics, we
decided to translate our model into cancer cell lines where drug
sensitivity can be experimentally determined. Therefore, we first
assembled a collection of basal-like, ovary and endometrium
transcriptional profiles of immortalized human cancer cell lines
from the CCLE16, trained a PSIONIC model on this data set, and
hence inferred cell line-specific TF regulatory activities. Similar to
tumor models, we obtained significantly better regression
performance with PSIONIC than with STL based on ridge
regression in cell lines using 10-fold cross-validation (Supple-
mentary Fig. 7). Regulatory models for cell lines to some extent
recapitulated patient-specific tumor regulatory models (Supple-
mentary Fig. 8). Importantly, cell line models as well as tumor
models clustered mostly by cancer type.

While few drugs directly target TFs, we were able to use the
metal-regulatory transcription factor-1 (MTF1) inhibitor LOR-
253 for a proof of principle analysis. MTF1 is a ubiquitously
expressed TF that is activated by heavy metals, redox stresses,
growth factors, and cytokines29. We assessed our original panel of
10 cell lines for sensitivity to LOR-253 by measuring growth rate
inhibition. Consistent with expectation, cell lines with higher
inferred MTF1 activity showed a greater decrease in growth rate
after the treatment with LOR-253 (Fig. 4). Overall, MTF1 inferred
activity was significantly associated with growth rate inhibition by
Spearman correlation analysis (ρ= 0.795 for these cell lines).
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Clinical outcome based on inferred TF activities. To investigate
the clinical relevance of TF activities, we examined whether
inferred TF activities were associated with therapeutic response.
The standard of care for ovarian serous patients is aggressive
surgery followed by platinum/taxane chemotherapy. After ther-
apy, platinum-resistant cancer recurs in ~25% of patients within
6 months30. The clinical significance of recurrence following
current standard of care for ovarian serous patients prompted us
to determine TFs linked to platinum resistance in OV. Inferred
TF activities of seven TFs were significantly associated with pla-
tinum response, including HIF-1α and ZNF423 (t-test, P <
0.05, Supplementary Fig. 9). Consistent with our findings, HIF-1α
has been associated with platinum resistance in a variety of
cancers, including ovarian31. Moreover, ESR1 and ZNF423 have a
role in cancer cell proliferation32,33 and were significantly asso-
ciated with platinum-sensitive tumors.

Next, we examined whether inferred TF activities were linked
to survival data from the TCGA. We fit Cox proportional hazards
regression models for each TF activity using clinical stage and age
as additional covariates. The patient survival data and matched
TF activities enabled us to perform TF-centric survival analyses to
identify prognostic TFs within tumor type (TFs with FDR-
adjusted P < 0.02, Cox analysis). Numerous TFs were significantly
associated with survival outcome in BRCA-BASAL, UCEC-
SEROUS, and UCEC-ENDO (Supplementary Tables 2–4). For
some TFs, the prognostic value has been reported previously; for
example, PGR34 has been associated with survival in uterine
cancer. However, most of the identified prognostic TFs lack prior
reports of a link to survival in these cancers, making them
potential candidates for follow-up studies.

For example, ETV6 inferred activity separated patients into
high-risk and low-risk groups in UCEC-SEROUS (FDR < 0.02,
Cox analysis). ETV6 exhibits antitumor effects suppressing
proliferation and metastatic progression in prostate cancer35.
However, its role in uterine serous cancer has not been studied.
To further investigate whether prognostic TFs identified through
inferred activity analyses could be verified at the protein level, we

performed immunohistochemical analyses in primary tumor
samples from patients with uterine serous cancer (n= 31) for
ETV6. Our analysis of the two groups of patient samples divided
based on intensity of ETV6 and positivity in nuclei or cytoplasm
showed a significant difference in survival between the groups
(P < 0.004, log-rank test), with median survival of 2330 and
214 days for the weak or medium nuclear and the strong nuclear
groups, respectively. The Kaplan–Meier survival curve based on
ETV6 staining is shown in Fig. 5a. A representative image of
immunofluorescence staining of a primary uterine serous tumor
shows protein level nuclear localization of ETV6 in tumor cells
(Fig. 5b).

Similarly, MITF inferred activity separated patients into high-
risk and low-risk groups in BASAL-BRCA (FDR= 0.011, Cox
analysis). Indeed, tissue microarray analyses in clinically
annotated primary basal breast tumor samples (n= 45) validated
MITF positivity in tumor cells and revealed a significant
association between MITF expression and patient survival (P <
0.006, log-rank test), with median survival of 1208 and 2406 days
for the positive and negative staining groups, respectively (see
Kaplan–Meier survival curve and representative MITF-positive
staining in basal breast cancer patients in Fig. 6a, b). MITF is a
key TF in melanocyte development and differentiation and a
diagnostic biomarker for metastatic melanoma36. However, the
role of MITF in non-melanoma cancer cells, including basal
breast cancer, is largely undefined. Thus, we next sought to
functionally validate PSIONIC-predicted MITF activity in basal
breast cancer cells.

To this end, we generated inducible shRNA vectors37 targeting
MITF and evaluated their impact on basal breast cancer gene
expression. Potent shRNA-driven MITF downregulation was
confirmed in both MDA-MB-436 basal breast cancer cells and
SK-Mel-28 melanoma cells with known high MITF levels
(Supplementary Fig. 10A–C). RNA-seq following MITF silencing
revealed an effect on gene expression with 58 consistently down-
regulated and 103 consistently upregulated genes (adjusted P <
0.05 and fold change > 2) in MDA-MB-436 cells transduced with
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two independent MITF shRNAs (Fig. 6c; Supplementary Table 5).
Interestingly, commonly downregulated genes included c-Myc
and c-Myc target genes, as well as additional pro-oncogenic
factors, such as IL1B, NT5E (CD73), and other molecules with
functions in tumor immune escape (Fig. 6d, Supplementary
Tables 6 and 7)38,39, which were validated by qPCR (Supple-
mentary Fig. 10C). Commonly upregulated genes were enriched
in ontology terms associated with immune activation (defensins,
complement, IFN, IL15, CCL2) and cell adhesion (e.g. SVEP1)
(Fig. 6d, Supplementary Tables 6 and 7, Supplementary Fig. 10D).
These effects were not associated with changes in the proliferation
rate of MDA-MB-436 cells in vitro yet are suggestive of an in vivo
role for MITF in the regulation of cancer—microenvironment
crosstalk in basal breast cancer. Importantly, most differentially
expressed genes (DEGs) identified in MDA-MB-436 upon MITF
suppression correlated with PSIONIC-inferred MITF activity
across multiple basal breast cancer cell lines (n= 29; 75 out of 161
DEG, ~47%, |ρ| > 0.4, Fig. 6e) as well as across patient samples (n
= 92; 43 out of 161 DEG, ~27%, |ρ| > 0.4). Together, these results
validate the predictions made by PSIONIC on MITF activity and
gene regulation in basal breast cancer.

Discussion
With the development of high-throughput sequencing technolo-
gies, transcriptomic, proteomic, genomic profiles of tumor sam-
ples have been rapidly generated for diverse cancer types.
Identifying differentially expressed genes or recurring mutations
does not always clarify the molecular pathways that actually
regulate tumor state and survival. There is still a large metho-
dological gap between generating molecular profiles of tumor
samples and understanding the molecular mechanisms under-
lying tumorigenesis and response to therapy.

Our PSIONIC method provides a systematic framework for
integrating resources on regulatory genomics with tumor
expression data to better understand gene regulation in cancers
and infer patient-specific TF networks. PSIONIC uses a reduced
rank representation model based on latent tasks, which helps
regularize patient-specific regression models in light of noisy
tumor gene expression data while sharing information between
tumors and tumor types. Joint inference of TF activities across
different tumor types may also reveal clinically relevant patient
subgroups common to multiple cancers. As new ATAC-seq
technologies for frozen tissue are developed40, ATAC-seq will
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become feasible in clinical samples, and then TF-binding site
signals from tumor-specific ATAC-seq mapped regions can be
incorporated to our framework.

One limitation of our approach is the multiplicity of inferred
effects, which is biologically reasonable but complicates inter-
pretation. Our model also currently makes the assumption that a
TF either induces or represses its targets, but some TFs may play
either role depending on coordination with co-factors. These
limitations may confound the interpretation of inferred TFs with
dual activator/repressor roles. Tumor data sets are also a chal-
lenging case for regulatory network analysis due to the presence
of stromal/immune cells within the tumor and the heterogeneity
of cancer cells themselves. However, the PSIONIC framework can
be extended modeling of single-cell RNA-seq, as we will report
elsewhere.

We used PSIONIC to perform a comprehensive transcriptional
network analysis of gynecologic and basal breast cancer tumors.
These tumors have not previously been subject to extensive epi-
genetic or computational analyses, and they all lack accurate
predictors of response and treatment strategies for recurrent
disease. PSIONIC can identify transcriptional processes that are
active across otherwise very different tumors, such as MEF2A
activity in the OV, BRCA-BASAL, and UCS cohorts. Applying
our method to other pan-cancer cohorts such as squamous car-
cinomas or pediatric cancers might again find biological processes
that are activated in a large number of tumor types and provide
insight into common regulatory programs in tumors of different
origin.

We demonstrated that PSIONIC-predicted activity for TFs in
cell line models correlated with sensitivity to inhibition of a tar-
getable TF, MTF1, giving a proof-of-principle for the potential
therapeutic application of our approach. MTF1 target genes
including PGF, HIF-1, and TGFB1 are involved in apoptosis,
resistance, invasion, metastasis, and angiogenesis. Under normal
conditions, MTF1 localizes both to the nucleus and the cyto-
plasm but accumulates in the nucleus upon these diverse stresses.
After binding DNA, MTF1 recruits different co-regulators and
often relies on other TFs, such as p300/CBP, Sp1, and HIF1α for
coordinated target gene expression. Its established targets have
important roles in metal homeostasis, embryonic development,
tumor progression, and oxidative stress or hypoxia signal-
ing. Importantly, inhibition of MTF1 induces the expression of
tumor suppressor factor Kruppel like factor 4 (KLF4)41. This
leads to the downregulation of cyclin D1, blocking cell cycle
progression and proliferation. The MTF1 inhibitor LOR-253
enhances apoptosis induced by cisplatin in both SKOV3 and
OVCAR3 cells42, is cytotoxic to Raji and Raji/253R lymphoma
cell lines43, and suppresses the proliferation of acute myeloid
leukemia (AML) cell lines44. A clinical trial testing LOR-253 in
patients with AML and myelodysplastic syndrome is currently
ongoing (ClinicalTrials.gov: NCT02267863). Our results suggest
that the potential role of MTF1 in gynecologic and basal breast
cancers merits further investigation.

We also showed that several PSIONIC-predicted TF activities
were significantly associated with survival outcome in basal
breast, uterine serous and endometrioid carcinomas. We vali-
dated two prognostic TFs, MITF and ETV6, in independent
patient cohorts, giving a proof-of-principle for the potential
prognostic application of our approach.

ETV6 encodes an ETS family transcription factor that is
essential for hematopoietic processes45. Indeed, immunolocali-
zation of ETV6 on tissue samples from uterine serous cancer
patients demonstrated that strong nuclear ETV6 expression is
significantly associated with poor disease prognosis. Possible
future validation experiments to confirm the tumor-promoting
roles of ETV6 in uterine serous cancer, expression levels of ETV6

can be manipulated in cultured cells through overexpression or
silencing and the effects of ETV6 on cancer cell proliferation,
survival, motility, and invasion potential can be evaluated. Ulti-
mately, in vivo validation of the roles of ETV6 expression on
uterine cancer progression can be studied using uterine serous
cancer-bearing mouse models through in vivo silencing of ETV6
using siRNAs.

Encouraged by MITF’s prognostic value in basal breast cancer
patients, we directly examined the functional impact of loss of
MITF in basal breast cancer cells by transducing MDA-MB-436
cells with inducible MITF shRNAs followed by RNA-seq.
Although MITF shRNA did not compromise tumor cell pro-
liferation in vitro, we found many cancer-relevant genes to be
regulated by MITF, including cell-surface and secreted factors
repressing immune-mediated anti-tumor responses in triple-
negative breast cancer (e.g. NT5E/CD73)38,39. Moreover, many of
the factors de-repressed upon MITF knockdown are important
players that activate anti-tumor immunity (e.g. IL15, CCL2),
which suggests a potential role of MITF in evasion of immune
surveillance. Hence, our data suggest MITF might may play
tumor-promoting roles in vivo by regulating the crosstalk of basal
breast cancer cells with their tumor microenvironment. More
globally, these analyses validate PSIONIC as a predictive tool to
predict TF activity in specific tumor settings, as shown for MITF
in basal breast cancer, that expands its role in cancer beyond its
known lineage-specific functions in melanoma.

Patient-specific inference of TF networks may ultimately
enable the development of individualized therapies, aid in
understanding mechanisms of drug resistance, and allow the
identification of biomarkers of response. We anticipate that
computational modeling of transcriptional regulation across dif-
ferent tumor types will emerge as an important tool in precision
oncology, aiding in the eventual goal of choosing the best ther-
apeutic option for each individual patient.

Methods
Datasets. RNA-seq data for each of the five tumor types were downloaded from
TCGA’s Firehose data run [https://confluence.broadinstitute.org/display/GDAC/
Dashboard-Stddata]. Log10-transformed RNA-seq RSEM gene expression values
were unit-normalized by tumor sample. Cancer cell lines RNA-seq data were
downloaded from the CCLE website [http://www.broadinstitute.org/ccle]. Log10-
transformed RNA-seq TPM gene expression values were unit-normalized by
cell line.

Bigwig files of ATAC-seq profiles of tumor samples from TCGA19 including 13
UCEC-ENDO (24 with replicates) and 15 BRCA-BASAL (30 with replicates) were
downloaded from https://gdc.cancer.gov/about-data/publications/ATACseq-AWG.

Cell line selection for ATAC-seq. In this study, we chose cell lines widely used as
representative of corresponding tumor types depending on availability to our
group. In several cases, we are providing the first epigenomic characterization of
these cell line models. ATAC-seq libraries generated from basal breast (MDA-MB-
231, MDA-MB-436) high-grade serous ovarian (OVCAR8, Caov3), uterine carci-
nosarcoma (JHUCS, SNU685), endometrial endometrioid (AN3-CA, KLE, Ishi-
kawa, RL95-2), and serous carcinoma (ACI-126, ACI-158) cell lines. Gynecologic
cell lines OVCAR8, Caov3, JHUCS, SNU685, AN3-CA, KLE, Ishikawa, and RL95-2
were supplied by Douglas A. Levine. Uterine serous cell lines ACI-126 and ACI-
158 were kindly supplied by John I. Risinger from Michigan State University. Basal
breast cancer cell lines MDA-MB-231 and MDA-MB-436 were acquired from
ATCC. The cell lines have been tested negative for mycoplasma contamination.

Briefly, Ishikawa and RL-95-2 derived from type I and KLE and AN3CA
derived from type II endometrial carcinomas tumors have been widely used as
models to investigate molecular genetics and mechanisms underlying their
development, progression, and response to therapeutics46. KLE and AN3CA cells,
originating from peritoneal and lymph node metastases, respectively, and RL-95-2
cells derived from a moderately differentiated (Grade 2) endometrial
adenosquamous carcinoma. Ishikawa cells were established from the epithelial
component of a moderately differentiated, stage 2, endometrial
adenocarcinoma. CAOV3 and OVCAR8 have been widely used as representatives
of high-grade serous cancer. CAOV3 and OVCAR8 possess TP53 mutations and
substantial copy-number changes, key characteristics of high grade serous ovarian
cancer (HGSOC). ACI-158 and ACI-126 are the main uterine serous (UPSC) cell
lines. JHUCS-1 was established from a carcinosarcoma (malignant mixed
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mesodermal tumor) of the uterus that was surgically removed from a 57-year-old
Japanese woman47. SNU-685 was derived from uterine malignant mixed mullerian
tumor48.

Sample preparation for ATAC-seq. Cell lines were re-suspended in cold PBS
according to ATAC-Seq protocol49. Chromatin was extracted and processed for
Tn5-mediated tagmentation and adapter incorporation, according to the manu-
facturer’s protocol (Nextera DNA sample preparation kit, Illumina®) at 37 °C for
30 min. Reduced-cycle amplification was carried out in the presence of compatible
indexed sequencing adapters. The quality of the libraries was assessed by a DNA-
based fluorometric assay (Thermo Fisher ScientificTM) and automated capillary
electrophoresis (Agilent Technologies, Inc.). Sample preparation and sequencing
for ATAC-seq was performed by Epinomics. For each sample, ATAC-seq was
performed on two biological replicates.

ATAC data analysis. Starting from fastq files containing ATAC-seq paired-end
reads, sequencing adaptors were removed using Trimmomatic50. Trimmed reads
were mapped to the hg19 human genome using Bowtie251 allowing at most 1 seed
mismatch and keeping only uniquely aligned reads. Duplicates were removed using
Picard (http://picard.sourceforge.net). For peak calling the read start sites were
adjusted (reads aligning to the +/− strand were offset by+4 bp/−5 bp, respec-
tively) to represent the center of the transposase binding-event49.

BigWig files were generated using bamCoverage from the deepTools suite with
options—binSize 10–normalizeTo1 × 2451960000 –ignoreForNormalization chrX.
The log2-transformed ATAC-seq signal were calculated using bamCompare from
deepTools52. Resulting normalized BigWig files were used as input to
computeMatrix to calculate scores for regions of interest (using either scale-regions
or reference-point mode) and visualized using plotHeatmap tool from deepTools.

Peak calling was performed on each cell type individually: first, the reads from
different replicates were pooled, and the MACS2.0 peak caller53 was then used to
identify peaks with a permissive threshold (P < 2 × 10−3). Finally, IDR was used to
identify reproducible peaks using two biological replicates for each cell type (IDR <
1 × 10−2). Peaks found reproducibly in each cancer cell subtype were combined to
create a genome-wide atlas of accessible chromatin regions. Reproducible peaks
from different samples were merged if they overlapped by more than 75%. The
atlas of chromatin accessibility across 12 gynecologic and basal breast cancer cell
lines contains 282,248 peaks. The number of reproducible peaks for each cell line
and number of peaks in each cancer type specific atlas are listed in Supplementary
Table 1.

We associated each peak to its nearest gene in the human genome using the
ChIPpeakAnno package54. ATAC-seq peaks located in the body of the
transcription unit, together with the 100 kb regions upstream of the TSS and
downstream of the 3′ end, were assigned to the gene.

Using the MEME55 curated Cis-BP56 TF-binding motif reference, we scanned
each ATAC-seq tumor type peak atlas and common atlas with FIMO57 to find
peaks likely to contain each motif (P < 10−5). We filtered TFs that were not
expressed in at least 50% of samples in at least one of the five tumor types. Further,
similarity of predicted target peak sets was measured using the Jaccard index (size
of intersection/size of union). If two TFs had a high Jaccard index (>0.5), we looked
at the mean Jaccard index of each TF with all other TFs, and we removed the TF
with the largest mean Jaccard index. The final set contained 352 motifs.

We created a matrix that defines a candidate set of associations between TFs
and target genes: TF-binding site identification was used to turn each gene’s set of
assigned ATAC peaks into a feature vector of binding signals by assigning the
maximum score of each motif across all peaks to a gene.

Differential peak accessibility. Reads aligning to atlas peak regions were counted
using the countOverlaps function of the R packages GenomicAlignments and
GenomicRanges58. Differential accessibility of these peaks was then calculated for
all pairwise comparisons of cancer types using DESeq259.

Motifs underlying differential accessibility in cell lines. The shift in the
cumulative distribution of chromatin accessibility changes (log2-fold change) of the
subset of the atlas occupied by each TF, compared to that of the background atlas,
was measured by a one-sided KS test in either direction. The foreground occur-
rence is the number of peaks containing a particular TF motif within the group of
5000 differentially open or 5000 differentially closed peaks according to log2-fold
change read counts. The background occurrence is the number of peaks containing
a particular TF motif among all the differentially accessible peaks.

TCGA ATAC-seq analysis. Currently, only bigwig files are publicly available for
TCGA ATAC-seq but not raw data. We extracted the sum of ATAC-seq signals
±0.5 kb from the peak center for differentially accessible cell line peak regions for
patients from these bigwig files and used these values for statistical analyses.

Multitask learning. For MTL, we trained regression models jointly for all tumors
using grouping and overlap in MTL (GO-MTL)17. In this approach, prediction of
each gene expression yt is considered one task, and we wish to solve T tasks jointly

so that information is “shared” between them. Let X be the data matrix of size d ×
N where each row represents a gene and each column is a motif hit score repre-
senting the target genes of a TF. We assume there are K(<T) latent basis tasks and
each observed task can be represented as linear combination of a subset of these
basis tasks.

Briefly, we jointly learn regression models wt that predict gene expression as
linear combinations of latent regulatory programs in tumors. Formally, we learn a
model matrix W= LS, where every column of matrix W is a model vector for a
tumor transcriptional regulatory network, wt ; L is matrix of latent tasks L= (l1 …
lK); and S expresses the tumor transcriptional regulatory network models as linear
combinations of the latent tasks, wt= Lst. The model vector wt represents the
inferred global role of these TFs in driving gene expression; the event’s true gene
expression is denoted by yt; and the predicted gene expression is given by wtXt

(treating both as row vectors for notational convenience). The matrix L captures
the predictive structure of the tasks and the grouping structure is determined by
matrix S. Tasks that have same sparsity pattern can be seen as belonging to the
same group, while tasks whose sparsity patterns are orthogonal to each other can
be seen as belonging to different groups. The partial sharing of latent basis tasks
allows us to do away with the concept of disjoint groups. Any task that does not
share latent bases with any other task in the pool can be seen as outlier task. Our
learning cost function takes the following form:

min

L; S

XT

t¼1

1
N

yt � X′
tLst

�� ��2þμ Sk k1þλ Lk k2F ð1Þ

The parameter µ controls the sparsity in S. The penalty on the Frobenius norm of L
regularizes the predictor weights to have low ℓ2 norm and avoids overfitting.

To assess single task learning (STL) performance, we trained ridge regression
models for each tumor (task) independently. We fit the ridge regression models
using the SLEP MATLAB package and evaluated performance on held-out genes.

In vitro drug-sensitivity analysis. Detailed information on cell culture media is
provided in the Supplementary Table 8. All cell lines were cultured under standard
conditions at 37 °C and 5% CO2. Cells were plated at 10–20% confluency (with the
exception of JHUCS-1, MDA-MB-436, and RL-95 which were plated at ~50%) in
24-well plates in complete medium, and incubated inside an IncuCyte ZOOM
system (Essen BioScience, Inc., MI, USA). The following day (22–24 h later), cells
were exposed to LOR-253 (MedChemExpress, NJ, USA) at 0, 50, 250, or 1250 nM.
To monitor cell growth, phase contrast images of the cell cultures in the presence
or absence of the drug were captured automatically at 2-h intervals for up to 36 h,
and occupied area of the cells (% confluency) was calculated using the IncuCyte
image analysis software. We analyzed drug response data using a recently devel-
oped growth rate inhibition (GR) metric that corrects for differences in cell pro-
liferation rates60.

Immunohistochemistry for ETV6 in UPSC. The population considered for this
study consisted of 31 patients diagnosed with uterine papillary serous carcinoma
(UPSC) in stage III or IV, who underwent salpingo-oophorectomy at University of
Texas MD Anderson Cancer Center (MDACC) and did not receive neoadjuvant
therapy. Patients were divided in two groups based on survival: <2 years (eight
patients) and more than 10 years (six patients). This study was approved by the
Institutional Review Board at the MDACC. Informed consent was obtained from
all patients. Formalin-fixed paraffin-embedded (FFPE) tumor blocks of archived
UPSC were obtained from the repository of the Department of Gynecologic
Oncology and Reproductive Medicine at MDACC. Clinical information was
obtained from the electronic medical records.

FFPE 4 µm sections from patient tissues were deparaffinized and fixed in
methanol prior to antigen retrieval in heated citrate buffer (pH 6.0, Poly Scientific
R&D Corp.) at 120 °C for 7 min, followed by 10 min at 90 °C. Endogenous
peroxidase was blocked with hydrogen peroxide solution (Millipore Sigma) 3% for
10 min. Protein blocking was performed using PBS-Tween 3%, BSA 1% donkey
serum (Millipore Sigma) for 30 min. Anti-ETV6 antibody from Sigma (catalog
number: HPA000264) at the titer of 1:500 was used. Samples were incubated with
ETV6 for 1 h (1:75, polyclonal, Millipore Sigma) followed by use of MACH 3 rabbit
HRP polymer detection (Biocare Medical). Antibodies were visualized by means of
a dextran–polymer conjugate technique (EnVision+, Dako) using 3,3′-
diaminobenzidine (DAB) (Dako) as chromogen. Tissue sections were
counterstained with haematoxylin. Images were captured with a Leica DM LB
microscope (Leica Microsistems).

Intensity of ETV6 stain was graded separately in nuclei and cytoplasm as 0
(negative), 1 (weak), 2 (moderate), and 3 (strong). Patient samples were divided
into two groups based on this scoring: weak and medium nuclear (scores 0, 1 or 2)
ETV6 staining, n= 20; and patient samples with strong (score= 3) nuclear
ETV6 staining, n= 11. Statistical analysis studied the association between
ETV6 staining intensity scores and survival time by using Kaplan–Meier curves
and Log-rank test (P < 0.004).

Immunohistochemistry for MITF in TNBC. Immunohistochemical stain for
MITF was performed on tissue microarrays (TMAs) containing triple negative
breast carcinoma (TNBC). TNBC was defined as invasive breast carcinoma with
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ER and PR staining in <1% of the tumor cells by immunohistochemistry and no
HER2 overexpression by immunohistochemistry and no HER2 amplification by
fluorescence in situ hybridization. Assessment of ER, PR, and HER2 follows the
ASCO/CAP guidelines. Triplicate 0.6 mm diameter core from formalin-fixed par-
affin-embedded TNBC blocks were used to construct the TMAs. MITF (D5) clone
Dako Ab (catalog number: M3621) was used on Leica platform with ER2 pre-
treatment for 40 min. Pr Ab dilution: 1:50. Standard DAB Kit was used. MITF
staining of any percentage and any intensity was considered positive. Some posi-
tivity is seen in the tumor-infiltrating lymphocytes. Clinical information was
obtained from the electronic medical records. The association between MITF
staining and survival was analyzed using Kaplan–Meier curves and log-rank test.
This study was approved by the Institutional Review Board at MSKCC.

Sample preparation for RNA-Seq and data analysis. shRNA vector cloning:
shRNA sequences for targeting human MITF were designed using the Splash
algorithm prediction tool61. The shRNA was cloned into the LT3GEPIR miR-E
backbone37 enabling inducible shRNA expression in transduced cells upon dox-
ycycline treatment. Two independent shRNA were used to target MITF (sh962 or
shQa), and a previously described shRNA-targeting Renilla luciferase62 was used as
control. The sequences of all shRNAs can be found in Supplementary Table 9.

For protein lysates cells were incubated with RIPA buffer supplemented with
protease inhibitors (Protease inhibitor tablets, Roche) for 30 min and cleared by
centrifugation (15 min 14,000 rpms 4 C). Protein was quantified using the Bio-Rad
protein assay (Cat. 500006). Primary antibody incubation was performed overnight
at 4 °C in Tris-buffered saline containing 5% milk and 0.05% Tween-20. The
following primary antibodies were used for immunoblotting: Mitf (ab12039,
Abcam), Actin-HRP (A3854, Sigma). Mouse HRP-linked secondary antibody (GE
Healthcare) was used and blots were developed with Lumi-Light Western Blotting
Substrate (Roche).

MDA-MB-436 cells were maintained in RPMI 1640, supplemented with 10%
FBS (Gemini, Cat. 900-208), 1X Glutamax (Gibco, Cat. 35050061), and
penicillin–streptomycin (1%). MDA-MB-436 cells were transduced with a lentiviral
construct (LT3GEPIR,37) and infected cells were then selected with puromycin (1
μg/ml, Sigma-Aldrich) and harvested at 5 or 17 days after culture in growth media
containing doxycycline (1 μg/ml, Sigma-Aldrich). Total RNA was extracted using
TRIzol (Thermal Fisher Scientific, Cat. 15596018), according to manufacturer’s
instructions. For RT-qPCR experiments, cDNA was obtained using Transcriptor
First Strand cDNA Synthesis Kit (Roche, Cat. 04896866001). Gene-specific primer
sets for human sequences were designed using PrimerBank [https://pga.mgh.
harvard.edu/primerbank/] (see Supplementary Table 10 for qPCR primer
sequences). HPRT1 served as endogenous normalization controls. RT-qPCR was
carried out in triplicate using PerfeCTa SYBR Green FastMix (QuantaBio, Cat.
95072-012) on the ViiA 7 Real-Time PCR System (Life technologies). For RNA-
Seq, 500 μg of RNA was used, and PolyA mRNA was selected using beads coated
with polyT oligonucleotides. Purified polyA mRNA was subsequently fragmented,
and first and second strand cDNA synthesis performed using standard Illumina
mRNA library preparation protocols (TruSeq RNA Sample Prep Kit v.2). Double-
stranded cDNA was subsequently processed for TruSeq dual-index Illumina library
generation. For sequencing ~30–40 million 80 bp single-end reads were acquired
per replicate condition in a NextSeq Illumina system at the integrated genomics
operation (IGO) Core at MSKCC.

Raw RNA-Seq reads were trimmed and filtered for quality using Trimmomatic50.
Reads were aligned using STAR63 against GRCh37.75(hg19). The RefSeq transcript
annotations of the hg19 version of the human genome was used for the genomic
location of transcription units. Genome-wide transcript counting was performed by
HTSeq64 to generate a matrix of raw counts. Differential expression of genes across
cell types was calculated using DESeq259. FDR threshold of 0.05 was imposed unless
otherwise stated. A log2-fold change cutoff of 1 was used. We functionally annotated
our expression profiling and performed gene set enrichment analysis65 on all curated
gene sets in the Molecular Signatures Database.

Pooled data is presented as mean ± standard deviation (SD) values of duplicate or
triplicate biological replicates, as indicated in corresponding figure legends. Statistical
significance differences compared to shMITF/shRen (for day 17) or shMITF +Dox/
−Dox (for day 5) were determined by an unpaired one-tailed Student’s t-test. In
figures, * stands for P < 0.05, ** for P < 0.01, and *** for P < 0.001.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The ATAC-seq and RNA-seq data have been deposited in the Gene Expression Omnibus
accession number GSE114964 and GSE129337, respectively. The source data underlying
Figs. 2, 3A–E, 4A–C, 5A, 6 and Supplementary Figs. 1, 2, 3, 6–10 are provided as Source
Data files.

Code availability
The software for PSIONIC is available from https://github.com/osmanbeyoglulab/
PSIONIC.
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